首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The present study makes use of a detailed water balance to investigate the hydrological status of a peatland with a basal clay‐rich layer overlying an aquifer exploited for drinking water. The aim is to determine the influence of climate and groundwater extraction on the water balance and water levels in the peatland. During the two‐year period of monitoring, the hydrological functioning of the wetland showed a hydric deficit, associated with a permanent unsaturated layer and a deep water table. At the same time, a stream was observed serving as a recharge inflow instead of draining the peatland, as usually described in natural systems. Such conditions are not favourable for peat accumulation. Field investigations show that the clay layer has a high hydraulic conductivity (from 1·10?7 to 3·10?9 m.s?1) and does not form a hydraulic barrier. Moreover, the vertical hydraulic gradients are downward between the peat and the sand aquifer, leading to high flows of groundwater through the clay layer (20–48% of the precipitation). The observed hydric deficit of the peatland results from a combination of dry climatic conditions during the study period and groundwater extraction. The climatic effect is mainly expressed through drying out of the peatland, while the anthropogenic effect leads to an enhancement of the climatic effect on a global scale, and a modification of fluxes at a local scale. The drying out of the peatland can lead to its mineralisation, which thus gives rise to environmental impacts. The protection of such wetlands in the context of climate change should take account of anthropogenic pressures by considering the wetland‐aquifer interaction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This study investigated how hydrogeological setting influences aquifer–peatland connections in slope and basin peatlands. Steady-state groundwater flow was simulated using Modflow on 2D transects for an esker slope peatland and for a basin peatland in southern Quebec (Canada). Simulations investigated how hydraulic heads and groundwater flow exported toward runoff from the peatland can be influenced by recharge, hydraulic properties, and heterogeneity. The slope peatland model was strongly dominated by horizontal flow from the esker. This suggests that slope peatlands are dependent on the hydrogeological conditions of the adjacent aquifer reservoir, but are resilient to hydrological changes. The basin peatland produced groundwater outflow to the surface aquifer. Lateral and vertical peat heterogeneity due to peat decomposition or compaction were identified as having a significant influence on fluxes. These results suggest that basin peatlands are more dependent on recharge conditions, and could be more susceptible to land use and climate changes.  相似文献   

3.
The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low‐flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin‐wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed‐parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin‐wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.  相似文献   

4.
The purpose of this study was to develop an interpretive groundwater‐flow model to assess the impacts that planned forest restoration treatments and anticipated climate change will have on large regional, deep (>400 m), semi‐arid aquifers. Simulations were conducted to examine how tree basal area reductions impact groundwater recharge from historic conditions to 2099. Novel spatial analyses were conducted to determine areas and rates of potential increases in groundwater recharge. Changes in recharge were applied to the model by identifying zones of basal area reduction from planned forest restoration treatments and applying recharge‐change factors to these zones. Over a 10‐year period of forest restoration treatment, a 2.8% increase in recharge to one adjacent groundwater basin (the Verde Valley sub‐basin) was estimated, compared to conditions that existed from 2000 to 2005. However, this increase in recharge was assumed to quickly decline after treatment due to regrowth of vegetation and forest underbrush and their associated increased evapotranspiration. Furthermore, simulated increases in groundwater recharge were masked by decreases in water levels, stream baseflow, and groundwater storage resulting from surface water diversions and groundwater pumping. These results indicate that there is an imbalance between water supply and demand in this regional, semi‐arid aquifer. Current water management practices may not be sustainable into the far future and comprehensive action should be taken to minimize this water budget imbalance.  相似文献   

5.
Identifying aquifer vulnerability to climate change is of vital importance in the Sierra Nevada and other snow‐dominated basins where groundwater systems are essential to water supply and ecosystem health. Quantifying the component of new (current year's) snowmelt in groundwater and surface water is useful in evaluating aquifer vulnerability because significant annual recharge may indicate that streamflow will respond rapidly to annual variability in precipitation, followed by more gradual decreases in recharge as recharge declines over decades. Hydrologic models and field‐based studies have indicated that young (<1 year) water is an important component of streamflow. The goal of this study was to utilize the short‐lived, naturally occurring cosmogenic isotope sulfur‐35 (35S) to quantify new snowmelt contribution to groundwater and surface waters in Sagehen Creek Basin (SCB) and Martis Valley Groundwater Basin (MVGB) located within the Tertiary volcanics of the central Sierra Nevada, CA. Activities of 35S were measured in dissolved sulfate (35SO42?) in SCB and MVGB snowpack, groundwater, springs, and streamflow. The percent of new snowmelt (PNS) in SCB streamflow ranged from 0.2 ± 6.6% during baseflow conditions to 14.0 ± 3.4% during high‐flow periods of snowmelt. Similar to SCB, the PNS in MVGB groundwater and streamflow was typically <30% with the largest fractions occurring in late spring or early summer following peak streamflow. The consistently low PNS suggests that a significant fraction of annual snowmelt in SCB and MVGB recharges groundwater, and groundwater contributions to streamflow in these systems have the potential to mitigate climate change impacts on runoff.  相似文献   

6.
Little attention has been given to the role of groundwater in the hydrological cycle of lowland watersheds. Our objective in this study was to estimate total recharge to groundwater by analysing water table response to storm events and the rate at which water was transferred into the shallow aquifer. This was conducted at three sites in a rural watershed in the lower Atlantic coastal plain near Charleston, South Carolina, USA. A novel version of the water table fluctuation method was used to estimate total recharge to the shallow aquifer by comparing hourly data of water table position following storm events and measuring water table recession behavior, rather than subjective graphical analysis methods. Also, shallow aquifer recharge rates (vertical fluxes) were estimated using Darcy's Law by comparing static water levels in a water table well and in a shallow piezometer during dry periods. The total annual recharge estimated ranged from 107 ± 39 mm·yr–1 (5–10% of annual precipitation) at a poorly drained topographic low area to 1140 ± 230 mm·yr–1 (62–94% of annual precipitation) for a moderately well‐drained upland site. The average aquifer recharge rate was 114 ± 60 mm·yr–1, which is similar to previous estimations of base flow for the ephemeral third‐order streams in this watershed. The difference in the two methods may have been caused by processes not accounted for in the Darcy flux method, soil moisture deficits, and average evapotranspiration demand, which is about 1100 mm·yr–1 for this region. Although other factors also can affect partitioning of recharge, an integrated approach to inspecting easily gathered groundwater data can provide information on an often neglected aspect of water budget estimation. We also discuss the effects of land use change on recharge reduction, given a typical development scenario for the region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Groundwater, an essential resource, is likely to change with global warming because of changes in the CO2 levels, temperature and precipitation. Here, we combine water isotope geochemistry with climate modelling to examine future groundwater recharge in southwest Ohio, USA. We first establish the stable isotope profiles of oxygen and deuterium in precipitation and groundwater. We then use an isotope mass balance model to determine seasonal groundwater recharge from precipitation. Climate model output is used to project future changes in precipitation and its seasonal distribution under medium and high climate change scenarios. Finally, these results are combined to examine future changes in groundwater recharge. We find that 76% of the groundwater recharge occurs in the cool season. Climate models project precipitation increase in the cool season and decrease in the warm season. The total groundwater recharge is expected to increase by 3.2% (8.8%) under the medium (high) climate change scenarios.  相似文献   

8.
The projected impact of climate change on groundwater recharge is a challenge in hydrogeological research because substantial doubts still remain, particularly in arid and semi‐arid zones. We present a methodology to generate future groundwater recharge scenarios using available information about regional climate change projections developed in European Projects. It involves an analysis of regional climate model (RCM) simulations and a proposal for ensemble models to assess the impacts of climate change. Future rainfall and temperature series are generated by modifying the mean and standard deviation of the historical series in accordance with estimates of their change provoked by climate change. Future recharge series will be obtained by simulating these new series within a continuous balance model of the aquifer. The proposed method is applied to the Serral‐Salinas aquifer, located in a semi‐arid zone of south‐east Spain. The results show important differences depending on the RCM used. Differences are also observed between the series generated by imposing only the changes in means or also in standard deviations. An increase in rainfall variability, as expected under future scenarios, could increase recharge rates for a given mean rainfall because the number of extreme events increases. For some RCMs, the simulations predict total recharge increases over the historical values, even though climate change would produce a reduction in the mean rainfall and an increased mean temperature. A method based on a multi‐objective analysis is proposed to provide ensemble predictions that give more value to the information obtained from the best calibrated models. The ensemble of predictions estimates a reduction in mean annual recharge of 14% for scenario A2 and 58% for scenario A1B. Lower values of future recharge are obtained if only the change in the mean is imposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Mountain front catchment net groundwater recharge (NR) represents the upper end of mountain block recharge (MBR) groundwater flow paths. Using environmental chloride in precipitation, streamflow and groundwater, we apply chloride mass balance (CMB) to estimate NR at multiple catchment scales within the 27 km2 Dry Creek Experimental Watershed (DCEW) on the Boise Front, southwestern Idaho. The estimate for average annual precipitation partitioning to NR is approximately 14% for DCEW. In contrast, as much as 44% of annual precipitation routes to NR in ephemeral headwater catchments. NR in headwater catchments is likely routed to downgradient springs, baseflow, and MBR, while downgradient streamflow losses contribute further to MBR. A key assumption in the CMB approach is that the change in stored chloride during the study period is zero. We found that this assumption is violated in some individual years, but that a 5‐year integration period is sufficient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major‐ions, the chemical composition is classified as Na‐Ca‐Cl‐SO4, Na‐Cl, or Na‐Ca‐Cl type water. δ2H and δ18O values range from ?47.7‰ to ?12.8‰ and from ?7.0‰ to ?1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher‐elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest‐to‐southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.  相似文献   

11.
Climate predictions indicate that precipitation patterns will change and average air temperatures will increase across much of the planet. These changes will alter surface water and groundwater temperatures which can significantly affect the local and regional environment. Here, we examine the role of precipitation timing in changes to groundwater temperature in carbonate‐karst aquifers using measured groundwater level and temperature data from the Konza Prairie Long‐Term Ecological Research Site, Kansas. We demonstrate that shifts to increased cool‐season precipitation may mitigate the increases in groundwater temperature produced by increases in average annual air temperature. In karst, the solution‐enlarged conduits allow faster and focused recharge, and the recharge‐event temperature can strongly influence the groundwater temperature in the aquifer. Our field data and analysis show that predictions of future groundwater conditions in karst aquifers need to consider changes in precipitation patterns, in addition to changes to average annual air temperature.  相似文献   

12.
Satellite observations were used to test the validity of previously identified favourable conditions for the formation of freshwater lenses, identify additional potential occurrences, and model modern potential recharge in the Raudhatain Watershed (3696) in northern Kuwait. Favourable conditions include infrequent yet intensive precipitation events, drainage depressions to collect the limited runoff, and presence of conditions (e.g. high infiltration capacity) that promote groundwater recharge and preservation (e.g. underlying saline aquifer) of infiltrating groundwater as freshwater lenses floating over saline aquifer water due to differences in density. Specifically, the following field and satellite‐based observations were noted for the Raudhatain Watershed: (1) Over ~30 precipitation events were identified from the Tropical Rainfall Measuring Mission precipitation data (1998–2009); (2) slope is gentle (2 m/km), and the surface is largely (80%) covered by alluvial deposits with high infiltration capacities (up to 9 m/day); (3) no flows and long‐term ponding were reported at the watershed outlet or detected from Landsat thematic mapper images; (4) infiltration is high based on increases in soil moisture content (from an advanced microwave scanning radiometer) and vegetation index following large precipitation events; and (5) freshwater lenses that overlie highly saline [total dissolved solids (TDS): >35 000] unconfined aquifers underlying the watershed are absent in the southern regions, where infiltrating fresh water mixes with the less saline groundwater (TDS: <10 000). Twenty potential locations (size: 1 to 75 km2) for freshwater lens development were identified in northern Kuwait, and continuous rainfall–runoff models (Soil Water and Assessment Tool) were applied to provide a first‐order estimation of the average annual recharge in the watershed (127 × 106 m3) and freshwater lenses (8.17 × 106 m3). Results demonstrate the settings for enhanced opportunities for groundwater recharge, outline the amounts of and preservation conditions for the groundwater feeding the freshwater lenses, and highlight potential applications and locations of freshwater lenses in similar settings elsewhere in the Arabian Peninsula and beyond. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A simple conceptual semi‐distributed modelling approach for assessing the impacts of climate change on direct groundwater recharge in a humid tropical river basin is investigated. The study area is the Chaliyar river basin in the state of Kerala, India. Many factors affecting future groundwater recharge include decrease or increase in precipitation and temperature regimes, coastal flooding, urbanization and changes in land use. The model is based on the water‐balance concept and links the atmospheric and hydrogeologic parameters to different hydrologic processes. It estimates daily water‐table fluctuation and is calibrated and validated using 10 years of data. Data for the first 6 years (2000 to 2005) is used for model calibration, and data for the remaining four years (2006 to 2009) is used for validation. For assessing the impact of predicted climate change on groundwater recharge during the period 2071–2100, temperature and precipitation data in two post climate change scenarios, A2 and B2, were predicted using the Regional Climate Model (RCM), PRECIS (Providing Regional Climates for Impact Studies). These data were then corrected for biases and used in a hydrologic model to predict groundwater recharge in the post climate change scenario. Due to lack of reliable data and proper knowledge as to the magnitude and extent of future climatic changes, it may not be possible to include all the possible effects quantitatively in groundwater recharge modelling. However, the study presents a scientific method to assess the impact of predicted climate change on groundwater recharge and would help engineers, hydrologists, administrators and planners to devise strategies for the efficient use as well as conservation of freshwater resources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The coastal confined aquifer in the Gulf of Urabá (Colombia) is an important water source for the banana agro‐industry as well as for urban and rural communities. However, the main processes controlling recharge and mixing in the aquifer are still poorly understood. Hydrochemical analyses and stable isotope monitoring were conducted to (a) determine groundwater recharge origin, mean groundwater age, and the main processes governing groundwater chemistry and the potential mixing of marine water and the influence of diffusive processes from the two surrounding aquitard layers. Hydrochemical data indicate that the main processes affecting the dissolved chemical composition include cation exchange, dissolution of carbonated and CO2, and silicate weathering. δ18O and δ2H compositions combined with 14C data highlight the differences in climatic conditions between the recharge zone and the confined section of the aquifer, which is close to the Atlantic Ocean. Groundwater samples with 14C ages from recent to 28,300 years BP show a depleted isotopic trend ranging from ?6.43‰ to ?9.14‰ in δ18O and from ?43.2‰ to ?65.7‰ in δ2H. The most depleted δ18O and δ2H compositions suggest a cooler recharge climate than the current conditions (corresponding to the last glacial period of the late Pleistocene). Depleted δ13C values in the total dissolved inorganic carbon indicate the existence of organic material oxidation processes within the geologic formation. These results can be used or transferred to enhance groundwater modelling efforts in other confined coastal aquifers of South America where scarcity of long‐term monitoring data limits water resources planification under a changing climate.  相似文献   

15.
Groundwater resources are typically the main fresh water source in arid and semi‐arid regions. Natural recharge of aquifers is mainly based on precipitation; however, only heavy precipitation events (HPEs) are expected to produce appreciable aquifer recharge in these environments. In this work, we used daily precipitation and monthly water level time series from different locations over a Mediterranean region of Southeastern Spain to identify the critical threshold value to define HPEs that lead to appreciable aquifer recharge in this region. Wavelet and trend analyses were used to study the changes in the temporal distribution of the chosen HPEs (≥20 mm day?1) over the observed period 1953–2012 and its projected evolution by using 18 downscaled climate projections over the projected period 2040–2099. The used precipitation time series were grouped in 10 clusters according to similarities between them assessed by using Pearson correlations. Results showed that the critical HPE threshold for the study area is 20 mm day?1. Wavelet analysis showed that observed significant seasonal and annual peaks in global wavelet spectrum in the first sub‐period (1953–1982) are no longer significant in the second sub‐period (1983–2012) in the major part of the ten clusters. This change is because of the reduction of the mean HPEs number, which showed a negative trend over the observed period in nine clusters and was significant in five of them. However, the mean size of HPEs showed a positive trend in six clusters. A similar tendency of change is expected over the projected period. The expected reduction of the mean HPEs number is two times higher under the high climate scenario (RCP8.5) than under the moderate scenario (RCP4.5). The mean size of these events is expected to increase under the two scenarios. The groundwater availability will be affected by the reduction of HPE number which will increase the length of no aquifer recharge periods (NARP) accentuating the groundwater drought in the region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.  相似文献   

17.
Relative little is known about the interaction between climate change and groundwater. Analysis of aquifer response to climatic variability could improve the knowledge related to groundwater resource variations and therefore provides guidance on water resource management. In this work, seasonal and annual variations of groundwater levels in Kumamoto plain (Japan) and their possible interactions with climatic indices and El Niño Southern Oscillation (ENSO) were analyzed statistically. Results show the following: (1) The water level in the recharge area mainly fluctuates at 1‐ and 2‐year periods, whereas the significant periodicity for water level oscillation in the coastal aquifer is 0.5 year. (2) The aquifer water levels are possibly influenced by variability in precipitation, air temperature, barometric pressure, humidity variances and ENSO. Relative high correlations and large proportions of similarities in wavelet power patterns were found between these variables and water levels. (3) Aquifer response to climatic variances was evaluated using cross wavelet transform and wavelet coherence. In recharging aquifers, the ENSO‐induced annual variations in precipitation, air temperature, humidity and barometric pressure affect aquifer water levels. The precipitation, air temperature and humidity respond to ENSO with a 4‐, 6‐ and 8‐month time lag, respectively, whereas the ENSO imparts weak influence on the barometric pressure. Significant biennial variation of water levels during 1991–1995 is caused primarily by precipitation and humidity variations. In the coastal aquifer, the 0.5‐year variability in ENSO is transferred by precipitation, barometric pressure and humidity to aquifer water levels, and the precipitation/humidity influence is more significant comparing with the barometric pressure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
H. S. Gau  C. W. Liu 《水文研究》2000,14(4):811-830
Effectively managing groundwater relies heavily on estimating the amount of precipitation that may infiltrate the subsurface and supply groundwater. In this study, we present a novel estimation method based on a stochastic approach to evaluate the quantity of precipitation that may recharge groundwater. The precipitation recharge coefficient is also investigated based on an unconfined aquifer with an unbound, infinitely extended boundary condition. Moreover, a spectrum's relationship to the precipitation and groundwater level variation is also derived. The precipitation recharge coefficient can be obtained from the solution of the spectrum equation. Furthermore, sensitivity analysis is performed in order to determine the key variable on the precipitation recharge coefficient. Analysis results indicate that the location of an observation well affects the estimated precipitation recharge coefficient. If the precipitation recharge area is large enough, the precipitation recharge coefficient becomes insensitive to the location of the observation well. The spectrum's relationship between the precipitation recharge and groundwater level variation is also applied when estimating the precipitation recharge coefficient upstream of the Cho‐Shui River alluvial fan. According to those results, the precipitation recharge coefficient is 0·03 and the amount of groundwater recharge from precipitation is 35 million tons of water annually upstream of the Cho‐Shui River alluvial fan. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
A hydrological investigation was conducted in a small headwater peatland located in the Experimental Lakes Area, north-western Ontario, Canada, to determine the subsurface and surface flow paths within the peatland, and between the peatland and an adjacent forested upland during baseflow and storm flow conditions. Distinct zones of groundwater recharge and discharge were observed within the peatland. These zones are similar to those found in much larger flow systems even though the peatland was only influenced by local groundwater flow. Groundwater emerging in seeps and flowing beneath the peatland sustained the surface wetness of the peatland and maintained a constant baseflow. The response of the peatland stream to summer rain events was controlled by peatland water table position when the basin was dry and antecedent moisture storage on the uplands when the basin was wet. The magnitude and timing of peak runoff during wet conditions were controlled by the degree of hydrological connectivity between the surrounding upland terrain and the peatland. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Future extreme precipitation (EP, daily rainfall amount over certain thresholds) is projected to increase with global climate change; however, its effect on groundwater recharge has not been fully explored. This study specifically investigates the spatiotemporal dynamics of groundwater recharge and the effects of extreme precipitation (daily rainfall amount over the 95th percentile, which is tagged by ranking the percentiles in each season for a base period) on groundwater recharge from 1950 to 2010 over the Northern High Plains (NHP) Aquifer using the Soil Water Balance Model. The results show that groundwater recharge significantly (p < 0.05) increased in the eastern NHP from 1950 to 2010, where the highest annual average groundwater recharge occurs compared to the central and the western NHP. In the eastern NHP, 45.1% of the annual precipitation fell as EP, which contributed 56.8% of the annual total groundwater recharge. In the western NHP, 30.9% of the annual precipitation fell as extreme precipitation, which contributed 62.5% of the annual total groundwater recharge. In addition, recharge by extreme precipitation mainly occurred in late spring and early summer, before the maximum evapotranspiration rate, which usually occurs in mid‐summer until late fall. A dry site in the western NHP and a wet site in the eastern NHP were analysed to indicate how recharge responds to EP with different precipitation regimes. The maximum daily recharge at the dry site exceeded the wet site when there was EP. When precipitation fell as non‐extreme rainfall, most recharge was less than 5 mm at both the dry and wet sites, and the maximum recharge at the dry site became lower than the wet site. This study shows that extreme precipitation plays a significant role in determining groundwater recharge. © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号