首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
栅格空间中三维地学实体拓扑关系表达的K6N9-I模型   总被引:1,自引:0,他引:1  
论述栅格空间中三维地学实体拓扑空间关系研究的理论基础和现实意义,基于数字拓扑理论定义了栅格实体的6邻域内部I6、6邻域边界B6和k阶6邻域E6k,并以此分别替换9-I模型中实体的内部I、边界B和外部E,形成一种适用于栅格空间三维实体拓扑关系描述和分析的新9-I模型,即k阶6邻9-I模型(K6N9-I)。以基于规则六面体表达的地学实体为研究对象,通过扩展关系数据库SQL形成空间关系查询语言,实现了栅格空间中三维地学实体拓扑关系的定性表示和定量计算。以若干地学实体为例进行了初步实验,表明该模型实用方便,且在复杂地学实体的度量、方位等空间关系研究方面亦有较好的应用前景。  相似文献   

3.
该文阐述为了实现在GIS中描述自然界里带有模糊不确定性的地理目标 ,扩充GIS的模糊查询功能 ,首先基于集合论思想探讨了确定性地理目标的代数解析表达与其拓扑表达 ,指出了确定性点、线、面之间拓扑表达的构成机理 ;然后 ,基于场模型建立了模糊地理目标的空间表达 ,分析了模糊地理目标的位置不确定性 ,进而建立了模糊地理目标的拓扑表达模型 ,即点集拓扑内部、边界和外部。分析表明 ,公认的Egenhofer模型是该文模型在地理目标不带有误差或不确定性情况下的特例。最后 ,与Clementini(1996 )提出的模型做了比较分析 ,表明了该文模型的合理性。  相似文献   

4.
Abstract

Based on the 9-intersection for binary topological relations, two models of conceptual neighbourhoods among topological relations between a line and a region are developed. The snapshot model derives the neighbourhoods by comparing pairs of topological relations and selects neighbours based on least noticeable differences, whereas the smooth-transition model develops neighbourhoods based on the knowledge of the deformations that may change a topological relation. The resulting similarity diagrams show some differences, which were compared with the results from tests in which human subjects were asked to organized line-region relations into groups of similar relations. The groupings the subjects made indicate that the smooth-transition model captures more important aspects of the similarity of topological line-region relations than the snapshot model.  相似文献   

5.
This article presents a geometric algebra-based model for topological relation computation. This computational model is composed of three major components: the Grassmann structure preserving hierarchical multivector-tree representation (MVTree), multidimensional unified operators for intersection relation computation, and the judgement rules for assembling the intersections into topological relations. With this model, the intersection relations between the different dimensional objects (nodes at different levels) are computed using the Tree Meet operator. The meet operation between two arbitrary objects is accomplished by transforming the computation into the meet product between each pair of MVTree nodes, which produces a series of intersection relations in the form of MVTree. This intersection tree is then processed through a set of judgement rules to determine the topological relations between two objects in the hierarchy. Case studies of topological relations between two triangles in 3D space are employed to illustrate the model. The results show that with the new model, the topological relations can be computed in a simple way without referring to dimension. This dimensionless way of computing topological relations from geographic data is significant given the increased dimensionality of geographic information in the digital era.  相似文献   

6.
For modeling the topological relations between spatial objects, the concepts of a bound on the intersection of the boundary and interior, and the boundary and exterior are defined in this paper based on the newly developed computational fuzzy topology. Furthermore, the qualitative measures for the intersections are specified based on the α‐cut induced fuzzy topology, which are (Aα∧?A)(x)<1?α and ((Ac)α∧?A)(x)<1?α. In other words, the intersection of the interior and boundary or boundary and exterior are always bounded by 1?α, where α is a value of a level cutting. Specifically, the following areas are covered: (a) the homeomorphic invariants of the fuzzy topology; (b) a definition of the connectivity of the newly developed fuzzy topology; (c) a model of the fuzzy topological relations between simple fuzzy regions in GIS; and (d) the quantitative values of topological relations can be calculated.  相似文献   

7.
In this article we show that the Voronoi-based nine-intersection (V9I) model proposed by Chen et al. (2001, A Voronoi-based 9-intersection model for spatial relations. International Journal of Geographical Information Science, 15 (3), 201–220) is more expressive than what has been believed before. Given any two spatial entities A and B, the V9I relation between A and B is represented as a 3 × 3 Boolean matrix. For each pair of types of spatial entities that is, points, lines, and regions, we first show that most Boolean matrices do not represent a V9I relation by using topological constraints and the definition of Voronoi regions. Then, we provide illustrations for all the remaining matrices. This guarantees that our method is sound and complete. In particular, we show that there are 18 V9I relations between two areas with connected interior, while there are only nine four-intersection relations. Our investigations also show that, unlike many other spatial relation models, V9I relations are context or shape sensitive. That is, the existence of other entities or the shape of the entities may affect the validity of certain relations.  相似文献   

8.
An inconsistency measure can be used to compare the quality of different data sets and to quantify the cost of data cleaning. In traditional relational databases, inconsistency is defined in terms of constraints that use comparison operators between attributes. Inconsistency measures for traditional databases cannot be applied to spatial data sets because spatial objects are complex and the constraints are typically defined using spatial relations. This paper proposes an inconsistency measure to evaluate how dirty a spatial data set is with respect to a set of integrity constraints that define the topological relations that should hold between objects in the data set. The paper starts by reviewing different approaches to quantify the degree of inconsistency and showing that they are not suitable for the problem. Then, the inconsistency measure of a data set is defined in terms of the degree in which each spatial object in the data set violates topological constraints, and the possible representations of spatial objects are points, curves, and surfaces. Finally, an experimental evaluation demonstrates the applicability of the proposed inconsistency measure and compares it with previously existing approaches.  相似文献   

9.
基于复形理论定义了数字图像空间的拓扑元素及其性质,在此基础上提出一套完备的保持拓扑等价性的层次表达数字图像的数学模型体系框架,并验证了层次表达结构中的Jordan曲线定理.同时,基于单元复形扩展模型,对SPOT影像实施了渐进式离散分割,有效地利用影像蕴含的空间信息,获得了比最大似然分类法更优的分割结果.  相似文献   

10.
One feature discovered in the study of complex networks is community structure, in which vertices are gathered into several groups where more edges exist within groups than between groups. Many approaches have been developed for identifying communities; these approaches essentially segment networks based on topological structure or the attribute similarity of vertices, while few approaches consider the spatial character of the networks. Many complex networks are spatially constrained such that the vertices and edges are embedded in space. In geographical space, nearer objects are more related than distant objects. Thus, the relations among vertices are defined not only by the links connecting them but also by the distance between them. In this article, we propose a geo-distance-based method of detecting communities in spatially constrained networks to identify communities that are both highly topologically connected and spatially clustered. The algorithm is based on the fast modularity maximisation (CNM) algorithm. First, we modify the modularity to geo-modularity Qgeo by introducing an edge weight that is the inverse of the geographic distance to the power of n. Then, we propose the concept of a spatial clustering coefficient as a measure of clustering of the network to determine the power value n of the distance. The algorithm is tested with China air transport network and BrightKite social network data-sets. The segmentation of the China air transport network is similar to the seven economic regions of China. The segmentation of the BrightKite social network shows the regionality of social groups and identifies the dynamic social groups that reflect users’ location changes. The algorithm is useful in exploring the interaction and clustering properties of geographical phenomena and providing timely location-based services for a group of people.  相似文献   

11.
The scale dependences of topological relations are caused by the changes of spatial objects at different scales, which are induced by the reduction of attributes. Generally, the detailed partitions and multi-scale attributes are stored in spatial databases, while the coarse partitions are not. Consequently, the detailed topological relations can be computed and regarded as known information, while the coarse relations stay unknown. However, many applications (e.g., multi-scale spatial data query) need to deal with the topological relations at multiple scales. In this study new methods are proposed to model and derive the scale dependences of topological relations between lines and multi-scale region partitions. The scale dependences of topological relations are modeled and used to derive the relations between lines and coarse partitions from the relations about the detailed partitions. The derivation can be performed in two steps. At the first step, the topological dependences between a line and two meeting, covered and contained regions are computed and stored into composition tables, respectively. At the second step, a graph is used to represent the neighboring relations among the regions in a detailed partition. The scale dependences and detailed relations are then used to derive topological relations at the coarse level. Our methods can also be extended to handle the scale dependences of relations about disconnected regions, or the combinations of connected and disconnected regions. Because our methods use the scale dependences to derive relations at the coarse level, rather than generating coarse partition and computing the relations with geometric information, they are more efficient to support scale-dependent applications.  相似文献   

12.
Intersection relations are important topological considerations in database update processes. The differentiation and identification of non-empty intersection relations between new updates and existing objects is one of the first steps in the automatic incremental update process for a land parcel database. The basic non-empty intersection relations are meet, overlap, cover, equal and inside, but these basic relationships cannot reflect the complex and detailed non-empty relations between a new update and the existing objects. It is therefore necessary to refine the basic non-empty topological relations to support and trigger the relevant update operations. Such relations have been refined by several researchers using topological invariants (e.g., dimension, type and sequence) to represent the intersection components. However, the intersection components often include only points and lines, and the refined types of 2-dimensional intersection components that occur between land parcels have not been defined. This study examines the refinement of non-empty relations among 2-dimensional land parcels and proposes a computation model. In this model, an entire spatial object is directly used as the operand, and two set operations (i.e., intersection (∩) and difference (\)) are applied to form the basic topological computation model. The Euler number is introduced to refine the relations with a single 2-dimensional intersection (i.e., cover, inside and overlap) and to distinguish the refined types of 2-dimensional intersection components for the relations with multiple intersections. In this study, the cover and overlap relations with single intersections between regions are refined into seven cases, and nine basic types of 2-dimensional intersection components are distinguished. A composite computation model is formed with both Euler number values and dimensional differences. In this model, the topological relations with single intersections are differentiated by the value of the dimension and the Euler number of the resulting set of the whole-object intersection and differences, whereas the relations with multiple intersections are discriminated by the value of the resulting set at a coarse level and are further differentiated by the type and sequence of the whole-object intersection component in a hierarchical manner. Based on the refined topological relations, an improved method for automatic and incremental updating of the land parcel database is presented. The effectiveness of the models and algorithms was verified by the incremental update of a land cover database. The results of this study represent a new avenue for automatic spatial data handling in incremental update processes.  相似文献   

13.
Qualitative knowledge representation of spatial locations and relations is popular in many text-based media, for example, postings on social networks, news reports, and encyclopedia, as representing qualitative spatial locations is indispensable to infer spatial knowledge from them. However, an integrative model capable of handling direction-based locations of various spatial objects is missing. This study presents an integrative representation and inference framework about direction-based qualitative locations for points, lines, and polygons. In the framework, direction partitions of different types of reference objects are first unified to create a partition consisting of cells, segments, and corners. They serve as a frame of reference to locate spatial objects (e.g., points, lines, and polygons). Qualitative relations are then defined to relate spatial objects to the elements in a cell partition, and to form the model of qualitative locations. Last, based on the integrative representation, location-based reasoning mechanism is presented to derive topological relations between objects from their locations, such as point–point, line–line, point–line, point–polygon, line–polygon, and polygon–polygon relations. The presented model can locate any type of spatial objects in a frame of reference composed of points, lines, and polygons, and derive topological relations between any pairs of objects from the locations in a unified method.  相似文献   

14.
Abstract

In state-of-the-art GIS, geographical features are represented as geometric objects with associated topological relations and classification attributes. Semantic relations and intrinsic interrelations of the features themselves are generally neglected. In this paper, a feature-based model that enhances the representation of geographical features is described. Features, as the fundamental depiction of geographical phenomena, encompass both real world entities and digital representation. A feature-based object incorporates both topological relations among geometric elements and non-topological (semantic) relations among features. The development of an object-oriented prototype feature-based GIS that supports relations between feature attributes and feature classes is described. Object-oriented concepts such as class inheritance and polymorphism facilitate the development of feature-based GTS.  相似文献   

15.
Regionalization is to divide a large set of spatial objects into a number of spatially contiguous regions while optimizing an objective function, which is normally a homogeneity (or heterogeneity) measure of the derived regions. This research proposes and evaluates a family of six hierarchical regionalization methods. The six methods are based on three agglomerative clustering approaches, including the single linkage, average linkage (ALK), and the complete linkage (CLK), each of which is constrained with spatial contiguity in two different ways (i.e. the first‐order constraining and the full‐order constraining). It is discovered that both the Full‐Order‐CLK and the Full‐Order‐ALK methods significantly outperform existing methods across four quality evaluations: the total heterogeneity, region size balance, internal variation, and the preservation of data distribution. Moreover, the proposed algorithms are efficient and can find the solution in O(n 2log n) time. With such data scalability, for the first time it is possible to effectively regionalize large data sets that have 10 000 or more spatial objects. A detailed comparison and evaluation of the six methods are carried out with the 2004 US presidential election data.  相似文献   

16.
According to Christopher Alexander’s theory of centers, a whole comprises numerous, recursively defined centers for things or spaces surrounding us. Wholeness is a type of global structure or life-giving order emerging from the whole as a field of the centers. The wholeness is an essential part of any complex system and exists, to some degree or other, in spaces. This paper defines wholeness as a hierarchical graph, in which individual centers are represented as the nodes and their relationships as the directed links. The hierarchical graph gets its name from the inherent scaling hierarchy revealed by the head/tail breaks, which is a classification scheme and visualization tool for data with a heavy-tailed distribution. We suggest that (1) the degrees of wholeness for individual centers should be measured by PageRank (PR) scores based on the notion that high-degree-of-life centers are those to which many high-degree-of-life centers point, and (2) that the hierarchical levels, or the ht-index of the PR scores induced by the head/tail breaks, can characterize the degree of wholeness for the whole: the higher the ht-index, the more life or wholeness in the whole. Three case studies applied to the Alhambra building complex and the street networks of Manhattan and Sweden illustrate that the defined wholeness captures fairly well human intuitions on the degree of life for the geographic spaces. We further suggest that the mathematical model of wholeness be an important model of geographic representation, because it is topological oriented, which enables us to see the underlying scaling structure. The model can guide geodesign, which should be considered as the wholeness-extending transformations that are essentially like the unfolding processes of seeds or embryos, for creating built and natural environments of beauty or with a high degree of wholeness.  相似文献   

17.
空间关系理论研究是当前GIS界重点研究的前沿课题之一,但就目前研究成果看,空间关系理论中的拓扑关系和方向关系的理论研究多采用独立的描述模型,影响了空间推理和空间表达的精度。该文在分析拓扑关系和方向关系描述模型的基础上,提出将拓扑关系和方向关系定性表示相结合的TD模型,并用实例说明该模型能较全面地描述空间对象的空间关系。  相似文献   

18.
Existing sensor network query processors (SNQPs) have demonstrated that in-network processing is an effective and efficient means of interacting with wireless sensor networks (WSNs) for data collection tasks. Inspired by these findings, this article investigates the question as to whether spatial analysis over WSNs can be built upon established distributed query processing techniques, but, here, emphasis is on the spatial aspects of sensed data, which are not adequately addressed in the existing SNQPs. By spatial analysis, we mean the ability to detect topological relationships between spatially referenced entities (e.g. whether mist intersects a vineyard or is disjoint from it) and to derive representations grounded on such relationships (e.g. the geometrical extent of that part of a vineyard that is covered by mist). To support the efficient representation, querying and manipulation of spatial data, we use an algebraic approach. We revisit a previously proposed centralized spatial algebra comprising a set of spatial data types and a comprehensive collection of operations. We have redefined and re-conceptualized the algebra for distributed evaluation and shown that it can be efficiently implemented for in-network execution. This article provides rigorous, formal definitions of the spatial data types, points, lines and regions, together with spatial-valued and topological operations over them. The article shows how the algebra can be used to characterize complex and expressive topological relationships between spatial entities and spatial phenomena that, due to their dynamic, evolving nature, cannot be represented a priori.  相似文献   

19.
In this paper, conformal geometric algebra (CGA) is introduced to construct a Delaunay–Triangulated Irregular Network (DTIN) intersection for change detection with 3D vector data. A multivector-based representation model is first constructed to unify the representation and organization of the multidimensional objects of DTIN. The intersection relations between DTINs are obtained using the meet operator with a sphere-tree index. The change of area/volume between objects at different times can then be extracted by topological reconstruction. This method has been tested with the Antarctica ice change simulation data. The characteristics and efficiency of our method are compared with those of the Möller method as well as those from the Guigue–Devillers method. The comparison shows that this new method produces five times less redundant segments for DTIN intersection. The computational complexity of the new method is comparable to Möller’s and that of Guigue–Devillers methods. In addition, our method can be easily implemented in a parallel computation environment as shown in our case study. The new method not only realizes the unified expression of multidimensional objects with DTIN but also achieves the unification of geometry and topology in change detection. Our method can also serve as an effective candidate method for universal vector data change detection.  相似文献   

20.
This paper employs a core-periphery perspective to review regional planning theory and examine the spatial dynamics in Appalachian development which span 25 years of Appalachian Regional Commission programs. Improved conditions, defined by increasing incomes in counties, are examined. The region is conceptualized as comprising two exterior peripheries and an interior periphery. This perspective is valuable in illustrating the region's development and for further planning efforts in Appalachia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号