首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principal meeting point of the subtropical and subpolar gyres of the North Atlantic is at the Tail of the Grand Banks where the two western boundary currents, the Gulf Stream and Labrador Current, join forces as the North Atlantic Current, which flows northeast almost 10° in latitude before turning east as the Subpolar Front, ultimately feeding the Labrador and Nordic Seas and the thermohaline overturning. After the Gulf Stream turns into the North Atlantic Current at the Grand Banks, its role shifts from a wind-driven current to a link in the large-scale thermohaline circulation. The processes governing this transition, in particular the continued transport north of mass and heat, are questions of considerable climatic importance. The North Atlantic Current is a very unusual western boundary current in that its mass transport decreases in the downstream direction.The mean path and annual shifting of the eastward flowing Gulf Stream is conjectured to result from a time-varying shelf-Slope Water overflow of waters from the Labrador shelf. As the volume transport increases in fall and deepens the Slope Water pycnocline, it forces the Gulf Stream south and deepens the Sargasso Sea thermocline as well. The timing of these steps governs the June maximum in baroclinic transport. There is some evidence that this ‘back-door’ gyre interaction may operate on interannual time scales as well. The question then arises whether the shelf-to-Slope Water Sea transport also plays a role in governing the separation of the Gulf Stream.The widely observed robustness of the width of the Gulf Stream appears to result from a tight balance between the release of available potential energy and the kinetic energy of the current. A broader current would release more energy than can be ‘disposed of’, while a narrower current requires more kinetic energy than is available to sustain it. It is shown that for plausible dissipation rates in the recirculation gyres, the amount of energy that needs to be expelled from the Gulf Stream is such a small fraction of that advected through as to be vitually undetectable, hence the stiffness of the current.  相似文献   

2.
《Ocean Modelling》2011,36(4):304-313
We implemented an explicit forcing of the complete lunisolar tides into an ocean model which is part of a coupled atmosphere–hydrology–ocean–sea ice model. An ensemble of experiments with this climate model shows that the model is significantly affected by the induced tidal mixing and nonlinear interactions of tides with low frequency motion. The largest changes occur in the North Atlantic where the ocean current system gets changed on large scales. In particular, the pathway of the North Atlantic Current is modified resulting in improved sea surface temperature fields compared to the non-tidal run. These modifications are accompanied by a more realistic simulation of the convection in the Labrador Sea. The modification of sea surface temperature in the North Atlantic region leads to heat flux changes of up to 50 W/m2. The climate simulations indicate that an improvement of the North Atlantic Current has implications for the simulation of the Western European Climate, with amplified temperature trends between 1950 and 2000, which are closer to the observed trends.  相似文献   

3.
《Ocean Modelling》2009,28(3-4):114-129
A newly developed global Finite Element Sea Ice–Ocean Model (FESOM) is presented. The ocean component is based on the Finite Element model of the North Atlantic (FENA) but has been substantially updated and extended. In addition to a faster realization of the numerical code, state-of-the-art parameterizations of subgrid-scale processes have been implemented. A Redi/GM scheme is employed to parameterize the effects of mesoscale eddies on lateral tracer distribution. Vertical mixing and convection are parameterized as a function of the Richardson number and the Monin–Obukhov length. A finite element dynamic-thermodynamic sea ice–model has been developed and coupled to the ocean component. Sea ice thermodynamics have been derived from the standard AWI sea ice model featuring a prognostic snow layer but neglecting internal heat storage. The dynamic part offers the viscous-plastic and elastic-viscous-plastic rheologies. All model components are discretized on a triangular/tetrahedral grid with a continuous, conforming representation of model variables. The coupled model is run in a global configuration and forced with NCEP daily atmospheric reanalysis data for 1948–2007. Results are analysed with a slight focus on the Southern Hemisphere. Many aspects of sea ice distribution and hydrography are found to be in good agreement with observations. As in most coarse-scale models, Gulf Stream transport is underestimated, but transports of the Kuroshio and the Antarctic Circumpolar Current appear realistic. The seasonal cycles of Arctic and Antarctic sea ice extents and Antarctic sea ice thickness are well captured; long- and short-term variability of ice coverage is found to be reproduced realistically in both hemispheres. The coupled model is now ready to be used in a wide range of applications.  相似文献   

4.
Numerical experiments with the circulation model of the North Atlantic based on the splitting algorithms in the σ-coordinate system with a spatial resolution allowing for reproducing synoptic eddies were performed in two versions: with the Arctic Ocean and without it (boundary along 78°N). They showed that the account for the water exchange with the Arctic is fundamentally important for reproducing jet dynamics at the western boundary of the Atlantic down to the subtropical zone. The influence of the conditions at the liquid boundary that separates the Atlantic and the Arctic extends not only over the subarctic area [29] but is also “transferred” by the Labrador Current and the Slope Water Current (SWC) to the area of the Gulf Stream proper. One cannot properly describe the detachment of the Gulf Stream from the coast without adequate reproducing of the Labrador Current and SWC. An hypothesis is posed that the location of the detachment region at 35°N is caused by strong vertical motions at the interface between the SWC and the Gulf Stream jet with horizontal velocities that are almost equal to those at the exit from the Florida Strait. A comparison of the model circulation with that retrieved from the hydrological data and the drift of neutral buoyancy floats [14, 22] showed both qualitative and quantitative coincidences of the features of the northward warm water transfer such as the streamline around the so-called northwestern “corner” (motion “along the topography”) and the jet-wise transport of these waters from Labrador to the northeast inside a kind of “pipeline,” which is limited in the upper baroclinic layer 1 km thick by mean velocity contour lines of about 10 cm/s. A comparison between the experimental [19] and model fields of the ocean level showed that, at the absence of direct representation of the water (mass) exchange between the Atlantic and the Arctic Ocean, the decrease of the gradient velocities in the Gulf Stream may reach 30%.  相似文献   

5.
Intercomparison of three South China Sea circulation models   总被引:2,自引:1,他引:1  
1IntroductionTheSouthChinaSeaisthelargesttropicalmarginaldeepsealocatingbetweenthewesternPacificOceanandtheeasternIndianOcean.AsapartofAsia-Australiamaritimecontinent,monsoonisaprimaryfactorforcingtheSouthChinaSeaCurrent(SCSC)variation.Drivenbynortheasterlymonsooninwinterandsouth-westerlymonsooninsummer,respectively,theSCSCbehavesacyclonicgyreandananticy-clonicgyre,correspondingly(Wyrtki,1961;Xuetal.,1982).Owingtotheshortageandexpen-sivenessofdirectobservationsintheSCS,fur-therunder…  相似文献   

6.
本文利用大洋环流模式POP研究RCP4.5情景下21世纪格陵兰冰川不同的融化速率对全球及区域海平面变化的影响。结果显示:当格陵兰冰川的融化速率以每年1%增加时,全球大部分海域的动力和比容海平面变化基本不变,主要是由于格陵兰冰川在低速融化时并不会导致大西洋经向翻转流减弱。当格陵兰冰川的融化速率以每年3%和每年7%增加时,动力海平面在北大西洋副极地、大西洋热带、南大西洋副热带和北冰洋海域呈现出显著的上升趋势,这是因为格陵兰冰川快速融化导致大量的淡水输入附近海域,造成该上层海洋层化加强和深对流减弱,导致大西洋经向翻转流显著减弱;与此同时,热比容海平面在北冰洋、格陵兰岛南部海域和大西洋副热带海域显著下降,而在热带大西洋和湾流海域明显上升;此时盐比容海平面的变化与热比容海平面是反相的,这是由于大量的低温低盐水的输入,造成北大西洋副极地海域变冷变淡、大西洋经向翻转流和热盐环流显著减弱,引起了太平洋向北冰洋的热通量和淡水通量减少,导致了北冰洋海水变冷变淡,同时热带大西洋滞留了更多的高温高盐水,随着湾流被带到北大西洋,北大西洋副极地海域低温低盐的海水,被风生环流输运到副热带海域。  相似文献   

7.
As part of a project comparing the structure and function of four marine ecosystems off Norway and the United States, this paper examines the oceanographic responses to climate forcing, with emphasis on recent changes. The four Northern Hemisphere ecosystems include two in the Pacific Ocean (Bering Sea and Gulf of Alaska) and two in the Atlantic Ocean (Georges Bank/Gulf of Maine and the Barents/Norwegian Seas). Air temperatures, wind forcing and heat fluxes over the four regions are compared as well as ocean hydrography and sea-ice conditions where seasonal sea ice is found. The long-term interannual variability in air temperatures, winds and net heat fluxes show strong similarity between adjacent ecosystems and within subregions of an ecosystem, but no significant correlations between Pacific and Atlantic ecosystems and few across the Atlantic. In spite of the lack of correlation between climate forcing and ocean conditions between most of the ecosystems, recent years have seen record or near record highs in air and sea temperatures in all ecosystems. The apparent causes of the warming differ. In the Atlantic, they appear to be due to advection, while in the Pacific temperatures are more closely linked to air-sea heat exchanges. Advection is also responsible for the observed changes in salinity in the Atlantic ecosystems (generally increasing salinity in the Barents and Norwegian Seas and decreasing in the Gulf of Maine and Georges Bank) while salinity changes in the Gulf of Alaska are largely related to increased local runoff.  相似文献   

8.
Three eddy-permitting (1/4°) versions and one eddy-resolving (1/12°) version of the OCCAM ocean model are used to simulate the World Ocean circulation since 1985. The first eddy-permitting simulation has been used extensively in previous studies, and provides a point of reference. A second, improved, eddy-permitting simulation is forced in the same manner as the eddy-resolving simulation, with a dataset based on a blend of NCEP re-analysis and satellite data. The third eddy-permitting simulation is forced with a different dataset, based on the ERA-40 re-analysis data. Inter-comparison of these simulations in the North Atlantic clarifies the relative importance of resolution and choice of forcing dataset, for simulating the mean state and recent variability of the basin-scale circulation in that region. Differences between the first and second eddy-permitting simulations additionally reveal an erroneous influence of sea ice on surface salinity, dense water formation, and the meridional overturning circulation. Simulations are further evaluated in terms of long-term mean ocean heat transport at selected latitudes (for which hydrographic estimates are available) and sea surface temperature errors (relative to observations). By these criteria, closest agreement with observations is obtained for the eddy-resolving simulation. In this simulation, there is also a weak decadal variation in mid-latitudes, with heat transport strongest, by around 0.2 PW, in the mid-1990s. In two of the eddy-permitting simulations, by contrast, heat transport weakens through the study period, by up to 0.4 PW in mid-latitudes. The most notable changes of heat transport in all simulations are linked to a weakening of the subpolar gyre, rather than changes in the meridional overturning circulation. It is concluded that recent changes in the structure of mid-latitude heat transport in the North Atlantic are more accurately represented if eddies are explicitly resolved.  相似文献   

9.
Inter-annual to inter-decadal changes of hydrographic structure and circulation in the subpolar North Atlantic are studied using a coarse resolution ocean circulation model. The study covers 1949 through 2001, inclusive. A “time-mean state nudging” method is applied to assimilate the observed hydrographic climatology into the model. The method significantly reduces model biases in the long-term mean distribution of temperature and salinity, which commonly exist in coarse-resolution ocean models. By reducing the time-mean biases we also significantly improve the model’s representation of inter-annual to inter-decadal variations. In the central Labrador Sea, the model broadly reproduces the heat and salt variations of the Labrador Sea Water (LSW) as revealed by hydrographic observations. Model sensitivity experiments confirm that the low-frequency hydrographic changes in the central Labrador Sea are closely related to changes in the intensity and depth of deep convection. Changes in surface heat flux associated with the winter North Atlantic Oscillation (NAO) index play a major role in driving the changes in T–S and sea surface height (SSH). Changes in wind stress play a secondary role in driving these changes but are important in driving the changes in the depth-integrated circulation. The total changes in both SSH and depth-integrated circulation are almost a linear combination of the separate influences of variable buoyancy and momentum fluxes.  相似文献   

10.
The influence of changes in the rate of deep water formation in the North Atlantic subpolar gyre on the variability of the transport in the Deep Western Boundary Current is investigated in a realistic hind cast simulation of the North Atlantic during the 1953–2003 period. In the simulation, deep water formation takes place in the Irminger Sea, in the interior of the Labrador Sea and in the Labrador Current. In the Irminger Sea, deep water is formed close to the boundary currents. It is rapidly exported out of the Irminger Sea via an intensified East Greenland Current, and out of the Labrador Sea via increased southeastward transports. The newly formed deep water, which is advected to Flemish Cap in approximately one year, is preceded by fast propagating topographic waves. Deep water formed in the Labrador Sea interior tends to accumulate and recirculate within the basin, with a residence time of a few years in the Labrador Sea. Hence, it is only slowly exported northeastward to the Irminger Sea and southeastward to the subtropical North Atlantic, reaching Flemish Cap in 1–5 years. As a result, the transport in the Deep Western Boundary Current is mostly correlated with convection in the Irminger Sea. Finally, the deep water produced in the Labrador Current is lighter and is rapidly exported out of the Labrador Basin, reaching Flemish Cap in a few months. As the production of deep-water along the western periphery of the Labrador Sea is maximum when convection in the interior is minimum, there is some compensation between the deep water formed along the boundary and in the interior of the basin, which reduces the variability of its net transport. These mechanisms which have been suggested from hydrographic and tracer observations, help one to understand the variability of the transport in the Deep Western Boundary Current at the exit of the subpolar gyre.  相似文献   

11.
北极河流径流是北冰洋淡水的最大来源,其变化会对北冰洋中的诸多过程有重要影响。本文基于全球高分辨率海洋?海冰耦合模式的模拟结果,研究北冰洋温盐、海冰以及环流对北极河流径流的敏感性。通过对比有气候态北极河流径流输入的控制实验结果和径流完全关闭的敏感性实验结果,研究发现北极径流对北冰洋温度、盐度、海冰以及海洋环流等有显著的影响。关闭北极河流径流后,在河口附近的陆架上温度降低、盐度升高,且导致500 m深度处温度下降以及盐度升高;河口附近的陆架处,海冰密集度与海冰厚度增加。关闭北极河流径流也对北冰洋内的环流有影响:由于缺少来自欧亚大陆的北极径流的输入,穿极漂流与东格陵兰流流速减小且盐度增加;关闭北极径流导致近岸海表面高度降低,沿欧亚陆架的北冰洋边界流减弱,白令海入流增强。通过对比关闭北极径流实验与控制实验的温度和盐度剖面,发现关闭北极径流后大西洋层温度降低,各陆架海盐跃层的梯度减小,盐跃层厚度减小。  相似文献   

12.
Historical hydrographic data, spanning the period 1896–2006, are used to examine the annual mean and seasonal variations in the distribution of freshwater along and across the shelf/slope boundary along the Labrador and Newfoundland Shelves and the Grand Banks of Newfoundland. Particular attention is paid to the export of freshwater along the eastern Grand Banks, between Flemish Cap and the Tail of the Grand Banks, as this has long been identified as a preferential region for the loss of mass and freshwater from the boundary. The data are combined into isopycnally averaged long-term annual and monthly mean gridded property fields and the evolving distribution of fresh arctic-origin water is analyzed in fields of salinity anomaly, expressed as departures from the “central water” temperature–salinity relation of the Gulf Stream. The climatology confirms that cold/fresh northern-source waters are advected offshore within the retroflecting Labrador Current along the full length of the boundary between Flemish Cap and the Tail of the Grand Banks. In fact, it is estimated that most of the equatorward baroclinic transport at the boundary must retroflect back toward the north in order to explain the annual mean distribution of salinity in the climatology. While the retroflection of the Labrador Current appears seasonally robust, the freshwater distribution within the retroflection region varies in response to (1) the freshness of the water available for export which is set by the arrival and rapid flushing of the seasonal freshwater pulse at the boundary, (2) seasonal buoyancy forcing at the surface which alters the vertical stratification across the retroflection region, restricting certain isopycnal export pathways, and (3) the density structure along the eastern Grand Banks, which defines the progressive retroflection of the Labrador Current.  相似文献   

13.
The variability of the ice and freshwater transports through the main openings of the Nordic Seas is studied based on a 200-year simulation with a sea ice–ocean model forced by stochastic surface wind stress anomalies representative of Northern annular mode (NAM). The spectrum of the ice export through Fram Strait (FS), which constitutes the main contribution to the total freshwater export anomaly from the Arctic, shows no significant peak though half of the variance is concentrated at periods longer than a year. The standard deviation of the freshwater export to the subpolar gyre through Denmark Strait only amounts to 40% of the standard deviation of the total (ice+liquid) freshwater export through FS, with a comparatively larger variance in the low-frequency range, suggesting that the Greenland Sea could act as a low-pass filter. In the upper layer of the Iceland–Scotland Passage, positive phases of the NAM lead to a fast increase of the northward volume and salt transports. Within 2 years, the salt transport anomaly, however, changes sign due to advection of negative salinity anomalies which originate in the subpolar gyre and can be traced up to the Barents Sea.  相似文献   

14.
《Ocean Modelling》2008,20(3-4):138-160
We analyze the water mass transformation in coarse (1°) and high (1/6°) resolution ocean simulations with the identical configuration of the CLIPPER model and interannual ERA15 forcing function. Climatological characteristics of surface water mass transformation in the two experiments are quite different. The high resolution experiment exhibits a stronger surface transformation in equatorial and tropical regions, in the Gulf Stream area and in the location of the formation of Subtropical Mode Water (STMW), associated with high levels of eddy kinetic energy. The coarse resolution experiment shows a better representation of the transformation rates corresponding to the densest subpolar mode waters and Labrador Sea Water (LSW). This is explained by the differences in lateral mixing procedures between high and coarse resolution experiments. The high resolution 1/6° run is eddy-resolving only in the tropics and mid-latitudes. In these areas eddies are found to enhance the process of water mass transformation compared to the isopycnal diffusion used to parameterized the eddies in the 1° model. Despite its 1/6° resolution, the high resolution model does not adequately represent eddies in the subpolar gyre and Labrador Sea. In these areas the high resolution model fails to correctly simulate water mass transformation because the lateral mixing (provided through the bi-harmonic sub-gridscale parameterization) of newly ventilated waters with surrounding waters is not efficient enough. In contrast in the coarse 1° resolution model, the strong lateral mixing and the unrealistically broad boundary currents imposed by the high diffusivity required for numerical stability mixes newly formed LSW waters with the warmer and saltier waters of the rim current. Finally, it results in a more effective representation of the surface water mass transformation in high latitudes in the 1° model. A possible impact of the increased lateral diffusion in high resolution experiment on the representation of re-stratification in the Labrador Sea was studied in sensitivity experiments with different lateral diffusion coefficients compared to the regional eddy-resolving 1/15° simulation in the subpolar North Atlantic. If the eddies are not resolved in subpolar latitudes (as in the case of 1/6° model), the GM90 parameterization with the coefficient close to 800 m2 s−1 provides the closest agreement with the solution of eddy-resolving 1/15° model.  相似文献   

15.
Sensitivity of a global ocean model to increased run-off from Greenland   总被引:2,自引:0,他引:2  
We study the reaction of a global ocean–sea ice model to an increase of fresh water input into the northern North Atlantic under different surface boundary conditions, ranging from simple restoring of surface salinity to the use of an energy balance model (EBM) for the atmosphere. The anomalous fresh water flux is distributed around Greenland, reflecting increased melting of the Greenland ice sheet and increasing fresh water export from the Arctic Ocean. Depending on the type of surface boundary condition, the large circulation reacts with a slow-down of overturning and gyre circulations. Restoring of the total or mean surface salinity prevents a large scale redistribution of the salinity field that is apparent under mixed boundary conditions and with the EBM. The control run under mixed boundary conditions exhibits large and unrealistic oscillations of the meridional overturning. Although the reaction to the fresh water flux anomaly is similar to the response with the EBM, mixed boundary conditions must thus be considered unreliable. With the EBM, the waters in the deep western boundary current initially become saltier and a new fresh water mass forms in the north-eastern North Atlantic in response to the fresh water flux anomaly around Greenland. After an accumulation period of several decades duration, this new North East Atlantic Intermediate Water spreads towards the western boundary and opens a new southward pathway at intermediate depths along the western boundary for the fresh waters of high northern latitudes.  相似文献   

16.
We analyze the water mass transformation in coarse (1°) and high (1/6°) resolution ocean simulations with the identical configuration of the CLIPPER model and interannual ERA15 forcing function. Climatological characteristics of surface water mass transformation in the two experiments are quite different. The high resolution experiment exhibits a stronger surface transformation in equatorial and tropical regions, in the Gulf Stream area and in the location of the formation of Subtropical Mode Water (STMW), associated with high levels of eddy kinetic energy. The coarse resolution experiment shows a better representation of the transformation rates corresponding to the densest subpolar mode waters and Labrador Sea Water (LSW). This is explained by the differences in lateral mixing procedures between high and coarse resolution experiments. The high resolution 1/6° run is eddy-resolving only in the tropics and mid-latitudes. In these areas eddies are found to enhance the process of water mass transformation compared to the isopycnal diffusion used to parameterized the eddies in the 1° model. Despite its 1/6° resolution, the high resolution model does not adequately represent eddies in the subpolar gyre and Labrador Sea. In these areas the high resolution model fails to correctly simulate water mass transformation because the lateral mixing (provided through the bi-harmonic sub-gridscale parameterization) of newly ventilated waters with surrounding waters is not efficient enough. In contrast in the coarse 1° resolution model, the strong lateral mixing and the unrealistically broad boundary currents imposed by the high diffusivity required for numerical stability mixes newly formed LSW waters with the warmer and saltier waters of the rim current. Finally, it results in a more effective representation of the surface water mass transformation in high latitudes in the 1° model. A possible impact of the increased lateral diffusion in high resolution experiment on the representation of re-stratification in the Labrador Sea was studied in sensitivity experiments with different lateral diffusion coefficients compared to the regional eddy-resolving 1/15° simulation in the subpolar North Atlantic. If the eddies are not resolved in subpolar latitudes (as in the case of 1/6° model), the GM90 parameterization with the coefficient close to 800 m2 s−1 provides the closest agreement with the solution of eddy-resolving 1/15° model.  相似文献   

17.
巴伦支海-喀拉海是北冰洋最大的边缘海,能够对环境变化做出快速的响应和反馈,是全球气候变化最为敏感的区域之一,其古海洋环境演变及海冰变化研究是全球气候变化研究的重要组成部分。末次盛冰期以来,该区域的古海洋环境受到太阳辐射、海流强度、海平面变化、温盐环流和河流输入等因素影响发生了一系列不同尺度的波动。巴伦支海受到北大西洋暖水和极地冷水两大水团相互作用的影响,在水团交界处 (极锋) 由于不同水团性质的差异,导致其海水温度、盐度及海冰发生剧烈变化。而喀拉海则受到叶尼塞河和鄂毕河大量淡水输入影响,海流系统较巴伦支海相对复杂,沉积物主要来源于河流输入的陆源物质,并可以通过磁化率的分析明确区分两条河流的陆源物质。由于受到冷水和暖水的相互作用,巴伦支海-喀拉海海冰变化迅速,并且在全新世中晚期存在 0.4 ka 和 0.95 ka 的变化周期,但海冰变化的影响因素并不是单一的,而是气候系统内部各因子相互作用的结果。目前古海冰重建研究工作主要为定性研究,定量研究相对较少,所选用的重建指标也相对单一,另外存在年代框架差、分辨率低等不足。本文以巴伦支海和喀拉海为中心,总结了其快速气候突变事件、古温度盐度、海平面及海冰的变化,对影响因素进行了探讨,并通过分析末次盛冰期以来古海洋环境研究的不足,提出了相应的展望。  相似文献   

18.
Observational evidence indicates that in the northern North Atlantic, especially in the Labrador Sea, almost the whole column of the ocean water is fresher, and colder in late 20th century than in 1950–1960s. Here we analyze a four-member ensemble of the 20th century simulations from a coupled climate model to examine the possible causes for these observed changes. The model simulations resemble the observed changes in the northern North Atlantic. The simulated results show that a decreased meridional freshwater divergence and an increased meridional heat divergence associated with a weaker thermohaline circulation in the North Atlantic are the primary causes for the freshening and cooling in the northern North Atlantic. The increased precipitation less evaporation tends to enforce the freshening, but the reduced sea ice flux into this region tends to weaken it. On the other hand, the surface warming induced by a higher atmospheric CO2 concentration tends to heat up the northern North Atlantic, but is overcome by the cooling from increased meridional heat divergence.  相似文献   

19.
海冰动力学过程的数值模拟   总被引:41,自引:11,他引:30  
讨论了海冰动力学性质并阐述决定海冰漂移的动量平衡,冰脊和水道形成及确定冰应力与形变、强度之间关系的海冰流变学.提出了模拟海冰动力学过程的数值模式,模式中冰厚分布由开阔水、平整冰和堆积冰3种要素表示.在这3要素的预报方程中引入形变函数,采用一种参数化方法模拟冰脊和水道.为了表示冰内相互作用,将海冰作为一种非线性粘性可压缩物质,采用粘-塑性本构关系.本文还概述和讨论了模式中所采用的数值方法,应用此模式模拟了渤海、波罗的海的波的尼亚湾和拉布拉多海的冰漂移.渤海冰漂移模拟结果明显地显示出潮周期变化,还模拟了渤海的冰脊和水道,进行了海冰流变学参数的敏感性试验.并将此冰模式与大气模式和边界层模式联接,给出渤海海冰预报结果.  相似文献   

20.
Observations of deep ocean temperature and salinity in the Labrador and Greenland Seas indicate that there is negative correlation between the activities of deep convection in these two sites. A previous study suggests that this negative correlation is controlled by the North Atlantic Oscillation (NAO). In this study, we discuss this deep convection seesaw by using a coupled atmosphere and ocean general circulation model. In this simulation, the deep convection is realistically simulated in both the Labrador and Greenland Seas and their negative correlation is also recognized. Regression of sea level pressure to wintertime mixed layer depth in the Labrador Sea reveals strong correlation between the convection and the NAO as previous studies suggest, but a significant portion of their variability is not correlated. On the other hand, the convection in the Greenland Sea is not directly related to the NAO, and its variability is in phase with changes in the freshwater budget in the GIN Seas. The deep convection seesaw found in the model is controlled by freshwater transport through the Denmark Strait. When this transport is larger, more freshwater flows to the Labrador Sea and less to the Greenland Sea. This leads to lower upper-ocean surface salinity in the Labrador Sea and higher salinity in the Greenland Sea, which produces negative correlation between these two deep convective activities. The deep convection seesaw observed in the recent decades could be interpreted as induced by the changes in the freshwater transport through the Denmark Strait, whose role has not been discussed so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号