首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
More than 80 percent of strong earthquakes(M≥7.0)occur in active-tectonic block boundaries in mainland China, and 95 percent of strong earthquake disasters also occur in these boundaries. In recent years, all strong earthquakes(M≥7.0)happened in active-tectonic block boundaries. For instance, 8 strong earthquakes(M≥7.0)occurred on the eastern, western, southern and northern boundaries of the Bayan Har block since 1997. In order to carry out the earthquake prediction research better, especially for the long-term earthquake prediction, the active-tectonic block boundaries have gradually become the key research objects of seismo-geology, geophysics, geodesy and other disciplines. This paper reviews the research results related to seismic activities in mainland China, as well as the main existing recognitions and problems as follows: 1)Most studies on seismic activities in active-tectonic block boundaries still remain at the statistical analysis level at present. However, the analysis of their working foundations or actual working conditions can help investigate deeply the seismic activities in the active-tectonic block boundaries; 2)Seismic strain release rates are determined by tectonic movement rates in active-tectonic block boundaries. Analysis of relations between seismic strain release rates and tectonic movement rates in mainland China shows that the tectonic movement rates in active-tectonic block boundaries of the eastern region are relatively slow, and the seismic strain release rates are with the smaller values too; the tectonic movement rates in active-tectonic block boundaries of the western region reveal higher values, and their seismic strain rates are larger than that of the eastern region. Earthquake recurrence periods of all 26 active-tectonic block boundaries are presented, and the reciprocals of recurrence periods represent high and low frequency of seismic activities. The research results point out that the tectonic movement rates and the reciprocals of recurrence periods for most faults in active-tectonic block boundaries exhibit linear relations. But due to the complexities of fault systems in active tectonic block boundaries, several faults obviously deviate from the linear relationship, and the relations between average earthquake recurrence periods and tectonic movement rates show larger uncertainties. The major reason is attributed to the differences existing in the results of the current earthquake recurrence studies. Furthermore, faults in active-tectonic boundaries exhibit complexities in many aspects, including different movement rates among various segments of the same fault and a certain active-tectonic block boundary contains some parallel faults with the same earthquake magnitude level. Consequently, complexities of these fault systems need to be further explored; 3)seismic activity processes in active-tectonic block boundaries present obvious regional characteristics. Active-tectonic block boundaries of the eastern mainland China except the western edge of Ordos block possess clustering features which indicate that due to the relatively low rate of crustal deformation in these areas, a long-time span is needed for fault stress-strain accumulation to show earthquake cluster activities. In addition, active-tectonic block boundaries in specific areas with low fault stress-strain accumulation rates also show seismic clustering properties, such as the clustering characteristics of strong seismic activities in Longmenshan fault zone, where a series of strong earthquakes have occurred successively, including the 2008 M8.0 Wenchuan, the 2013 M7.0 Lushan and the 2017 M7.0 Jiuzhaigou earthquakes. The north central regions of Qinghai-Tibet Plateau, regarded as the second-grade active-tectonic block boundaries, are the concentration areas of large-scale strike-slip faults in mainland China, and most of seismicity sequences show quasi-period features. Besides, most regions around the first-grade active-tectonic block boundary of Qinghai-Tibet Plateau display Poisson seismic processes. On one hand, it is still necessary to investigate the physical mechanisms and dynamics of regional structures, on the other hand, most of the active-tectonic block boundaries can be considered as fault systems. However, seismic activities involved in fault systems have the characteristic of in situ recurrence of strong earthquakes in main fault segments, the possibilities of cascading rupturing for adjacent fault segments, and space-time evolution characteristics of strong earthquakes in fault systems. 4)The dynamic environment of strong earthquakes in mainland China is characterized by “layering vertically and blocking horizontally”. With the progresses in the studies of geophysics, geochemistry, geodesy, seismology and geology, the physical models of different time/space scales have guiding significance for the interpretations of preparation and occurrence of continental strong earthquakes under the active-tectonic block frame. However, since the movement and deformation of the active-tectonic blocks contain not only the rigid motion and the horizontal differences of physical properties of crust-mantle medium are universal, there is still need for improving the understanding of the dynamic processes of continental strong earthquakes. So it is necessary to conduct in-depth studies on the physical mechanism of strong earthquake preparation process under the framework of active-tectonic block theory and establish various foundation models which are similar to seismic source physical models in California of the United States, and then provide technological scientific support for earthquake prevention and disaster mitigation. Through all kinds of studies of the physical mechanisms for space-time evolution of continental strong earthquakes, it can not only promote the transition of the study of seismic activities from statistics to physics, but also persistently push the development of active-tectonic block theory.  相似文献   

2.
九寨沟地震(M_s7.0或M_w6.5)震中位于青藏高原巴颜喀拉块体东缘东昆仑断裂带东端塔藏断裂、岷江断裂和虎牙断裂交汇部位,中国地震局相关科研机构的研究人员曾将该震中区判定为玛沁—玛曲高震级地震危险区.地震应急科学考察期间没有发现地震地表破裂带,但地震烈度等震线长轴方位、极震区基岩崩塌和滑坡集中带、重新定位余震空间展布和震源机制解等显示出发震断层为NNW向虎牙断裂北段,左旋走滑性质,属东昆仑断裂带东端分支断层之一.此外,汶川地震后,在青藏高原东缘和东南缘次级活动断层上发生了包括2017年九寨沟地震(Mw6.5)、2014年鲁甸(M_w6.2)、景谷(M_w6.2)、康定(M_w6.0)等多次中强地震,显示出青藏高原东缘至东南缘各块体主干边界活动断层现今处于中等偏高的应变积累状态,即在巴颜喀拉、川滇等块体主干边界活动断层上具备了发生高震级(M_w≥7.0)地震的构造应力-应变条件,未来发生高震级地震的危险性不容忽视.  相似文献   

3.
朱红彬 《地球物理学报》2010,53(7):1611-1621
2008年5月12日,四川汶川发生8.0级特大地震.汶川地震前,青藏块体曾出现与2001年11月昆仑山口西8.1级特大地震前相似的大规模中强地震活动图像.为了探讨8级左右地震前的中强地震活动规律,本文研究了1900年以来中国大陆地区8级左右地震前中强地震的时空分布特征,认为①青藏块体8级左右地震前一般会出现中强地震活动图像的两阶段演化,第一阶段主要表现为中强地震沿印度板块与青藏块体接触带附近分布、青藏块体内部平静,第二阶段主要表现为中强地震向青藏块体内部扩展,形成大规模中强地震条带,未来主震一般发生在大规模中强地震主条带或者多组条带的交汇处.②该演化规律可能反映了印度板块作用于欧亚板块(尤其是青藏块体)产生的大区域地壳运动与构造应力场的动态变化过程,对预测青藏块体8级左右地震(尤其是8级以上特大地震)有一定意义,对预测新疆块体8级左右地震有参考价值,但尚不适用于中国大陆东部地区.③从更大范围考察中强地震活动图像的演化,有可能发现大地震前的场兆信息,对分析、预测未来的8级左右地震是一个有意义而且可行的方向.本文还对汶川地震的孕震过程和大规模中强地震条带的形成机理作了初步的探讨.  相似文献   

4.
The characteristics of spatio-temporal seismicity evolution before the Wenchuan earthquake are studied. The results mainly involve in the trend abnormal features and its relation to the Wenchuan earthquake. The western Chinese mainland and its adjacent area has been in the seismically active period since 2001, while the seismic activity shows the obvious quiescence of M≥?7.0, M≥?6.0 and M?≥5.0 earthquakes in Chinese mainland. A quiescence area with M?≥7.0 has been formed in the middle of the North-South seismic zone since 1988, and the Wenchuan earthquake occurred just within this area. There are a background seismicity gap of M?≥5.0 earthquakes and a seismogenic gap of ML?≥4.0 earthquakes in the area of Longmenshan fault zone and its vicinity prior to the Wenchuan earthquake. The seismic activity obviously strengthened and a doughnut-shape pattern of M?≥4.6 earthquakes is formed in the middle and southern part of the North-South seismic zone after the 2003 Dayao, Yunnan, earthquake. Sichuan and its vicinity in the middle of the doughnut-shape pattern show abnormal quiescence. At the same time, the seismicity of earthquake swarms is significant and shows heterogeneity in the temporal and spatial process. A swarm gap appears in the M4.6 seismically quiet area, and the Wenchuan earthquake occurred just on the margin of the gap. In addition, in the short term before the Wenchuan earthquake, the quiescence of earthquake with ML≥?4.0 appears in Qinghai-Tibet block and a seismic belt of ML?≥3.0 earthquakes, with NW striking and oblique with Longmenshan fault zone, is formed.  相似文献   

5.
文中收集了2009年1月—2019年1月青海、甘肃固定地震台网及野外流动观测台阵记录的青海共和及周边地区的P波和S波到时数据,应用双差层析成像方法反演了该地区地壳的三维速度结构和震源位置参数,分析了共和1990年4月26日MW6.4地震孕育发生的地质构造背景与该地区速度结构和地震活动性之间的关系。结果显示,共和地区的地壳速度结构呈现出明显的横向不均匀性,共和主震位于共和盆地正下方区域的低速异常体内,主震的SW侧为高速异常,该异常从地下向NE向上逆冲至近地表处,推测35.95°N处即为哇玉香卡-拉干隐伏断裂。共和主震发生在水平NE向构造应力作用下,由走向NWW、倾向SSW的隐伏断层的滑动造成。  相似文献   

6.
2004年9月17日阳江4.9级地震概述   总被引:2,自引:1,他引:1  
2004年9月17日广东阳江发生了4.9级地震,从地震序列、震中位置及等震线分布判断本次4.9级地震仍属1969年阳江6.4级地震"老"震区的晚期地震活动,与该区已发生的4~5级地震序列活动类似,具有前期余震频度、强度衰减快的特点.宏观调查及震源机制证实平冈断裂是此次4.9级地震的主要控震和发震构造.震前曾出现了一定数量的前兆异常,但地震学异常不显著,震前中小地震活动未出现异常活跃或异常平静.  相似文献   

7.
地震统计区的划分是研究地震活动性的重要前提和基础,通过对青藏高原北部地区构造地质背景的分析,依据地球物理特征和强震活动特点,讨论和划分该区地震活动统计区,探讨研究区地震活动的复发特点、地震构造特征、潜在地震危险性及强度,分析研究区未来强震发生的强度和可能地点,结果表明,目前青藏高原北部地区处于第8个活跃期,仍存在发生强震的可能,且未来数年存在发生7级以上地震的可能,应密切东昆仑断裂带东段和祁连山中西段地区。  相似文献   

8.
On 8 August 8 2017, an MS7.0 earthquake occurred in Jiuzhaigou County, Sichuan Province. Field geological investigations did not find any co-seismic surface rupture in the epicenter area, implying that the seismogenic structure is likely a hidden active fault. Based on the results of the relocated aftershocks, the seismogenic fault was simulated and characterized using the SKUA-GOCAD software. The three-dimensional model of the seismogenic fault was preliminarily constructed, which shows that the main shock of the Jiuzhaigou MS7.0 earthquake occurred at the sharp bending area of the fault surface, similar to the geometry of the active fault that generated several major earthquakes in the Songpan area during 1973-1976. Our study suggests that high seismicity of this area may be closely related to the inhomogeneous geometry of the fault surface. In this work, we collected the historical earthquakes of M ≥ 6.5, and analyzed the geometric and kinematic features of the active faults in the study area. A three-dimensional fault model for the 10 main active faults was constructed, and its limitation in fault modeling was discussed. It could provide evidence for analyzing the seismotectonics of historical earthquakes, exploring the relationships between earthquakes and active faults, and predicting major earthquakes in the future.  相似文献   

9.
通过反演由大量的纵、横波地震数据组成的综合数据集,获得了南北地震带地壳的多参数三维精细结构,探讨和分析了南北地震带的高地震活动性和强震频发的原因.成像结果表明,尽管1976年松潘一平武地震(M7.2)与2008年汶川地震(M8.0)以及2013年芦山地震(M7.0)均发生在高速、低泊松比异常区域,并且在其震源的下方均有一低速、高泊松比异常区域.我们认为,上述三个地震的触发与流体侵入导致的地壳形变之间有密切的联系.1955年炉霍地震(M7.4)和1973年康定地震(M7.1)均发生在鲜水河断裂带上,其震源中心区域表现为低速、高泊松比异常,可以解释为下地壳中的流体沿断层面上涌.在震源区的周边区域兼有高速、高泊松比异常,低速、高泊松比异常以及高速、低泊松比异常,可能分别与含流体的岩石、沿断裂带发育的变质岩以及坚硬的克拉通块体对应.流体的侵入不仅能够改变断层面上的应力情况,还能降低岩石骨架的岩石力学强度,进而触发地震.1970年云南通海大地震(M7.1)发生在哀牢山一红河断裂带附近的曲江断裂上,其震源处于高速度、低泊松比异常与低速度、高泊松比异常之间的边界区域,被认为是流体挤压后的应变能积累,最终导致脆性破裂,以至于发生地震.根据本次研究获得的多参数结构图像,结合前人的研究成果,我们认为南北地震带地壳强烈形变与流体侵入是造成该区域地震活动性较高及强震频发的两个主要因素.  相似文献   

10.
南北地震带北段强震破裂空段的地震危险性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
综合活动构造与重要活动断裂带的历史及现今强震震源区或破裂分布等资料,南北地震带北段存在长期缺少MSge;7.0地震的破裂空段.为了考察这些空段的地震危险性,首先采用Burgers体黏弹介质模型,计算周围有记载以来的历史强震在空段引起的库仑应力动态演化;其次结合背景地震发生率,采用Dieterich模型分析历史强震对空段地震活动的影响,讨论了空段所在区域的地震发生概率.结果显示,南北地震带北段强震破裂空段的地震危险性程度自高到低依次是:东昆仑活动断裂带东段的若尔盖——九寨沟段、六盘山断裂带中南段空段、香山——天景山段裂中南段同心空段、天祝——大靖空段、西秦岭北缘断裂带中西段、西秦岭北缘断裂带东段.该结果可为南北地震带北段的地震危险性估计提供参考.   相似文献   

11.
通过对宜宾北4.7级地震震中及附近地区地震地质、地震活动背景、区域地震活动性、水位资料的分析,表明宜宾北4.7级地震震前经历了区域地震活跃至平静、再发震的过程,其部分地震学参数存在异常,川12井水位也出现较大异常,并对宜宾北所处的华蓥山断裂带上的中强震与川滇交界附近地区南北地震带上的强震存在较高的对应关系成因进行了分析,认为华蓥山断裂带上中强地震活动对川滇交界地区南北地震带上强震的发生存在中短期预报意义。  相似文献   

12.
为了清晰认识发生于青藏高原西北部2008年与2014年的两次于田MS7.3地震发震构造环境与构造地貌特征,本文利用DEM(数字高程模型)数据分析"喀喇昆仑—西昆仑—康西瓦地区"的地形地貌特征,结合区域活动断裂研究资料、相对于塔里木盆地的两期GPS速度场资料和区域运动学特征等讨论两次MS7.3地震所处的青藏高原西北部区域构造环境和地壳运动学特征,分析喀喇昆仑断裂、阿尔金断裂康西瓦段、龙木错-邦达错断裂及贡嘎错断裂所围限的西昆仑地块的地质构造背景、阿尔金断裂西南端发震断裂活动性及孕震环境等发震构造基本条件;进而利用"地形剖面"方法及断裂分布特征分析震源区的地形地貌特征,给出晚第四纪以来的地貌形态与发震构造的关系,从区域构造地貌学和GPS地壳运动学的角度探讨中上地壳变形特征及孕震过程;最后讨论区域孕震构造、克尔牙张性裂谷演化过程和地球动力学背景等。通过地形剖面及区域地貌综合分析新疆于田2008年MS7.3拉张型发震构造和2014年MS7.3走滑拉张型地震的发震构造特点的区别,认为2014年发生的地震可能与2008年MS7.3地震同震库伦应力变化、触发过程及震后变形过程密切相关,并且青藏高原西北部地区存在明显的东西向拉张性构造单元,可能与青藏高原10~15 Ma以来的地壳减薄过程有关。  相似文献   

13.
李莹甄  赵翠萍 《内陆地震》2003,17(4):309-316
分析了2003年2月14日石河子5.4级地震前北天山地震活动图像和地震学参数异常过程。5.4级地震发生在2002年北天山4级地震集中活动区空段,震前12项地震学参数时间进程存在中、短期异常,3项地震波参数出现短期异常。震前3个月乌鲁木齐震情窗出现超警戒线异常。震前10天震中附近地区地震和震群活动显著。  相似文献   

14.
—Measurements indicate that stress magnitudes in the crust are normally limited by the frictional equilibrium on pre-existing, optimally oriented faults. Fault zones where these limitations are frequently reached are referred to as seismic zones. Fault zones in the crust concentrate stresses because their material properties are different from those of the host rock. Most fault zones are spatially relatively stable structures, however the associated seismicity in these zones is quite variable in space and time. Here we propose that this variability is attributable to stress-concentration zones that migrate and expand through the fault zone. We suggest that following a large earthquake and the associated stress relaxation, shear stresses of a magnitude sufficient to produce earthquakes occur only in those small parts of the seismic zone that, because of material properties and boundary conditions, encourage concentration of shear stress. During the earthquake cycle, the conditions for seismogenic fault slip migrate from these stress-concentration regions throughout the entire seismic zone. Thus, while the stress-concentration regions continue to produce small slips and small earthquakes throughout the seismic cycle, the conditions for slip and earthquakes are gradually reached in larger parts of, and eventually the whole, seismogenic layer of the seismic zone. Prior to the propagation of an earthquake fracture that gives rise to a large earthquake, the stress conditions in the zone along the whole potential rupture plane must be essentially similar. This follows because if they were not, then, on entering crustal parts where the state of stress was unfavourable to this type of faulting, the fault propagation would be arrested. The proposed necessary homogenisation of the stress field in a seismic zone as a precursor to large earthquakes implies that by monitoring the state of stress in a seismic zone, its large earthquakes may possibly be forecasted. We test the model on data from Iceland and demonstrate that it broadly explains the historical, as well as the current, patterns of seismogenic faulting in the South Iceland Seismic Zone.  相似文献   

15.
We select the Xiluodu-Wudongde reservoir area in the downstream of Jinsha River as the research area, and use the CAP and GPAT method to obtain focal mechanisms of ML ≥ 2.0 earthquakes from 2016 to 2017 in this region. Then, we analyze the spatial distribution characteristics of focal mechanism solutions in each local region and investigate the relationship between seismicity and regional structures. According to 414 focal mechanism solutions we get following conclusions:1)The Xiluodu dam began to impound water on May 4, 2013, and seismicity increased significantly after impoundment. We get 49 focal mechanisms in the Xiluodu dam and its adjacent area which are dominated by thrust faulting and next by strike-slip faulting, which are mainly distributed near the middle section of the Ebian-Jinyang fault zone. The distribution of nodal planes striking in NNW to NE direction is consistent with that of regional faults, and some large earthquakes are controlled by regional structures. 2)There are 39 and 24 focal mechanisms obtained in the unimpounded Baihetan and Wudongde dams and adjacent areas, and the spatial distribution of focal mechanism solutions are relatively consistent, dominated by strike-slip faulting with a small amount of thrust and normal faulting. The sinistral strike-slip earthquakes are consistent with the activity of Xiaojiang fault zone and Puduhe-Xishan Fault. The strikes of the nodal planes are distributed discretely, and many groups of faults intersect with each other in the area, suggesting that the seismogenic environment is relatively complex. 3)The seismicity in Ludian continues to be active after the Ludian M6.5 earthquake. By the end of 2017, we got 260 focal mechanism solutions in the aftershock area of the Ludian MS6.5 earthquake of Aug 3rd, 2014, which show an "L-shape" in distribution and are dominated by thrust and strike-slip faulting. The long axis is distributed in EW direction, and the short axis is distributed in near NNW direction. The strikes of nodal planes are mainly near EW and near NE, and the nodal planes in the NW direction are less. According to characteristics of a large number of focal mechanism solutions, we deduce that there may exist a buried structure in the EW direction, the seismicity is controlled by different types of faults and the seismogenic structure is very complex. 4)The centroid depth in each region is concentrated in the range of 5~15km, indicating that the seismogenic layer in the study area is 5~15km deep in the middle and upper crust.  相似文献   

16.
On August 8, 2017, Beijing time, an earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, Sichuan Province, with the epicenter located at 33.20°N 103.82°E. The earthquake caused 25 people dead, 525 people injured, 6 people missing and 170000 people affected. Many houses were damaged to various degrees. Up to October 15, 2017, a total of 7679 aftershocks were recorded, including 2099 earthquakes of M ≥ 1.0. The M7.0 Jiuzhaigou earthquake occurred in the northeastern boundary belt of the Bayan Har block on the Qinghai-Tibet Plateau, where many active faults are developed, including the Tazhong Fault(the eastern segment of the East Kunlun Fault), the Minjiang fault zone, the Xueshan fault zone, the Huya fault zone, the Wenxian fault zone, the Guanggaishan-Daishan Fault, the Bailongjiang Fault, the Longriuba Fault and the Longmenshan Fault. As one of the important passages for the eastward extrusion movement of the Qinghai-Tibet Plateau(Tapponnier et al., 2001), the East Kunlun fault zone has a crucial influence on the tectonic activities of the northeastern boundary belt of Bayan Kala. Meanwhile, the Coulomb stress, fault strain and other research results show that the eastern boundary of the Bayan Har block still has a high risk of strong earthquakes in the future. So the study of the M7.0 Jiuzhaigou earthquake' seismogenic faults and stress fields is of great significance for scientific understanding of the seismogenic environment and geodynamics of the eastern boundary of Bayan Har block. In this paper, the epicenter of the main shock and its aftershocks were relocated by the double-difference relocation method and the spatial distribution of the aftershock sequence was obtained. Then we determined the focal mechanism solutions of 24 aftershocks(M ≥ 3.0)by using the CAP algorithm with the waveform records of China Digital Seismic Network. After that, we applied the sliding fitting algorithm to invert the stress field of the earthquake area based on the previous results of the mechanism solutions. Combining with the previous research results of seismogeology in this area, we discussed the seismogenic fault structure and dynamic characteristics of the M7.0 Jiuzhaigou earthquake. Our research results indicated that:1)The epicenters of the M7.0 Jiuzhaigou earthquake sequence distribute along NW-SE in a stripe pattern with a long axis of about 35km and a short axis of about 8km, and with high inclination and dipping to the southwest, the focal depths are mainly concentrated in the range of 2~25km, gradually deepening from northwest to southeast along the fault, but the dip angle does not change remarkably on the whole fault. 2)The focal mechanism solution of the M7.0 Jiuzhaigou earthquake is:strike 151°, dip 69° and rake 12° for nodal plane Ⅰ, and 245°, 78° and -158° for nodal plane Ⅱ, the main shock type is pure strike-slip and the centroid depth of the earthquake is about 5km. Most of the focal mechanism of the aftershock sequence is strike-slip type, which is consistent with the main shock's focal mechanism solution; 3)In the earthquake source area, the principal compressive stress and the principal tensile stress are both near horizontal, and the principal compressive stress is near east-west direction, while the principal tensile stress is near north-south direction. The Jiuzhaigou earthquake is a strike-slip event that occurs under the horizontal compressive stress.  相似文献   

17.
1654年甘肃礼县8级地震发震断裂研究   总被引:1,自引:1,他引:0       下载免费PDF全文
1654年礼县8级地震的发震区地处新构造活动强烈的青藏高原东北缘,位于南北地震带中北段,发育多条活动断裂。礼县8级地震发生在黄土覆盖区,距今约370年,受自然侵蚀与人类活动的影响,其地表破裂带和次生灾害现在已经难以分辨。为此,文章收集整理了1970年以来的地震台网和流动台网观测资料,基于地震层析成像方法,经过联合反演计算,研究1654年礼县8级地震的发震构造。研究根据岷县—礼县—两当一线的小震活动分布,推测存在"岷县—礼县—两当断裂",可能是1654年礼县8级地震的发震断裂,但仍需野外地质工作的进一步研究。  相似文献   

18.
基于鄂尔多斯块体的地质构造演变过程及历史强震活动规律,阐述南北地震带和龙门山断裂带强震时空分布规律对鄂尔多斯北缘的可能影响,对比分析鄂尔多斯其他3缘与北缘的地震活动.结果表明,青藏块体强震对鄂尔多斯北缘中强地震具有一定的触发作用;南北地震带中强以上地震的空间迁移特征表明,鄂尔多斯北缘将是未来中强以上地震的有利发震区域.2005年以来中小地震活动特征表明,鄂尔多斯北缘兼有Ms≥4.0地震平静和西北缘ML≥3.0地震活跃两种异常特征.综合地震地质背景和近期地震活动研究结果分析认为,今后一段时间鄂尔多斯北缘有可能发生中强以上地震.  相似文献   

19.
华北地区近年来小震群活动频繁, 在有数字波形记录的中强地震相对缺乏的背景下, 小震群发震构造精细研究可为华北地区地震危险性分析和地震趋势判断提供重要依据. 本文利用匹配滤波技术对2013年8月22—25日河北蔚县小震群遗漏地震事件进行检测, 并通过地震精定位和震源机制求解分析此次震群的发震构造. 计算结果显示, 通过互相关扫描检测到18次被地震台网常规分析遗漏的地震, 约为地震目录给出的13次地震事件的1.38倍. 该震群发震构造有北东向和北西向两组断裂, 震群活动前期以北东向构造活动为主, 后期地震主要发生在北西向构造, 北西向构造在此次震群活动中地震频度和强度均高于北东向构造. 震源机制计算结果显示北西向构造发震机制以正断拉张为主.   相似文献   

20.
为了解决我国地震地下流体流动监测网络布设中目前存在的一些问题,以“坚固体孕震模式”为理论基础,以西秦岭北缘断裂带为研究对象,通过高密度地下流体背景值探测,结合地壳垂直形变特征以及地震活动性特征,寻找区域活动断裂带流体与形变以及地震活动的耦合段及断层气响应的灵敏点,综合判断断裂带活动分段性。断层形变、地震活动与地下流体活动有着良好的对应性与耦合关系,震源区均表现为“断层闭锁区”特性,发震地点都显示出一种相对平静的状态。基于以上研究,形成从活动断裂带—“坚固体”闭锁段—近震区前兆场地的追踪思路,规划具有一定物理预报思想的标准化断层气流动观测方案,并建立研究区域观测网络的雏形。这对今后全国地震重点危险区流体流动监测台网布设提供技术思路,并为我国地震预报、震情跟踪及防震减灾工作提供重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号