首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in the baseflow fraction of streamflow, assessing whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate baseflow discharge and baseflow dissolved solids loads at stream gages (n = 69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow, indicating that subsurface transport processes play a dominant role in delivering dissolved solids to streams in the UCRB. A statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams (n = 27) from 1986 to 2011. Decreasing trends in baseflow dissolved solids loads were observed at 63% of streams. At the three most downstream sites, Green River at Green River, UT, Colorado River at Cisco, UT, and the San Juan River near Bluff, UT, baseflow dissolved solids loads decreased by a combined 823,000 metric tons (mT), which is approximately 69% of projected basin‐scale decreases in total dissolved solids loads as a result of salinity control efforts. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, landscape changes, and/or climate are reducing dissolved solids transported to streams through the subsurface. Notably, the pace and extent of decreases in baseflow dissolved solids loads declined during the most recent decade; average decreasing loads during the 2000s (28,200 mT) were only 54% of average decreasing loads in the 1990s (51,700 mT).  相似文献   

2.
The purpose of this study was to develop an interpretive groundwater‐flow model to assess the impacts that planned forest restoration treatments and anticipated climate change will have on large regional, deep (>400 m), semi‐arid aquifers. Simulations were conducted to examine how tree basal area reductions impact groundwater recharge from historic conditions to 2099. Novel spatial analyses were conducted to determine areas and rates of potential increases in groundwater recharge. Changes in recharge were applied to the model by identifying zones of basal area reduction from planned forest restoration treatments and applying recharge‐change factors to these zones. Over a 10‐year period of forest restoration treatment, a 2.8% increase in recharge to one adjacent groundwater basin (the Verde Valley sub‐basin) was estimated, compared to conditions that existed from 2000 to 2005. However, this increase in recharge was assumed to quickly decline after treatment due to regrowth of vegetation and forest underbrush and their associated increased evapotranspiration. Furthermore, simulated increases in groundwater recharge were masked by decreases in water levels, stream baseflow, and groundwater storage resulting from surface water diversions and groundwater pumping. These results indicate that there is an imbalance between water supply and demand in this regional, semi‐arid aquifer. Current water management practices may not be sustainable into the far future and comprehensive action should be taken to minimize this water budget imbalance.  相似文献   

3.
Transformations of precipitation into groundwater and streamflow are fundamental hydrological processes, critical to irrigated agriculture, hydroelectric power generation, and ecosystem health. Our understanding of the timing of groundwater recharge and streamflow generation remains incomplete, limiting our ability to predict fresh water, nutrient, and contaminant fluxes, especially in large basins. Here, we analyze thousands of rain, snow, groundwater, and streamflow δ18O and δ2H values in the Nelson River basin, which covers 1.2 million km2 of central Canada. We show that the fraction of precipitation that recharges aquifers is ~1.3–5 times higher for precipitation falling during cold months with subzero mean monthly temperatures than for precipitation falling during warmer months. The near‐ubiquity of cold‐season‐biased groundwater recharge implies that changes to winter water balances may have disproportionate impacts on annual groundwater recharge rates. We also show that young streamflow—defined as precipitation that enters a river in less than ~2.3 months—comprises ~27% of annual streamflow but varies widely among tributaries in the Nelson River basin (1–59%). Young streamflow fractions are lower in steep catchments and higher in flatter catchments such as the transboundary Red River basin. Our findings imply that flat, lower permeability, heavily tiled landscapes favor more rapid transmission of precipitation into rivers, possibly mobilizing excess soluble fertilizers and exacerbating eutrophication events in Lake Winnipeg.  相似文献   

4.
Glaciers on the Tibetan Plateau play an important role in the local hydrological cycle. However, there are only few studies on groundwater in the alpine basins in the Tibetan Plateau which considered the effects of glaciers. Glaciers are extensively distributed in the Dongkemadi River Basin, which is a representative alpine basin in the Yangtze River source region. This study focuses on building a numerical groundwater flow model with glaciations using HydroGeoSphere (HGS) to simulate subglacial meltwater recharge to groundwater in the Dongkemadi River Basin in response to future climate changes. Effects of hydraulic conductivity, precipitation, and temperature on subglacial meltwater recharge to groundwater were discussed. Glacier changes in the future 50 years were predicted under different climate change scenarios. Results show that: (1) the average thickness of the glacier will change significantly; (2) the simulated rate of annual mean subglacial meltwater recharge to groundwater is 4.58 mm, which accounts for 6.33% of total groundwater recharge; and (3) hydraulic conductivity has the largest influence on subglacial meltwater recharge to groundwater, followed by temperature and precipitation. Results of this study are also important to sustainable water resource usage in the Yangtze River source region.  相似文献   

5.
This paper investigates the potential impacts of climate change on water resources in northern Tuscany, Italy. A continuous hydrological model for each of the seven river basins within the study area was calibrated using historical data. The models were then driven by downscaled and bias‐corrected climate projections of an ensemble of 13 regional climate models (RCMs), under two different scenarios of representative concentration pathway (RCP4.5 and RCP8.5). The impacts were examined at medium term (2031–2040) and long term (2051–2060) in comparison with a reference period (2003–2012); the changes in rainfall, streamflow, and groundwater recharge were investigated. A high degree of uncertainty characterized the results with a significant intermodel variability, the period being equal. For the sake of brevity, only the results for the Serchio River basin were presented in detail. According to the RCM ensemble mean and the RCP4.5, a moderate decrease in rainfall, with reference to 2003–2012, is expected at medium term (?0.6%) and long term (?2.8%). Due to the warming of the study area, the reduction in the streamflow volume is two times the precipitation decrease (?1.1% and ?6.8% at medium and long term, respectively). The groundwater recharge is mainly affected by the changes in climate with expected percolation volume variations of ?3.3% at 2031–2040 and ?8.1% at 2051–2060. The impacts on the Serchio River basin water resources are less significant under the RCP8.5 scenario. The presence of artificial structures, such as dam‐reservoir systems, can contribute to mitigate the effects of climate change on water resources through the implementation of appropriate regulation strategies.  相似文献   

6.
In mountain, snow driven catchments, snowmelt is supposed to be the primary contribution to river streamflows during spring. In these catchments the contribution of groundwater is not well documented because of the difficulty to monitor groundwater in such complex environment with deep aquifers. In this study we use an integrated hydrologic model to conduct numerical experiments that help quantify the effect of lateral groundwater flow on total annual and peak streamflow in predevelopment conditions. Our simulations focus on the Upper Colorado River Basin (UCRB; 2.8 × 105 km2) a well-documented mountain catchment for which both streamflow and water table measurements are available for several important sub-basins. For the simulated water year, our results suggest an increase in peak flow of up to 57% when lateral groundwater flow processes are included—an unexpected result for flood conditions generally assumed independent of groundwater. Additionally, inclusion of lateral groundwater flow moderately improved the model match to observations. The correlation coefficient for mean annual flows improved from 0.84 for the no lateral groundwater flow simulation to 0.98 for the lateral groundwater flow one. Spatially we see more pronounced differences between lateral and no lateral groundwater flow cases in areas of the domain with steeper topography. We also found distinct differences in the magnitude and spatial distribution of streamflow changes with and without lateral groundwater flow between Upper Colorado River Sub-basins. A sensitivity test that scaled hydraulic conductivity over two orders of magnitude was conducted for the lateral groundwater flow simulations. These results show that the impact of lateral groundwater flow is as large or larger than an order of magnitude change in hydraulic conductivity. While our results focus on the UCRB, we feel that these simulations have relevance to other headwaters systems worldwide.  相似文献   

7.
The projected impact of climate change on groundwater recharge is a challenge in hydrogeological research because substantial doubts still remain, particularly in arid and semi‐arid zones. We present a methodology to generate future groundwater recharge scenarios using available information about regional climate change projections developed in European Projects. It involves an analysis of regional climate model (RCM) simulations and a proposal for ensemble models to assess the impacts of climate change. Future rainfall and temperature series are generated by modifying the mean and standard deviation of the historical series in accordance with estimates of their change provoked by climate change. Future recharge series will be obtained by simulating these new series within a continuous balance model of the aquifer. The proposed method is applied to the Serral‐Salinas aquifer, located in a semi‐arid zone of south‐east Spain. The results show important differences depending on the RCM used. Differences are also observed between the series generated by imposing only the changes in means or also in standard deviations. An increase in rainfall variability, as expected under future scenarios, could increase recharge rates for a given mean rainfall because the number of extreme events increases. For some RCMs, the simulations predict total recharge increases over the historical values, even though climate change would produce a reduction in the mean rainfall and an increased mean temperature. A method based on a multi‐objective analysis is proposed to provide ensemble predictions that give more value to the information obtained from the best calibrated models. The ensemble of predictions estimates a reduction in mean annual recharge of 14% for scenario A2 and 58% for scenario A1B. Lower values of future recharge are obtained if only the change in the mean is imposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Groundwater resources are typically the main fresh water source in arid and semi‐arid regions. Natural recharge of aquifers is mainly based on precipitation; however, only heavy precipitation events (HPEs) are expected to produce appreciable aquifer recharge in these environments. In this work, we used daily precipitation and monthly water level time series from different locations over a Mediterranean region of Southeastern Spain to identify the critical threshold value to define HPEs that lead to appreciable aquifer recharge in this region. Wavelet and trend analyses were used to study the changes in the temporal distribution of the chosen HPEs (≥20 mm day?1) over the observed period 1953–2012 and its projected evolution by using 18 downscaled climate projections over the projected period 2040–2099. The used precipitation time series were grouped in 10 clusters according to similarities between them assessed by using Pearson correlations. Results showed that the critical HPE threshold for the study area is 20 mm day?1. Wavelet analysis showed that observed significant seasonal and annual peaks in global wavelet spectrum in the first sub‐period (1953–1982) are no longer significant in the second sub‐period (1983–2012) in the major part of the ten clusters. This change is because of the reduction of the mean HPEs number, which showed a negative trend over the observed period in nine clusters and was significant in five of them. However, the mean size of HPEs showed a positive trend in six clusters. A similar tendency of change is expected over the projected period. The expected reduction of the mean HPEs number is two times higher under the high climate scenario (RCP8.5) than under the moderate scenario (RCP4.5). The mean size of these events is expected to increase under the two scenarios. The groundwater availability will be affected by the reduction of HPE number which will increase the length of no aquifer recharge periods (NARP) accentuating the groundwater drought in the region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Climate variability and change impact groundwater resources by altering recharge rates. In semi-arid Basin and Range systems, this impact is likely to be most pronounced in mountain system recharge (MSR), a process which constitutes a significant component of recharge in these basins. Despite its importance, the physical processes that control MSR have not been fully investigated because of limited observations and the complexity of recharge processes in mountainous catchments. As a result, empirical equations, that provide a basin-wide estimate of mean annual recharge using mean annual precipitation, are often used to estimate MSR. Here North American Regional Reanalysis data are used to develop seasonal recharge estimates using ratios of seasonal (winter vs. summer) precipitation to seasonal actual or potential evapotranspiration. These seasonal recharge estimates compared favorably to seasonal MSR estimates using the fraction of winter vs. summer recharge determined from isotopic data in the Upper San Pedro River Basin, Arizona. Development of hydrologically based seasonal ratios enhanced seasonal recharge predictions and notably allows evaluation of MSR response to changes in seasonal precipitation and temperature because of climate variability and change using Global Climate Model (GCM) climate projections. Results show that prospective variability in MSR depends on GCM precipitation predictions and on higher temperature. Lower seasonal MSR rates projected for 2050-2099 are associated with decreases in summer precipitation and increases in winter temperature. Uncertainty in seasonal MSR predictions arises from the potential evapotranspiration estimation method, the GCM downscaling technique and the exclusion of snowmelt processes.  相似文献   

10.
Abstract

Accurate estimation of groundwater recharge is essential for the proper management of aquifers. A study of water isotope (δ2H, δ18O) depth profiles was carried out to estimate groundwater recharge in the Densu River basin in Ghana, at three chosen observation sites that differ in their altitude, geology, climate and vegetation. Water isotopes and water contents were analysed with depth to determine water flow in the unsaturated zone. The measured data showed isotope enrichment in the pore water near the soil surface due to evaporation. Seasonal variations in the isotope signal of the pore water were also observed to a depth of 2.75 m. Below that depth, the seasonal variation of the isotope signal was attenuated due to diffusion/dispersion and low water flow velocities. Groundwater recharge rates were determined by numerical modelling of the unsaturated water flow and water isotope transport. Different groundwater recharge rates were computed at the three observation sites and were found to vary between 94 and 182 mm/year (± max. 7%). Further, the approximate peak-shift method was applied to give information about groundwater recharge rates. Although this simple method neglects variations in flow conditions and only considers advective transport, it yielded mean groundwater recharge rates of 110–250 mm/year (± max. 30%), which were in the same order of magnitude as computed numerical modelling values. Integrating these site-specific groundwater recharge rates to the whole catchment indicates that more water is potentially renewed than consumed nowadays. With increases in population and irrigation, more clean water is required, and knowledge about groundwater recharge rates – essential for improving the groundwater management in the Densu River basin – can be easily obtained by measuring water isotope depth profiles and applying a simple peak-shift approach.

Citation Adomako, D., Maloszewski, P., Stumpp, C., Osae, S. & Akiti, T. T. (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 55(8), 1405–1416.  相似文献   

11.
A simple conceptual semi‐distributed modelling approach for assessing the impacts of climate change on direct groundwater recharge in a humid tropical river basin is investigated. The study area is the Chaliyar river basin in the state of Kerala, India. Many factors affecting future groundwater recharge include decrease or increase in precipitation and temperature regimes, coastal flooding, urbanization and changes in land use. The model is based on the water‐balance concept and links the atmospheric and hydrogeologic parameters to different hydrologic processes. It estimates daily water‐table fluctuation and is calibrated and validated using 10 years of data. Data for the first 6 years (2000 to 2005) is used for model calibration, and data for the remaining four years (2006 to 2009) is used for validation. For assessing the impact of predicted climate change on groundwater recharge during the period 2071–2100, temperature and precipitation data in two post climate change scenarios, A2 and B2, were predicted using the Regional Climate Model (RCM), PRECIS (Providing Regional Climates for Impact Studies). These data were then corrected for biases and used in a hydrologic model to predict groundwater recharge in the post climate change scenario. Due to lack of reliable data and proper knowledge as to the magnitude and extent of future climatic changes, it may not be possible to include all the possible effects quantitatively in groundwater recharge modelling. However, the study presents a scientific method to assess the impact of predicted climate change on groundwater recharge and would help engineers, hydrologists, administrators and planners to devise strategies for the efficient use as well as conservation of freshwater resources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We investigated trends in future seasonal runoff components in the Willamette River Basin (WRB) of Oregon for the twenty‐first century. Statistically downscaled climate projections by Climate Impacts Group (CIG), eight different global climate model (GCM) simulations with two different greenhouse gas (GHG) emission scenarios, (A1B and B1), were used as inputs for the US Geological Survey's Precipitation Runoff Modelling System. Ensemble mean results show negative trends in spring (March, April and May) and summer (June, July and August) runoff and positive trends in fall (September, October and November) and winter (December, January and February) runoff for 2000–2099. This is a result of temperature controls on the snowpack and declining summer and increasing winter precipitation. With temperature increases throughout the basin, snow water equivalent (SWE) is projected to decline consistently for all seasons. The decreases in the centre of timing and 7‐day low flows and increases in the top 5% flow are caused by the earlier snowmelt in spring, decreases in summer runoff and increases in fall and winter runoff, respectively. Winter runoff changes are more pronounced in higher elevations than in low elevations in winter. Seasonal runoff trends are associated with the complex interactions of climatic and topographic variables. While SWE is the most important explanatory variable for spring and winter runoff trends, precipitation has the strongest influence on fall runoff. Spatial error regression models that incorporate spatial dependence better explain the variations of runoff trends than ordinary least‐squares (OLS) multiple regression models. Our results show that long‐term trends of water balance components in the WRB could be highly affected by anthropogenic climate change, but the direction and magnitude of such changes are highly dependent on the interactions between climate change and land surface hydrology. This suggests a need for spatially explicit adaptive water resource management within the WRB under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Inter‐basin differences in streamflow response to changes in regional hydroclimatology may reflect variations in storage characteristics that control the retention and release of water inputs. These aspects of storage could mediate a basin's sensitivity to climate change. The hypothesis that temporal trends in stream baseflow exhibit a more muted reaction to changes in precipitation and evapotranspiration for basins with greater storage was tested on the Oak Ridges Moraine (ORM) in Southern Ontario, Canada. Long‐term (>25 years) baseflow trends for 16 basins were compared to corresponding trends in precipitation amount and type and in potential evapotranspiration as well as shorter trends in groundwater levels for monitoring wells on the ORM. Inter‐basin differences in storage properties were characterized using physiographic, hydrogeologic, land use/land cover, and streamflow metrics. The latter included the slope of the basin's flow duration curve and basin dynamic storage. Most basins showed temporal increases in baseflow, consistent with limited evidence of increases and decreases in regional precipitation and snowfall: precipitation ratio, respectively, and recent increases in groundwater recharge along the crest of the ORM. Baseflow trend magnitude was uncorrelated to basin physiographic, hydrogeologic, land use/land cover, or flow duration curve characteristics. However, it was positively related to a basin's dynamic storage, particularly for basins with limited coverage of open water and wetlands. The dynamic storage approach assumes that a basin behaves as a first‐order dynamical system, and extensive open water and wetland areas in a basin may invalidate this assumption. Previous work suggested that smaller dynamic storage was linked to greater damping of temporal variations in water inputs and reduced interannual variability in streamflow regime. Storage and release of water inputs to a basin may assist in mediating baseflow response to temporal changes in regional hydroclimatology and may partly account for inter‐basin differences in that response. Such storage characteristics should be considered when forecasting the impacts of climate change on regional streamflow.  相似文献   

14.
The recent (1970–1999) and future (2070–2099) climates under the SRES A1B scenario, simulated by the regional climate model RegCM4.0 driven with lateral boundary conditions from the ECHAM5 general circulation model, are utilized to force a large-scale hydrological model for assessing the hydrological response to climate changes in the Yangtze River Basin, China. The variable infiltration capacity model (VIC) is utilized to simulate various hydrological components for examining the changes in streamflow at various locations throughout the Yangtze River Basin. In the end of the twenty-first century, most of the Yangtze River Basin stands out as “hotspots” of climate change in China, with an annual temperature increase of approximately 3.5 °C, an increase of annual precipitation in North and a decrease in South. Runoff in the upper reach of Yangtze River is projected to increase throughout the year in the future, especially in spring when the increase will be approximately 30 %. Runoff from the catchments in the northern part of Yangtze River will increase by approximately 10 %, whereas that in the southern part will decrease, especially in the dry season, following precipitation changes. The frequency of extreme floods at three mainstream stations (Cuntan, Yichang, and Datong) is projected to increase significantly. The original extreme floods with return periods of 50, 20, and 10 years will change into floods with return periods of no more than 20, 10, and 5 years. The projected increase in extreme floods will have significant impacts on water resources management and flood control systems in the Yangtze River Basin.  相似文献   

15.
Groundwater recharge and discharge in the Akesu alluvial plain were estimated using a water balance method. The Akesu alluvial plain (4842 km2) is an oasis located in the hyperarid Tarim River basin of central Asia. The land along the Akesu River has a long history of agricultural development and the irrigation area is highly dependent on water withdrawals from the river. We present a water balance methodology to describe (a) surface water and groundwater interaction and (b) groundwater interaction between irrigated and non‐irrigated areas. Groundwater is recharged from the irrigation system and discharged in the non‐irrigated area. Uncultivated vegetation and wetlands are supplied from groundwater in the hyperarid environment. Results show that about 90% of groundwater recharge came from canal loss and field infiltration. The groundwater flow from irrigated to non‐irrigated areas was about 70% of non‐irrigated area recharge and acted as subsurface drainage for the irrigation area. This desalinated the irrigation area and supplied water to the non‐irrigated area. Salt moved to the non‐irrigation area following subsurface drainage. We conclude that the flooding of the Akesu River is a supplemental groundwater replenishment mechanism: the river desalinates the alluvial plain by recharging fresh water in summer and draining saline regeneration water in winter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The predicted increase in mean global temperature due to climate change is expected to affect water availability and, in turn, cause both environmental and societal impacts. To understand the potential impact of climate change on future sustainable water resources, this paper outlines a methodology to quantify the effects of climate change on potential groundwater recharge (or hydrological excess water) for three locations in the north and south of Great Britain. Using results from a stochastic weather generator, actual evapotranspiration and potential groundwater recharge time‐series for the historic baseline 1961–1990 and for a future ‘high’ greenhouse gas emissions scenario for the 2020s, 2050s and 2080s time periods were simulated for Coltishall in East Anglia, Gatwick in southeast England and Paisley in west Scotland. Under the ‘high’ gas emissions scenario, results showed a decrease of 20% in potential groundwater recharge for Coltishall, 40% for Gatwick and 7% for Paisley by the end of this century. The persistence of dry periods is shown to increase for the three sites during the 2050s and 2080s. Gatwick presents the driest conditions, Coltishall the largest variability of wet and dry periods and Paisley little variability. For Paisley, the main effect of climate change is evident during the dry season (April–September), when the potential amount of hydrological excess water decreases by 88% during the 2080s. Overall, it is concluded that future climate may present a decrease in potential groundwater recharge that will increase stress on local and regional groundwater resources that are already under ecosystem and water supply pressures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A numerical surface-water/groundwater model was developed for the lower San Antonio River Basin to evaluate the responses of low base flows and groundwater levels within the basin under conditions of reduced recharge and increased groundwater withdrawals. Batch data assimilation through history matching used a simulation of historical conditions (2006-2013); this process included history-matching to groundwater levels and base-flow estimates at several gages, and was completed in a high-dimensional (highly parameterized) framework. The model was developed in an uncertainty framework such that parameters, observations, and scenarios of interest are envisioned stochastically as distributions of potential values. Results indicate that groundwater contributions to surface water during periods of low flow may be reduced from 6% to 25% with a corresponding 25% reduction in recharge and a 25% increase in groundwater pumping over an 8-year planning period. Furthermore, results indicate groundwater-level reductions in some hydrostratigraphic units are more likely than in other hydrostratigraphic units over an 8-year period under drought conditions with the higher groundwater withdrawal scenario.  相似文献   

18.
This paper explores the predicted hydrologic responses associated with the compounded error of cascading global circulation model (GCM) uncertainty through hydrologic model uncertainty due to climate change. A coupled groundwater and surface water flow model (GSFLOW) was used within the differential evolution adaptive metropolis (DREAM) uncertainty approach and combined with eight GCMs to investigate uncertainties in hydrologic predictions for three subbasins of varying hydrogeology within the Santiam River basin in Oregon, USA. Predictions of future hydrology in the Santiam River include increases in runoff in the fall and winter months and decreases in runoff for the spring and summer months. One‐year peak flows were predicted to increase whereas 100‐year peak flows were predicted to slightly decrease. The predicted 10‐year 7‐day low flow decreased in two subbasins with little groundwater influences but increased in another subbasin with substantial groundwater influences. Uncertainty in GCMs represented the majority of uncertainty in the analysis, accounting for an average deviation from the median of 66%. The uncertainty associated with use of GSFLOW produced only an 8% increase in the overall uncertainty of predicted responses compared to GCM uncertainty. This analysis demonstrates the value and limitations of cascading uncertainty from GCM use through uncertainty in the hydrologic model, offers insight into the interpretation and use of uncertainty estimates in water resources analysis, and illustrates the need for a fully nonstationary approach with respect to calibrating hydrologic models and transferring parameters across basins and time for climate change analyses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The Tagus River basin is an ultimately important water source for hydropower production, urban and agricultural water supply in Spain and Portugal. Growing electricity and water supply demands, over‐regulation of the river and construction of new dams, as well as large inter‐basin and intra‐basin water transfers aggravated by strong natural variability of climate in the catchment, have already imposed significant pressures on the river. The substantial reduction of discharge is observed already now, and projected climatic change is expected to alter the water budget of the catchment further.In this study, we address the effects of projected climate change on the water resources availability in the Tagus River basin and influence of potential changes on hydropower generation of the three important reservoirs in the basin. The catchment‐scale, process‐based eco‐hydrological model soil and water integrated model was set up, calibrated and validated for the entire Tagus River basin, taking into account 15 large reservoirs in the catchment. The future climate projections were selected from those generated within the Inter‐Sectoral Impact Model Intercomparison Project. They include five bias‐corrected climatic datasets for the region, obtained from global circulation model runs under two emissions scenario – moderate and extreme ones – and covered the whole century. The results show a strong agreement among model runs in projecting substantial decrease of discharge of the Tagus River discharge and, consequently, a strong decrease in hydropower production under both future climate scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号