首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the continuous collision of the India and Eurasia plate in Cenozoic, the Qilian Shan began to uplift strongly from 12Ma to 10Ma. Nowadays, Qilian Shan is still uplifting and expanding. In the northern part of Qilian Shan, tectonic activity extends to Hexi Corridor Basin, and has affected Alashan area. In the southern part of Qilian Shan, tectonic activity extends to Qaidam Basin, forming a series of thrust faults in the northern margin of Qaidam Basin and a series of fold deformations in the basin. The southern Zongwulong Shan Fault is located in the northeastern margin of Qaidam Basin, it is the boundary thrust fault between the southern margin of Qilian Shan and Qaidam Basin. GPS studies show that the total crustal shortening rate across the Qilian Shan is 5~8mm/a, which absorbs 20% of the convergence rate of the Indian-Eurasian plate. Concerning how the strain is distributed on individual fault in the Qilian Shan, previous studies mainly focused on the northern margin of the Qilian Shan and the Hexi Corridor Basin, while the study on the southern margin of the Qilian Shan was relatively weak. Therefore, the study of late Quaternary activity of southern Zongwulong Shan Fault in southern margin of Qilian Shan is of great significance to understand the strain distribution pattern in Qilian Shan and the propagation of the fault to the interior of Qaidam Basin. At the same time, because of the strong tectonic activity, the northern margin of Qaidam Basin is also a seismic-prone area. Determining the fault slip rate is also helpful to better understand the movement behaviors of faults and seismic risk assessment.Through remote sensing image interpretation and field geological survey, combined with GPS topographic profiling, cosmogenic nuclides and optically stimulated luminescence dating, we carried out a detailed study at Baijingtu site and Xujixiang site on the southern Zongwulong Shan Fault. The results show that the southern Zongwulong Shan Fault is a Holocene reverse fault, which faulted a series of piedmont alluvial fans and formed a series of fault scarps.The 43ka, 20ka and 11ka ages of the alluvial fan surfaces in this area can be well compared with the ages of terraces and alluvial fan surfaces in the northeastern margin of Tibetan Plateau, and its formation is mainly controlled by climatic factors. Based on the vertical dislocations of the alluvial fans in different periods in Baijingtu and Xujixiang areas, the average vertical slip rate of the southern Zongwulong Shan Fault since late Quaternary is(0.41±0.05)mm/a, and the average horizontal shortening rate is 0.47~0.80mm/a, accounting for about 10% of the crustal shortening in Qilian Shan. These results are helpful to further understand the strain distribution model in Qilian Shan and the tectonic deformation mechanism in the northern margin of Qaidam Basin. The deformation mechanism of the northern Qaidam Basin fault zone, which is composed of the southern Zongwulong Shan Fault, is rather complicated, and it is not a simple piggy-back thrusting style. These faults jointly control the tectonic activity characteristics of the northern Qaidam Basin.  相似文献   

2.
The Fodongmiao-Hongyazi Fault belongs to the forward thrust fault of the middle segment of northern Qilian Shan overthrust fault zone, and it is also the boundary between the Qilian Shan and Jiudong Basin. Accurately-constrained fault slip rate is crucial for understanding the present-day tectonic deformation mechanism and regional seismic hazard in Tibet plateau. In this paper, we focus on the Shiyangjuan site in the western section of the fault and the Fenglehe site in the middle part of the fault. Combining geomorphic mapping, topographic surveys of the deformed terrace surfaces, optically stimulated luminescence (OSL) dating, terrestrial cosmogenic nuclide dating and radiocarbon (14C) dating methods, we obtained the average vertical slip rate and shortening rate of the fault, which are ~1.1mm/a and 0.9~1.3mm/a, respectively. In addition, decadal GPS velocity profile across the Qilian Shan and Jiudong Basin shows a basin shortening rate of~1.4mm/a, which is consistent with geological shortening rates. Blind fault or other structural deformation in the Jiudong Basin may accommodate part of crustal shortening. Overall crustal shortening rate of the Jiudong Basin accounts for about 1/5 of shortening rate of the Qilian Shan. The seismic activity of the forward thrust zone of Tibetan plateau propagating northeastward is still high.  相似文献   

3.
Longshou Shan, located at the southern edge of the Alxa block, is one of the outermost peripheral mountains and the northeasternmost area of the northeastern Tibetan plateau. In recent years, through geochronology, thermochronology, magnetic stratigraphy and other methods, a large number of studies have been carried out on the initiation time of major faults, the exhumation history of mountains and the formation and evolution of basins in the northeastern Tibet Plateau, the question of whether and when the northeastward expansion of the northeastern Tibet Plateau has affected the southern part of the Alxa block has been raised. Therefore, the exhumation history of Longshou Shan provides significant insight on the uplift and expansion of the Tibetan plateau and their dynamic mechanism. The Longshou Shan, trending NWW, is the largest mountain range in the Hexi Corridor Basin, and its highest peak is more than 3 600m(with average elevation of 2800m), where the average elevation of Hexi Corridor is 1 600m, the relative height difference between them is nearly 2200m. This mountain is bounded by two parallel thrust faults: The North Longshou Shan Fault(NLSF)and the South Longshou Shan Fault(SLSF), both of them trends NWW and has high angle of inclination(45°~70°)but dips opposite to each other. The South Longshou Shan Fault, located in the northern margin of the Hexi Corridor Basin, is the most active fault on the northeastern plateau, and controls the uplift of Longshou Shan.Due to its lower closure temperature, the lower-temperature thermochronology method can more accurately constrain the cooling process of a geological body in the upper crust. In recent years, the low-temperature thermochronology method has been used more and more in the study of the erosion of orogenic belts, the evolution of sedimentary basins and tectonic geomorphology. In this study, the apatite (U-Th)/He(AHe) method is used to analyze the erosion and uplift of rocks on the south and north sides of Longshou Shan. 11 AHe samples collected from the south slope exhibit variable AHe ages between~8Ma and~200Ma, the age-elevation plot shows that before 13~17Ma, the erosion rate of the Longshou Shan is very low, and then rapid erosion occurs in the mountain range, which indicates that the strong uplift of Longshou Shan occurred at 13~17Ma BP, resulting in rapid cooling of the southern rocks. In contrast, 3 AHe ages obtained from the north slope are older and more concentrated ranging from 220Ma BP to 240Ma BP, indicating that the north slope can be seen as a paleo-isothermal surface and the activity of the north side is weak. The results of thermal history inverse modeling show that the South Longshou Shan Fault was in a tectonic quiet period until the cooling rate suddenly increased to 3.33℃/Ma at 14Ma BP, indicating that Longshou Shan had not experienced large tectonic events before~14Ma BP.
We believe that under the control of South Longshou Shan Fault, the mountain is characterized by a northward tilting uplift at Mid-Miocene. Our results on the initial deformation of the Longshou Shan, in combination with many published studies across the northeastern margin of the Tibetan plateau, suggest that the compression strain of the northeastern margin of the Tibetan plateau may expand from south to north, and the Tibetan plateau has expanded northeastward to the southern margin of the Alxa block as early as Mid-Miocene, making Longshou Shan the current structural and geomorphic boundary of the northeastern plateau.  相似文献   

4.
青藏高原东北缘合作-大井剖面地壳电性结构研究   总被引:14,自引:8,他引:6  
青藏高原东北缘合作-大井剖面的大地电磁探测结果表明,该区域的电性结构呈明显的纵向分层、横向分块的特点,中下地壳普遍存在高导层.青藏高原东北缘西秦岭北缘断裂带、北祁连南缘断裂带、北祁连北缘断裂带(海原断裂带)及龙首山南缘断裂带等区域性断裂带在电性结构模型中均表现为电性梯度带或低阻异常带.电性结构的横向分区与构造上的地块划分有明显的一致性,各个地块的电性结构存在明显差异.西秦岭北缘断裂带作是一个大型的板块边界,但板块结合带附近没有明显逆冲或俯冲痕迹,可能主要以左旋走滑为主.北祁连地块向北仰冲与阿拉善地块向南俯冲边界可能不是海原断裂带,而是龙首山南缘断裂带.西秦岭造山带内的壳内高导层与青藏高原内部存在的高导层具有可对比性,可能是由于部分熔融与含盐水流体共同作用的结果.中祁连地块内的高导层可能是含盐水流体引起的.而北祁连与河西走廊过渡带内的高导层则可能是板块俯冲或仰冲的构造运动痕迹,也可能是由含盐水流体引起的.  相似文献   

5.
As the northeast boundary of the Tibetan plateau, the Haiyuan-Liupan Shan fault zone has separated the intensely tectonic deformed Tibetan plateau from the stable blocks of Ordos and Alxa since Cenozoic era. It is an active fault with high seismic risk in the west of mainland China. Using geology and geodetic techniques, previous studies have obtained the long-term slip rate across the Haiyuan-Liupan Shan fault zone. However, the detailed locking result and slip rate deficit across this fault zone are scarce. After the 2008 Wenchuan MS8.0 earthquake, the tectonic stress field of Longmen Shan Fault and its vicinity was changed, which suggests that the crustal movement and potential seismic risk of Haiyuan-Liupan Shan fault zone should be investigated necessarily. Utilizing GPS horizontal velocities observed before and after Wenchuan earthquake(1999~2007 and 2009~2014), the spatial and temporal distributions of locking and slip rate deficit across the Haiyuan-Liupan Shan fault zone are inferred. In our model, we assume that the crustal deformation is caused by block rotation, horizontal strain rate within block and locking on block-bounding faults. The inversion results suggest that the Haiyuan fault zone has a left-lateral strike-slip rate deficit, the northern section of Liupan Shan has a thrust dip-slip rate deficit, while the southern section has a normal dip-slip rate deficit. The locking depths of Maomao Shan and west section of Laohu Shan are 25km during two periods, and the maximum left-lateral slip rate deficit is 6mm/a. The locking depths of east section of Laohu Shan and Haiyuan segment are shallow, and creep slip dominates them presently, which indicates that these sections are in the postseismic relaxation process of the 1920 Haiyuan earthquake. The Liupan Shan Fault has a locking depth of 35km with a maximum dip-slip rate deficit of 2mm/a. After the Wenchuan earthquake, the high slip rate deficit across Liupan Shan Fault migrated from its middle to northern section, and the range decreased, while its southern section had a normal-slip rate deficit. Our results show that the Maomao Shan Fault and west section of Laohu Shan Fault could accumulate strain rapidly and these sections are within the Tianzhu seismic gap. Although the Liupan Shan Fault accumulates strain slowly, a long time has been passed since last large earthquake, and it has accumulated high strain energy possibly. Therefore, the potential seismic risks of these segments are significantly high compared to other segments along the Haiyuan-Liupan Shan fault zone.  相似文献   

6.
断裂晚第四纪滑动速率及现今GPS观测揭示了青藏高原向北扩展与高原边缘隆升的运动特征.主要断裂晚第四纪滑动速率及跨断裂GPS应变速率的结果表明,青藏高原北部边缘的断裂以低滑动速率(<10 mm/a)为主,特别是两条边界断裂:阿尔金断裂和海原—祁连山断裂.两条主要边界断裂上的滑动速率分布显示了断裂间滑动速率转换及调整特征.阿尔金断裂自95°E以西的8~12 mm/a稳定滑动速率,向东逐渐降低到最东端的约1~2 mm/a,而海原断裂自哈拉湖一带开始发育后滑动速率为1~2 mm/a,到祁连一带(101°E以东)增大到相对稳定的4~5 mm/a,直到过海原后转向六盘山一带,滑动速率降低到1~3 mm/a,甚至更低.滑动速率的变化及分布特征显示,阿尔金断裂滑动主要是通过祁连山内部隆起及两侧新生代盆地变形引起的缩短来吸收的,海原—祁连山断裂的低滑动速率及沿断裂运动学特征表明断裂尾端的陇西盆地变形及六盘山的隆起是断裂左旋走滑速率的主要吸收方式.这一变形特征表明,青藏高原北部边缘的变形模式是一种分布式的连续变形,变形发生自高原内部,边界断裂的走滑被高原内部变形所吸收.  相似文献   

7.
A series of NWW striking faults are obliquely intersected by the NEE striking Altyn Tagh fault zone in the western Qilian Mountains. These faults were mostly active in late Quaternary and play an important role in accommodating regional lateral extrusion by both reverse and sinistral slip. Detailed studies on late Quaternary activity, tectonic transformation, paleoseismology, and strain partitioning not only significantly affect our recognition on seismogenic mechanism and zones of potential large earthquakes, but also provide useful information for exploring tectonic deformation mechanism in the northern Tibetan plateau. The Danghenanshan Fault, Yemahe-Daxueshan fault, and Altyn Tagh Fault form a triplet junction point at southwest of Subei county. The Yemahe-Daxueshan fault is one important branch fault in the western Qilian Mountains that accommodated eastward decreasing slip of the Altyn Tagh Fault, which was active in late Holocene, with a length up to 170km. Based on geometry and late Quaternary activity, the Yemahe-Daxueshan fault was subdivided into 3 segments, i.e. the Subei fault, Yemahe fault and Daxueshan Fault. The Yemahe Fault has the most prominent appearance among them, and is dominated by left-lateral slip with a little normal component. The heights of fresh scarps on this fault are only several tens of centimeters. We dug 2 trenches at the Zhazhihu site, and cleaned and reinterpreted one trench of previous studies. Then we interpreted trench profiles and paleoseismic events, and collected 14C and Optical Stimulated Luminescence samples to constrain event ages. Finally, we determined 3 events on the Yemahe fault with ages(6 830±30) a BP-(6 280±40) a BP, (5 220±30) a BP, (2 010±30) a BP, respectively. The elapsed time of most recent earthquake is(2 010±30) years before present, which is very close to the recurrence interval, so the possibility of major earthquakes on the Yemahe fault is relatively large.  相似文献   

8.
The horizontal movement of the Helan Shan west-piedmont fault is important to determination of the present-day boundary between the Alashan and North China blocks as well as to the exploration of the extent of the northeastward expansion of the Tibetan plateau. Field geological surveys found that this fault cuts the west wing of the Neogene anticline, which right-laterally offset the geological boundary between Ganhegou and Qingshuiying Formations with displacement over 800m. The secondary tensional joints (fissures)intersected with the main faults developed on the Quaternary flood high platform near the fault, of which the acute angles indicate its dextral strike slip. The normal faults developed at the southern end of the Helan Shan west-piedmont fault show that the west wall of this fault moves northward, and the tensional adjustment zone formed at the end of the strike slip fault, which reflects that the horizontal movement of the main fault is dextral strike slip. The dextral dislocation occurred in the gully across the fault during different periods. Therefore, the Helan Shan west-piedmont fault is a dextral strike slip fault rather than a sinistral strike slip fault as previous work suggested. The relationship between the faulting and deformation of Cenozoic strata demonstrates that there were two stages of tectonic deformation near the Helan Shan west-piedmont fault since the late Cenozoic, namely early folding and late faulting. These two tectonic deformations are the result of the northeastward thrust on the Alashan block by the Tibet Plateau. The influence range of Tibetan plateau expansion has arrived in the Helan Shan west-piedmont area in the late Pliocene leading to the dextral strike slip of this fault as well as formation of the current boundary between the Alashan and North China blocks, which is also the youngest front of the Tibetan plateau.  相似文献   

9.
The northeastern margin of Tibetan plateau is an active block controlled by the eastern Kunlun fault zone, the Qilian Shan-Haiyuan fault zone, and the Altyn Tagh fault zone. It is the frontier and the sensitive area of neotectonic activity since the Cenozoic. There are widespread folds, thrust faults and stike-slip faults in the northeastern Tibetan plateau produced by the intensive tectonic deformation, indicating that this area is suffering the crustal shortening, left-lateral shear and vertical uplift. The Riyueshan Fault is one of the major faults in the dextral strike-slip faults systems, which lies between the two major large-scale left-lateral strike-slip faults, the Qilian-Haiyuan Fault and the eastern Kunlun Fault. In the process of growing and expanding of the entire Tibetan plateau, the dextral strike-slip faults play an important role in regulating the deformation and transformation between the secondary blocks. In the early Quaternary, because of the northeastward expansion of the northeastern Tibetan plateau, tectonic deformations such as NE-direction extrusion shortening, clockwise rotation, and SEE-direction extrusion occurred in the northeastern margin of the Tibetan plateau, which lead to the left-lateral slip movement of the NWW-trending major regional boundary faults. As the result, the NNW-trending faults which lie between these NWW direction faults are developed. The main geomorphic units developed within the research area are controlled by the Riyueshan Fault, formed due to the northeastward motion of the Tibet block. These geomorphic units could be classified as:Qinghai Lake Basin, Haiyan Basin, Datonghe Basin, Dezhou Basin, and the mountains developed between the basins such as the Datongshan and the Riyueshan. Paleo basins, alluvial fans, multiple levels of terraces are developed at mountain fronts. The climate variation caused the formation of the geomorphic units during the expansion period of the lakes within the northeastern Tibetan plateau. There are two levels of alluvial fans and three levels of fluvial terrace developed in the study area, the sediments of the alluvial fans and fluvial terraces formed by different sources are developed in the same period. The Riyueshan Fault connects with the NNW-trending left-lateral strike-slip north marginal Tuoleshan fault in the north, and obliquely connects with the Lajishan thrust fault in the south. The fault extends for about 180km from north to south, passing through Datonghe, Reshui coal mine, Chaka River, Tuole, Ketu and Xicha, and connecting with the Lajishan thrusts near the Kesuer Basin. The Riyueshan Fault consists of five discontinuous right-step en-echelon sub-fault segments, with a spacing of 2~3km, and pull-apart basins are formed in the stepovers. The Riyueshan Fault is a secondary fault located in the Qaidam-Qilian active block which is controlled by the major boundary faults, such as the East Kunlun Fault and the Qilian-Haiyuan Fault. Its activity characteristics provide information of the outward expansion of the northeastern margin of Tibet. Tectonic landforms are developed along the Riyueshan Fault. Focusing on the distinct geomorphic deformation since late Pleistocene, the paper obtains the vertical displacement along the fault strike by RTK measurement method. Based on the fault growth-linkage theory, the evolution of the Riyueshan Fault and the related kinetic background are discussed. The following three conclusions are obtained:1)According to the characteristics of development of the three-stage 200km-long steep fault scarp developed in the landforms of the late Pleistocene alluvial fans and terraces, the Riyueshan Fault is divided into five segments, with the most important segment located in the third stepover(CD-3); 2)The three-stage displacement distribution pattern of the Riyueshan Fault reveals that the fault was formed by the growths and connections of multiple secondary faults and is in the second stage of fault growth and connection. With CD-3 as the boundary, the faults on the NW side continue to grow and connect; the fault activity time on the SE side is shorter, and the activity intensity is weaker; 3)The extreme value of the fault displacement distribution curve indicates the location of strain concentration and stress accumulation. With the stepover CD-3 as the boundary, the stress and strain on NW side are mainly concentrated in the middle and fault stepovers. The long-term accumulation range of stress on the SE side is relatively dispersed. The stress state may be related to the counterclockwise rotation inside the block under the compression of regional tectonic stress.  相似文献   

10.
The fault along the southern margin of the Wuwei Basin, located in the eastern Hexi Corridor, NW China, plays an important role in the thrust fault system in the northern Qilian Mountains. The activities of this fault resulted in the generation of the Gulang earthquake(MS8.0) in 1927. Based on remote sensing image interpretation, geological and geomorphic observations in the field and 14C geochronological dating results, we conducted a detailed research on the geometry and kinematics of the fault. According to the discontinuous geometric distribution and variable strike directions, we divide this fault into 5 segments: Kangningqiao Fault(F1), Nanyinghe Fault(F2), Shangguchengcun-Zhangliugou Fault(F3), Tajiazhuang Fault(F4)and Yanjiazhuang Fault(F5). Results indicate that this fault, with a total of 60km long trace at the surface, has been active since the late Pleistocene. It behaves predominantly as a thrust fault and is accompanied with a locally sinistral strike-slip component along the Nanyinghe Fault(F2). Intensive activities of this fault in Holocene have caused extensive occurrence of dislocated landforms along its strike. Some measured displacements of the dislocated geologic or geomorphic units, combined with the 14C dating results, yield a vertical slip rate of (0.44±0.08)mm/a on this fault in Holocene, and a sinistral strike-slip rate of (1.43±0.08)mm/a on the Nanyinhhe Fault (F2) in late Pleistocene.  相似文献   

11.
The Anninghe Fault has been suggested as an important segment of the fault system along the eastern boundary of the Sichuan-Yunnan faulted block in the southeastern region of the Tibetan plateau. Reliable determination of the Late Quaternary slip rate on the Anninghe Fault is very helpful and significant for revealing deformation mechanism and kinematic characteristics of the Sichuan-Yunnan faulted block, which further helps us understand fault activity and seismic potential of the region. However, previous studies were focused mainly on the northern segment of the Anninghe Fault, while slip rate on its southern segment has been less studied. Therefore, in this paper, we chose two sites at Dashuigou and Maoheshan on the southern segment of the Anninghe Fault, and used high-resolution images of unmanned aerial vehicle (UAV)photogrammetry technology, detailed field survey, multiple paleoseismic trenching and radiocarbon dating methods to constrain slip rate on the southern fault segment of the Anninghe Fault. Specifically, we suggest that the slip rate at the Dashuigouo site is narrowly constrained to be~4.4mm/a since about 3300aBP based on a linear regression calculation method, and speculate that a slip rate of 2.6~5.2mm/a at the Maoheshan site would be highly possible, although we poorly constrained the whole deformation amount of the two branch faults at the Maoheshan site from multiple paleoseismic trenching. The data at the two sites on the southern segment show a consistent slip rate compared with that of the northern segment of the Anninghe Fault. Moreover, considering a similar paleoseismic recurrence interval on the two segments of the Anninghe Fault from previous studies, we further suggest that the fault activity and deformation pattern on the two segments of the Annignhe Fault appears to be well consistent, which is also in agreement with the regional tectonic deformation.  相似文献   

12.
Sanwei Shan Fault is located in the north of Tibet, which is a branch of eastern segment of Altyn Tagn fault zone. This fault is distributed along the boundary of fault facet and the Quaternary, with the total length of almost 150km. The fault is a straight-line structure read from the satellite image. Based on the spatial distribution of the fault, three segments are divided, namely, Xishuigou-Dongshuigou segment, Dongshuigou-West Shigongkouzi segment and West Shigongkouzi-Suangta segment, these three segments are distributed by left or right step.Though field microgeomorphology investigation along Sanwei Shan Fault, it has been found that two periods of alluvial-pluvial fans are distributed in front of Sanwei Shan Mountain, most of which are overstepped. Comparing the distribution of alluvial-pluvial fans with their formation age in the surrounding regions, and meanwhile, taking the results of optical stimulated luminescence(OSL) dating, it's considered that the formation age of the older alluvial-pluvial fans, which are distributed in northern Qilian Shan, inside of Hexi Corridor and western Hexi Corridor(including the Sanwei Shan piedmont fans), is between later period of late Quaternary and earlier period of Holocene. The gullies on the older fan and ridges have been cut synchronously. The maximum and minimum sinistral displacement is 5.5m and 1.7m, but majority of the values is between 3.0~4.5m. Taking the results from the OSL dating, we conclude that the minimum sinistral strike-slip rate is(0.33±0.04) mm/a since 14 ka BP and(0.28±0.03) mm/a since 20 ka BP.  相似文献   

13.
Fieldwork south of the city of Gaotai (Gansu province, China) shows that active shortening of surface sediments in the foothills of the Yumu Shan, a large fore-mountain of the Qilian Shan, at the northeastern edge of Tibet, involves both overthrusting and flexural-slip folding. North of this mountain, we found and mapped a prominent north-facing thrust scarp that offsets a Holocene fan sloping gently (3.4°) to the north. Part of this scarp appears to be related to the M ≈ 7.5, 180 A.D. earthquake that may have led to the demise of the Han Dynasty city of Luo Tuo Chen, in the Hexi corridor. A set of 10, 100–150 m long profiles measured across this scarp, 3.2 m high on the average, can be made to fit the diffusion-degraded morphology of a surface break related to the 180 A.D. event using a value of about 3.3 m2/103 yr for the mass diffusivity of fanglomerates in this part of Gansu province. Smaller mountain-facing scarps on a terrace-capped foothill result from bedding slip concurrent with active folding of underlying, steeply northdipping, Plioquaternary sandstone and conglomerate beds. Holocene uplift rates along the Yumu Shan, which is only one of the Qilian Shan ranges, are estimated to be between 0.4 and 1.9 mm/yr, which implies that much of the mountain formed in the Quaternary. The periclinal structure of the Plioquaternary envelope under which the Paleozoic core of the Yumu Shan plunges towards the west suggests that the whole 3200 m high mountain is a basement ramp anticline. Mountains striking parallel to the Yumu Shan, with similar structure and comparable or greater sizes north and south of the Hexi corridor probably also correspond to recent, crustal ramp anticlines. This implies that the wide, mountainous upper crustal wedge making the northeastern edge of the Tibet-Qinghai plateau is detached from the underlying lower crust and upper mantle.  相似文献   

14.
The sinistral strike-slip characteristic of the Altyn Tagh Fault gradually disappears near the Jiuxi Basin at the west end of Hexi Corridor, and the Kuantanshan Fault and the northern marginal fault of Heishan on its east are thrust structures. There are two faults distributed in the north of Kuantanshan, namely, the Taerwan-Chijiaciwo Fault and the Ganxiashan Fault, both are featured with obvious activity. Predecessors thought that the Taerwan-Chijiaciwo Fault is a thrust fault with low movement rate, but there is few detailed study on its horizontal motion. Is there horizontal strike-slip movement in the northern marginal fault of Kuantanshan? This issue has an important significance to further explore the structural transformation mode between the Altyn Tagh strike-slip faults and the northern thrust faults in the north margin of Qilianshan. Using high resolution remote sensing images and field work, such as combining with UAV SfM photogrammetry, the paper studies the strike-slip characteristics of the Taerwan-Chijiaciwo Fault and Ganxiashan Fault on the northern margin of Kuantanshan, and get two preliminary understandings:(1) The northern marginal fault of Kuantanshan is an active right-lateral strike-slip fault with thrust component, the horizontal to vertical dislocation ratio is about 3-4 times. Based on the statistics of dislocation amount of the gullies and terraces along the north marginal Kuantanshan fault, it is preliminarily estimated that the late Pleistocene right-lateral strike-slip rate is about 0.2-0.25 mm/a and the Holocene right-lateral strike-slip rate is about 0.5-1.5 mm/a. (2) The main driving force to the tectonics at the western end of Hexi Corridor, where the northern marginal fault of Kuantanshan locates, comes from the northward extrusion of the Qilian Mountains, which results in the right-lateral strike-slip of the northern marginal fault of Kuananshan and the thrust movement of several faults inside the Jiuxi Basin. The effect of the Altyn Tagh Fault on other tectonic structures is not obvious in this region.  相似文献   

15.
The Lenglongling Fault(LLLF) is a major active left-lateral strike-slip fault along the northeastern margin of the Tibetan plateau. Fault slip rate is of great significance for researching the dynamics of tectonic deformation in NE Tibetan plateau and understanding the activity and seismic risk of the fault. However, slip rate of the LLLF, which remains controversial, is limited within~3~24mm/a, a relatively broad range. Taking Niutougou site(37.440 2°N, 102.094 0°E)and Chailong site(37.447 3°N, 102.063 0°E) in the upstream of Talihua gully in Menyuan County, Qinghai Province as the research objects, where faulted landform is typical, we analyzed the displacement evolution model and measured the slip amounts by back-slip of the faulted landform using high-resolution DEM from Terrestrial LiDAR and high-precision satellite images of Google Earth, and by collecting and testing samples from stratigraphic pit excavated in the faulted landform surface and stripping fresh stratigraphic section, we determined the abandonment age of the surface. Holocene slip rate obtained from Niutougou site and Chailong site is(6.4±0.7)mm/a and(6.6±0.3)mm/a, respectively, which have a good consistency. Taking into account the error range of the slip rate, the left-lateral slip rate of the LLLF is(6.6±0.8)mm/a since Holocene, which is between the previons results from geological method, also within the slip rate range of 4.2~8mm/a from InSAR, but slightly larger than that from GPS((4.0±1.0)mm/a). Late Quaternary slip rate of Qilian-Haiyuan fault zone, which displays an arc-shape distribution, turns to be the largest in LLLF region. The most intensive uplift in the LLLF region of the NE Tibetan plateau confirms the important role of the LLLF in accommodating the eastward component of movement of Tibetan plateau relative to the Gobi-Ala Shan block from one side.  相似文献   

16.
On 31 July 1954, an MS7.0 earthquake occurred southeast of Minqin, Gansu Province, northwestern China. Its epicenter was located at the edge of the Alxa block, subject to northeastward compression of the Tibetan plateau, resulting in active tectonics there. Because of few records and field investigations, the seismogenic fault and tectonic setting of this event remain unclear. To probe the deep structure of this region, magnetotelluric (MT) measurements have been carried out near the epicenter, and new data of 28 sites were collected. Using the methods including the remote reference, "robust" and phase tensor decomposition, these MT data were processed, followed by NLCG two-dimensional inversion of the data to reveal the deep electrical structure of the study area. Combining with previous studies, geologic interpretation of the MT survey suggests that the Minqin earthquake of 1954 may be related to the Hongyashan-Sidaoshan Fault, which is a high-angle thrust with left-slip component. It lies between the Tibetan plateau and the Alxa block, where substantial elastic strain has accumulated due to the northeastward extrusion of the plateau, leading to occurrences of several earthquakes greater than MS5.0 in the history. Our electrical structure derived from the MT survey supports the following tectonic interpretations:The Tibetan plateau expands to the northeast in a flower-like style while the Alxa block subducts to southwest in a listric-shaped manner, which forms the northeastward growth pattern of the Tibetan plateau. The forefront of the plateau expansion is around the Hongyashan-Sidaoshan Fault, indicating that the extension of the plateau has surpassed the Hexi Corridor to the southern margin of the Alxa block. The deformation nearby the Hongyashan-Sidaoshan Fault could be linked to the northeastward propagating extrusion of the Tibetan plateau as a far-field dynamic effect of the India-Eurasia collision. The Tibetan plateau is continuing to grow northeastward, resulting in folds and thrusts in the Hexi Corridor, and even farther to the southern margin of the Alxa block.  相似文献   

17.
It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet.  相似文献   

18.
The Riyue Mt. Fault is a secondary fault controlled by the major regional boundary faults (East Kunlun Fault and Qilian-Haiyuan Fault). It lies in the interior of Qaidam-Qilianshan block and between the major regional boundary faults. The Riyue Mt. fault zone locates in the special tectonic setting which can provide some evidences for recent activity of outward extension of NE Tibetan plateau, so it is of significance to determine the activity of Riyue Mt. Fault since late Pleistocene to Holocene. In this paper, we have obtained some findings along the Dezhou segment of Riyue Mt. Fault by interpreting the piedmont alluvial fans, measuring fault scarps, and excavating trenches across the fault scarp. The findings are as follows:(1) Since the late Pleistocene, there are an alluvial fan fp and three river terraces T1-T3 formed on the Dezhou segment. The abandonment age of fp is approximately (21.2±0.6) ka, and that of the river terrace T2 is (12.4±0.11) ka. (2) Since the late Pleistocene, the dextral strike-slip rate of the Riyue Mt. Fault is (2.41±0.25) mm/a. In the Holocene, the dextral strike-slip rate of the fault is (2.18±0.40) mm/a, and its vertical displacement rate is (0.24±0.16) mm/a. This result indicates that the dextral strike-slip rate of the Riyue Mt. Fault has not changed since the late Pleistocene. It is believed that, as one of the dextral strikeslip faults, sandwiched between the the regional big left-lateral strike-slip faults, the Riyue Mt. Fault didn't cut the boundary zone of the large block. What's more, the dextral strike-slip faults play an important role in the coordination of deformation between the sub-blocks during the long term growth and expansion of the northeast Tibetan plateau.  相似文献   

19.
According to a new investigation in the northern Hexi corridor,the remains of two surface rupture zones were discovered on the southern margin fault of the Helishan. One rupture has a length of approximately 7km and the other 10km. The two surface rupture zones might have been produced by the latest earthquake event. On the surface rupture is continuous scarp and free face caused by the rupture. The scarp is about 1 ~ 1. 5m high and on some sites,nearly up to 2m. According to the OSL results,the latest T1 terrace and higher flood plain forming in 3000a B. P. are dislocated by the fault. The above reveals the rupture age to be later than the T1 terrace. However,in the historical data and earthquake catalogue,we didn't find related information about the fault and surface rupture in this area. The 180 A. D. Biaoshi M8. 0 earthquake and the 756 A. D. Zhangye-Jiuquan M7. 0 earthquake are documented in historical data. It is inferred by textual research that the two earthquakes are related to the northern marginal fault of Yumushan in the south of the basin. Due to a lack of reliable evidence,there are still many arguments on this inferred conclusion. Thus we hold that the two surface rupture zones were produced by one of the two large earthquakes or other unrecorded historical event. The research on the activity and surface rupture of this fault can offer valuable information for the tectonic study and strong earthquake risk estimates of this region in the future.  相似文献   

20.
祁连山-河西走廊西段构造区发育多条重要活动断裂,多年来已积累较丰富的古地震研究的成果.本文在前人研究基础上,结合历史地震数据等,从定量化强震复发间隔T与平均复发间隔Ta入手,将其比值(T/Ta)进行数学处理,借鉴NB模型的思路,建立祁连山-河西走廊西段构造区模型,进而对强震潜势进行评估.结果表明:祁连山-河西走廊西段构...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号