首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The study presented here was undertaken to determine the climatic water balance and droughts of Pageru River Basin by using the rainfall data of eight rain gauge stations in and around the Pageru River Basin. The data have been collected and analysed to compute the water balance parameters. The analysis of the data revealed that the annual distribution is mostly controlled by the physiography of the region. A comparison of water balance and cropping pattern adopted in the villages indicates that the area under the basin is only suitable for cultivation of drought-resistant crops, such as jowar, ragi, bajra, etc.  相似文献   

2.
鄱阳湖流域抚河径流特征及变化趋势分析   总被引:2,自引:0,他引:2  
罗蔚  张翔  邹大胜  黄燕平 《水文》2012,32(3):75-82
抚河是鄱阳湖流域第二大河流,其径流变化研究对揭示鄱阳湖水文情势演变规律和鄱阳湖生态环境保护具有重要的科学意义。本文采用鄱阳湖流域抚河上、中、下游8个主要水文站的实测资料,分析了抚河径流年内分配特征及变化规律;应用Mann-Kendall非参数检验与回归分析等方法,研究了近几十年内抚河年、月径流变化规律及与降雨的关系。结果表明:(1)抚河径流年内分配不均,但不均匀性在流域内空间差异较小;(2)受水利工程调蓄影响,径流年内分配越来越均匀;(3)不同年代年径流特性存在差异,20世纪70年代至90年代初,径流相对稳定,90年代中期到2002年,呈较明显上升趋势,2002年后,表现为下降趋势;(4)月径流变化有增有减,基本规律为枯水期(11月~次年3月)月径流量基本呈上升趋势,洪水期(4~6月)月径流基本呈下降趋势;(5)抚河的年降水量在2002年附近发生突变减少,与年径流量突变时间基本吻合,说明气候变化降雨量减少对近10年鄱阳湖流域抚河入湖径流的减少影响显著。  相似文献   

3.
The potential of rain to generate soil erosion is known as the rainfall erosivity (R), and its estimation is fundamental for a better understanding of the erosive ability of certain rainfall events. In this paper, we investigated the temporal variations of rainfall erosivity using common daily rainfall data from four meteorological stations during 1956 to 1989 and 2008 to 2010 periods in the Yanhe River catchment of the Chinese Loess Plateau. The adaptability of several simplified calculation models for R was evaluated and compared with the results of previous studies. An exponential model based on the modified Fournier index (MFI) was considered as the optimum for our study area. By considering the monthly distribution and coefficient of variation of annual precipitation, equations based on two indices, the MFI and its modification F F , produced a higher calculation accuracy than mean annual precipitation. The rainfall erosivity in the Yanhe River catchment has a remarkable interannual difference, with a seasonality index ranging from 0.69 to 1.05 and a precipitation concentration index from 14.51 to 27.46. In addition to the annual rainfall amounts, the extreme wave of monthly rainfall distribution also has an effect on the magnitude and temporal variation of rainfall erosivity, especially interannual variation. For long time series of rainfall erosivity, a trend coefficient r of ?0.07 indicated a slight decline in erosivity in the Yanhe River catchment from 1956 to 2010.  相似文献   

4.
In Cisjordan, surface- and groundwater flow are either towards the Jordan Valley-Dead Sea-Arava Valley (the Rift) or the Mediterranean Sea. Due to upstream exploitation by riparians to the Jordan River, the historical annual flow, which fluctuated between 250 and 1100 Mm3, has declined to a mere 100-200 Mm3. The remaining flow south of Lake Kinneret is highly polluted and heavily loaded with salts. Lake Kinneret (Sea of Galilee) is one of the major water resources in the area. Annually, between 200 and 700 Mm3 reach the Lake as surface and groundwater flow. The relatively high salinity of the Lake is caused by thermomineral water discharging from springs and seepages located onshore and on the bottom of the Lake. The main factors causing deterioration of the groundwater quality in the Rift are of geogenic character. These are different types of brines, whose outflow and penetration into freshwater aquifers was triggered by overpumpage. Contemporary encroachment of seawater caused by intensive water exploitation in the Coastal Plain is manageable and reversible. However, due to lack of hydrogeological evidence, no such statement can be made about the circulation of seawater beneath the Coastal Plain and into the deep-seated Yarkon-Taninim aquifer or the upflow of brines in the Rift.The flow regimes of the different brine bodies could not be elucidated. Whether each such brine-body flows by its particular hydrological regime or whether the movement of the different bodies is intradependent or interdependent with the regional movement of fresh groundwater, remain open questions. Therefore, sustainable development of groundwater resources is clearly dependent on the elucidation of the relationship between changes in the pressure of the brine with depth and its relationship to the overlying freshwater.The average total annual recharge of all water sources in Cisjordan is 1820 Mm3, which means that the total production of water must be managed within the limits of this annual volume. During drought years, total groundwater extraction exceeds the safe yield, causing drastic lowering of water levels and upflow of saline waters from greater depths.Because of the structural complexity of aquifers and hydrochemical variability of the numerous groundwater bodies, new hydrochemical methods have been developed for the identification of groundwater bodies and for the elucidation of their origins. These methods combine macrochemical, microchemical, and isotopic evidences. By combining distribution patterns of rare earths, yttrium and stable isotopes, a complete picture of catchment lithology and the altitude and latitude of precipitation could be obtained.The area west of the Jordan River is characterized by the occurrence of transboundary surface- and groundwater basins in which fresh and saline water and brines flow across political borders between Israel and the Palestinian Authority. It is very difficult to assess separately the annual safe yield of water resources for each of the two national entities. Neither country may dispose independently of its waters and is usually at the mercy of the other riparian. There is as yet no general multilateral international treaty in force allocating the water resources of international watercourses. At present there are two rules for the management of the waters of an international drainage basin—the rule of Equitable Distribution, and the obligation Not to Cause Significant Harm. The rules of equitable distribution have tended to focus on the issue of quantities of water rather than on quality of water, which is really relevant to the issue of equitable distribution. Future negotiations on the uses of the basin will need to deal with issues of characteristic salinities and geochemical features and on their impact on equitable sharing of water resources.  相似文献   

5.
分析研究了2001年5月15日~8月15日3个月GMS卫星资料在湖南资水流域实时数值预报中的应用以及将TRMM(Tropical Rainfall Measuring Mission)卫星上的TMI(Microwave Imager)雨水资料适时融入数值模式改变当时模式中雨水分布场,数值模拟还研究了发生在淮河流域的10次暴雨过程。结果表明:资水流域3个月的实时预报效果良好,准确预报出其中出现的3次致洪暴雨和1次特大暴雨;对淮河流域暴雨,由于TMI资料空间分辨率较高,能够很好地反映中小尺度系统的空间结构,加入模式后使得模拟出来的降雨强度,雨量中心时空分布更接近实际情况,10次暴雨过程的TS评分较不使用TMI资料更好。  相似文献   

6.
The existing different human activities and planned land uses put the groundwater resources in Jordan at considerable risk. There are evidences suggesting that the quality of groundwater supplies in north Jordan is under threat from a wide variety of point and non-point sources including agricultural, domestic, and industrial. Vulnerability maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydrogeological conditions and human impacts. DRASTIC method incorporates the major geological and hydrogeological factors that affect and control groundwater movement: depth to groundwater (D), net recharge (R), lithology of the aquifer (A), soil texture (S), topography (T), lithology of vadose zone (I), and hydraulic conductivity (C). The main goal of this study is to produce vulnerability maps of groundwater resources in the Yarmouk River basin by applying the DRASTIC method to determine areas where groundwater protection or monitoring is critical. ArcGIS 9.2 was used to create the groundwater vulnerability maps by overlaying the available hydrogeological data. The resulting vulnerability maps were then integrated with lineament and land use maps as additional parameters in the DRASTIC model to assess more accurately the potential risk of groundwater to pollution. The general DRASTIC index indicates that the potential for polluting groundwater is low in the whole basin, whereas the resulting pesticide DRASTIC vulnerability map indicates that about 31% of the basin is classified as having moderate vulnerability, which may be attributed to agricultural activities in the area. Although high nitrate concentrations were found in areas of moderate vulnerability, DRASTIC method did not depict accurately the nitrate distribution in the area.  相似文献   

7.
A regularized joint inverse procedure is presented and used to estimate the magnitude of extreme rainfall events in ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. Since streamflow measurements reflect temporal and spatial rainfall information, peak-flow discharge is hypothesized to represent a similarity measure suitable for regionalization. To test this hypothesis, peak-flow discharge values determined from streamflow recurrence information (10-year, 25-year, and 100-year) collected outside the study basins are used to develop regional (country-wide) regression equations. Peak-flow discharge derived from these equations together with preferred spatial parameter relations as soft prior information are used to constrain the simultaneous calibration of 20 tributary basin models. The nonlinear range of uncertainty in estimated parameter values (1 curve number and 3 recurrent rainfall amounts for each model) is determined using an inverse calibration-constrained Monte Carlo approach. Cumulative probability distributions for rainfall amounts indicate differences among basins for a given return period and an increase in magnitude and range among basins with increasing return interval. Comparison of the estimated median rainfall amounts for all return periods were reasonable but larger (3.2–26%) than rainfall estimates computed using the frequency-duration (traditional) approach and individual rain gauge data. The observed 25-year recurrence rainfall amount at La Hachadura in the Paz River basin during Hurricane Mitch (1998) is similar in value to, but outside and slightly less than, the estimated rainfall confidence limits. The similarity in joint inverse and traditionally computed rainfall events, however, suggests that the rainfall observation may likely be due to under-catch and not model bias.  相似文献   

8.
一个网格型松散结构分布式水文模型的构建   总被引:2,自引:1,他引:1       下载免费PDF全文
根据流域降雨径流的基本过程,以蓄满产流理论为基础,建立了一个网格型松散结构的分布式流域水文模型。模型将流域离散为包含河道与不包含河道两种类型的单元格,以协克里金方法插值得到空间离散的降雨输入,考虑的产汇流物理过程包括降雨、植被截留及蒸散发、单元格产流、单元格汇流及河网汇流。模型结构简单,参数较少,在充分利用植被覆盖类型图及土地利用类型图的基础上,能够获得大部分参数的选用值。通过在长江三峡区间沿渡河流域的实际应用,模型计算成果令人满意。  相似文献   

9.
反映流域整体降水情势的面雨量一直是水文模型的重要输入参数之一,在泰森多边形雨量法的基础上考虑地理空间要素对降雨空间分布的影响,采用面向对象的遥感信息聚类方法提取出雅砻江流域2项形状因子(周长、面积)和5项地形因子(平均高程、平均坡度、平均坡向、高程差周长比和高程差面积比)。降雨—径流相关性分析结果表明:地形因子雨量法在月尺度上的降雨估算精度高于年尺度,且在月尺度上能更好地反映流域不同区段的降雨空间分布特征;在月、年际降雨变化趋势分析方面,年尺度上的降雨与径流一阶差分后平均相关系数为0. 903,高于月尺度的0. 629,主要由于水电站调蓄过程对流域径流异质性的影响,且影响度随着时间尺度缩小而放大。  相似文献   

10.
The average annual value of COD (chemical oxygen demand) fluxes of the Changjiang River (Yangtze River) and its main tributaries in the past decade (i.e., 1991–2000), has been evaluated. Based on the data from the Datong Hydrological Station (DHS), it was found that the Dongting Lake drainage basin contributed the greatest water discharge (35.8%) and COD flux (48.3%) among the main tributary drainage basins, followed by the Poyang Lake drainage basin with the contributions of 15.4% and 19.3%,respectively. By the end of the year of 2000, COD flux in the Changjiang River rose by almost 45% relative to that in the year of 1991, reaching about 1941000 ton/a at DHS. Statistical analysis revealed that industrial wastewater discharge, as well as COD in it, was found decreasing in the same period, due to the gradual reinforcement of environmental management. Moreover, correlation analysis indicated that non-point pollution from agriculture and increasing discharge of domestic sewages caused by rapid growth of population along the Changjiang River drainage valley should be responsible for the high COD. Furthermore, with the current trend of population growth and agricultural development in this basin, water quality of the Changjiang River, in terms of COD level, is going to deteriorate in the near future. Thus, the rational applications of fertilizers and pesticides in agriculture and the proper treatment of domestic sewages before they are discharged would be the most concerned controlling parameters.  相似文献   

11.
The Hanjiang River Basin is the source area of the Middle Route Project of the South-to-North Water Diversion Project, and the vegetation coverage in this basin directly affects the quality of the ecological environment. This study is based on long time series of Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data synthesized over 16 days from 2000 to 2016 in the Hanjiang River Basin. Major climatic data (temperature and rainfall) and topographic data (elevation, slope, and aspect) are employed to analyze the driving forces of NDVI changes. The results demonstrate the following: for the 2000–2016 period, the average annual NDVI is 0.823, with a change trend of 0.025 year?1. The overall NDVI upstream is higher than that downstream. The average annual value of NDVI upstream is 0.844, with a change trend of 0.036 year?1, and that of downstream is 0.799, with a change trend of 0.022 year?1. The spatial distribution of NDVI was significantly increased in the area around the upstream section of the river and near the Danjiangkou Reservoir, and the distribution of NDVI around the central city was significantly reduced. The NDVI was positively correlated with temperature and rainfall, and the impacts differed among different regions. At elevations below 2000 m, the NDVI shows an increasing trend with increasing elevation, and at elevations exceeding 2000 m, the NDVI is negatively correlated with elevation. Slope is positively correlated with the NDVI. The influence of aspect on the NDVI was small.  相似文献   

12.
In this study, the excess water generated during a 10-year period (1998–2008) in the upper and middle Yanuncay River basins is estimated. The distributed water balance method, which analyses the interaction between all the different parameters that form part of the water cycle in nature, was developed. To create the model, basic parameters such as rainfall, temperature, soil type and surface cover are required. Moreover, by using computer software such as Microsoft Office Excel and geographic information systems, it is possible to obtain monthly data showing the water excess and generate thematic maps which allow for an effective monitoring of the behaviour of the middle and upper Yanuncay River basins. This study takes the spatial variability of the various factors that influence the behaviour of a basin into account. This allows determining zones with greater water excess, which are areas that would need to be protected. The model can easily incorporate new data such as land use and surface cover (based on time frames) which would facilitate the comparison of different scenarios.  相似文献   

13.
新疆阿尔泰山区克兰河上游水文过程对气候变暖的响应   总被引:17,自引:7,他引:10  
额尔齐斯河支流克兰河上游发源于西风带水汽影响的阿尔泰山南坡,主要由融雪径流补给,年内积雪融水可占年径流量的45%.年最大月径流一般出现在6月份,融雪季节4~6月径流量占65%.流域自20世纪60年代开始明显升温,年平均温度从50年代的1.4℃上升到90年代的5.2℃;年降水总量也呈增加趋势,尤其是冬季和初春增加最多.随着气候变暖,河流年内水文过程发生了很大的变化,主要表现在最大月径流由6月提前到5月,月径流总量增加约15%,4~6月融雪径流量也由占年流量的60%增加到近70%.在多年变化趋势上,气温上升主要发生在冬季,降水也以冬季增加明显,而夏季降水呈下降趋势;水文过程主要表现在5月径流呈增加趋势,而6月径流为下降趋势;夏季径流减少而春季径流增加明显.冬春季积雪增加和气温上升,导致融雪洪水增多且洪峰流量增大,使洪水灾害破坏性加大.近些年来气候变暖引起的年内水文过程变化,已经对河流下游的城市供水和农牧业生产产生了影响.  相似文献   

14.
渭河上游典型小流域水文特征差异性分析   总被引:3,自引:2,他引:1  
根据渭河流域两个典型小流域的实测水文和气象资料,分析了不同气候和下垫面条件的流域水文特征及其差异性.结果表明:清源河和牛谷河流域的年平均气温呈上升趋势,降水、径流、泥沙、降水径流系数均呈减少趋势;两个流域的降水、径流和泥沙历年变化不一致,1998-2013年清源河流域降水量相对牛谷河流域减少了8.6%,1993-2013年牛谷河的径流相对减少了21.4%,2000-2013年清源河的泥沙相对减少了24.0%;两个流域的面积、河长、海拔、植被覆盖率等流域特征值相对差在-29.4%~-4.5%之间,气温、降水等气候特征值相对差在-27.4%~16.7%之间,而径流特征值相差较大,相对差在-90.2%~-84.7%之间,泥沙特征差异性更大,相对差在292%~347%之间.对气候、下垫面和人类活动对水文要素的影响进行了研究,受人类活动的影响,清源河流域1996-2013年年径流减少11.6%,牛谷河流域1993-2006年年径流减少25.9%,2007-2013年再减少10.5%,研究人类活动的调水减沙效应,对流域综合治理、生态环境建设具有一定的指导意义.同时,充分利用不同小流域实测水文气象数据,分析水文气象要素的变化规律,可以为分布式水文模型研究和中小河流洪水预警预报提供重要依据.  相似文献   

15.
中国大陆流域分区TRMM降水质量评价   总被引:2,自引:0,他引:2       下载免费PDF全文
根据中国境内2 257个气象站点1998-2013年逐日降水资料,结合流域分区,采用探测准确性、相关系数以及相对误差等指标,对热带降水测量(TRMM)降水精度和一致性进行系统评价。结果表明:① TRMM日降水准确性从东南沿海向西北内陆递减;② 气象站点年均降水日数显著大于TRMM年均降水日数;③ 西北片区以外气象站点降水量和TRMM降水量在月尺度和年尺度上均具有较好的相关关系;④ 各流域年均TRMM面降水量均高于气象站点面降水量,且TRMM面降水量相对误差雨季较小,枯季较大;⑤ 各流域TRMM面降水量与气象站点面降水量演变趋势基本一致,南方各流域年降水量均呈减少趋势,北方各流域年降水量均呈增加趋势,全国尺度上年降水量呈微弱的减少趋势。  相似文献   

16.
赵兰兰  刘志雨  王金星 《水文》2015,35(5):78-81
利用黄河流域近50年气象水文资料,开展了黄河流域气候变化和极端水文现象特征研究,研究结果表明:20世纪80年代以来黄河流域的气温显著升高,年降水量呈不明显下降趋势,暴雨、洪水、干旱等极端水文现象更加突出,研究成果为科学规划和水资源优化调度提供了有力依据。  相似文献   

17.
A model for generating daily spatial correlated rainfall fields suitable for evaluating the impacts of climate change on water resources is presented. The model, termed Stochastic Rainfall Generating Process, is designed to incorporate two major nonstationarities: changes in the frequencies of different precipitation generating mechanisms (frontal and convective), and spatial nonstationarities caused by interactions of mesoscale atmospheric patterns with topography (orographic effects). These nonstationarities are approximated as discrete sets of the time-stationary Stochastic Rainfall Generating Process, each of which represents the different spatial patterns of rainfall (including its variation with topography) associated with different atmospheric circulation patterns and times of the year (seasons). Each discrete Stochastic Rainfall Generating Process generates daily correlated rainfall fields as the product of two random fields. First, the amount of rainfall is generated by a transformed Gaussian process applying sequential Gaussian simulation. Second, the delimitation of rain and no-rain areas (intermittence process) is defined by a binary random function simulated by sequential indicator simulations. To explore its applicability, the model is tested in the Upper Guadiana Basin in Spain. The result suggests that the model provides accurate reproduction of the major spatiotemporal features of rainfall needed for hydrological modeling and water resource evaluations. The results were significantly improved by incorporating spatial drift related to orographic precipitation into the model.  相似文献   

18.
史晓亮  杨志勇  绪正瑞  李颖 《水文》2014,34(6):26-32
降雨输入对分布式流域水文模拟具有重要影响。针对流域降雨资料不完整的情况,以武烈河流域为例,基于反距离加权平均法对雨量站降雨资料进行插补延长,并结合SWAT模型研究了降雨输入不确定性对分布式流域水文模拟的影响。结果表明:不同降雨输入对流域平均降雨量的影响较小,但基于气象站资料的降雨数据在降雨空间差异显著的年份会明显低估面雨量,且在夏季汛期表现更为显著;不同降雨输入对分布式流域水文模拟的影响较大;在雨量站降雨资料不完整的情况下,通过对雨量站降雨数据进行插补延长,相对于直接利用气象站降雨资料,在一定程度上可以提高径流模拟精度,满足降雨资料欠缺流域分布式水文模拟的实际需求。  相似文献   

19.
降水和人工灌溉是黑河中游浅层地下水重要的补给来源。长期以来入渗补给量评价采用经验参数法,但没有成熟的监测方法和实证数据。采用人工溴示踪法研究黑河中游不同灌溉条件和不同深度条件下的地下水入渗补给规律。结果表明:研究区大气降水条件下包气带溴离子含量峰值年均运移距离为21.25 cm,年平均入渗补给量为11.93 mm,入渗补给系数为0.1;大水漫灌条件下包气带溴离子含量峰值年均运移距离为86.51 cm,年平均入渗补给量为148.7 mm,入渗补给系数为0.16;小水漫灌条件下包气带溴离子含量峰值年均运移距离为46.35 cm,年平均入渗补给量为 53.81 mm,入渗补给系数为0.07;滴灌条件下年包气带溴离子含量峰值年均运移距离为41.72 cm,年平均入渗补给量为52.6 mm,入渗补给系数为0.11。人工溴示踪剂应投放在包气带水分单向入渗下行区,一般西北内陆盆地在地表3 m以下为宜。此研究成果可为黑河流域地下水资源评价提供实证参数,对西北内流盆地地下水水资源量与合理开发利用的科学认识具有重要意义。  相似文献   

20.
The Yuanshui River Basin is one of the most important river basins ensuring food production and livelihoods in the Hunan and Guizhou Provinces of China. Based on digital elevation model, land use, soil, and meteorological data, the soil and water assessment tool was used to analyze the response of water resources in the basin to climate change. Specifically, the monthly runoff from the Yuanshui River Basin was simulated. Runoff measurements from the 1961–1990 series were used to calibrate model parameters, and measurements from the 1991–2010 series were used for model validation. The Nash–Sutcliffe efficiency coefficient, correlation coefficient, and water balance error were used to evaluate the simulation results; the values obtained for these parameters were 0.925, 0.929, and 2.0%, respectively, indicating that the established model can be applied successfully to runoff simulations. To evaluate the effects of climate change and human activities on runoff, 24 different climate scenarios were modeled. By comparing the model simulation results with the baseline scenario, the effects of climate change were analyzed by year, during the dry season, and during extremely dry conditions. The results showed that runoff decreased with increasing air temperature and decreasing precipitation, and that the effects of rainfall on runoff were greater than those of air temperature. Under the same baseline conditions, the effects of climate change on runoff were most pronounced during extremely dry months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号