首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The Mekong Delta is one of the largest and most intensively used estuaries in the world. Each year it witnesses widespread flooding which is both the basis of the livelihood for more than 17 million people but also the major hazard. Therefore, a thorough understanding of the hydrologic and hydraulic features is urgently required for various planning purposes. While the general causes and characteristics of the annual floods are understood, the inundation dynamics in the floodplains in Vietnam which are highly controlled by dikes and other control structures have not been investigated in depth. Especially, quantitative analyses are lacking, mainly due to scarce data about the inundation processes in the floodplains. Therefore, a comprehensive monitoring scheme for channel and floodplain inundation was established in a study area in the Plain of Reeds in the northeastern part of the Vietnamese Delta. This in situ data collection was complemented by a series of high‐resolution inundation maps derived from the TerraSAR‐X satellite for the flood seasons 2008 and 2009. Hence, the inundation dynamics in the channels and floodplains, and the interaction between channels and floodplains, could be quantified for the first time. The study identifies the strong human interference which is governed by flood protection levels, cropping patterns and communal water management. In addition, we examine the tidal influence on the inundation in various parts of the Delta, since it is expected that climate change‐induced sea level rise will increase the tidal contribution to floodplain inundation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Deposition and erosion play a key role in the determination of the sediment budget of a river basin, as well as for floodplain sedimentation. Floodplain sedimentation, in turn, is a relevant factor for the design of flood protection measures, productivity of agro‐ecosystems, and for ecological rehabilitation plans. In the Mekong Delta, erosion and deposition are important factors for geomorphological processes like the compensation of deltaic subsidence as well as for agricultural productivity. Floodplain deposition is also counteracting the increasing climate change induced hazard by sea level rise in the delta. Despite this importance, a sediment database of the Mekong Delta is lacking, and the knowledge about erosion and deposition processes is limited. In the Vietnamese part of the Delta, the annually flooded natural floodplains have been replaced by a dense system of channels, dikes, paddy fields, and aquaculture ponds, resulting in floodplain compartments protected by ring dikes. The agricultural productivity depends on the sediment and associated nutrient input to the floodplains by the annual floods. However, no quantitative information regarding their sediment trapping efficiency has been reported yet. The present study investigates deposition and erosion based on intensive field measurements in three consecutive years (2008, 2009, and 2010). Optical backscatter sensors are used in combination with sediment traps for interpreting deposition and erosion processes in different locations. In our study area, the mean calculated deposition rate is 6.86 kg/m2 (≈ 6 mm/year). The key parameters for calculating erosion and deposition are estimated, i.e. the critical bed shear stress for deposition and erosion and the surface constant erosion rate. The bulk of the floodplain sediment deposition is found to occur during the initial stage of floodplain inundation. This finding has direct implications on the operation of sluice gates in order to optimize sediment input and distribution in the floodplains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper outlines a numerical model for the prediction of floodplain inundation sequences, overbank deposition rates and deposit grain size distributions. The model has two main components: first, a simplified hydraulic scheme which predicts floodwater flow depths and velocities, and second, a sediment transport element which employs a mass balance relation describing suspended sediment dispersion by convective and diffusive processes and sediment deposition as a function of particle settling rates. These relationships are solved numerically on a finite difference grid that accurately replicates the complex topographic features typical of natural river floodplains. The model is applied to a 600 m reach of the River Culm, Devon, U.K. using data derived from a range of field and laboratory techniques. Continuous records of river stage and suspended sediment concentration provide the model's upstream boundary input requirements. These are supplemented by measurements of the in situ settling characteristics of the suspended sediment load. The model's sediment transport component is calibrated with the aid of a dataset of measured overbank deposition amounts derived from flood events over a 16 month period. The model is shown to predict complicated floodwater inundation sequences and patterns of suspended sediment dispersion and deposition, which are largely a product of the complex topography of the floodplain. These results compare favourably with observations of overbank processes and are an improvement over those of previous models which have employed relatively simple representations of floodplain geometry. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
River floodplains act as sinks for fine‐sediment and sediment‐associated contaminants. Increasing recognition of their environmental importance has necessitated a need for an improved understanding of the fate and residence times of overbank sediment deposits over a broad range of timescales. Most existing investigations have focused on medium‐term accretion rates, which represents net deposition from multiple flood events over several decades. In contrast, the fate of recently‐deposited sediment during subsequent overbank events has received only limited attention. This paper presents a novel tracing‐technique for documenting the remobilization of recent overbank sediment on river floodplains during subsequent inundation events, using the artificial radionuclides, caesium‐134 (134Cs) and cobalt‐60 (60Co). The investigation was conducted within floodplains of the Rivers Taw and Culm in Devon, UK. Small quantities of fine‐sediment (< 63 µm dia.), pre‐labelled with known activities of either 134Cs or 60Co, were deposited at 15 locations across each floodplain. Surface inventories, measured before and after three consecutive flood events, were used to estimate sediment loss (in g m–2). Significant reductions provided evidence of the remobilization of the labelled sediment by inundating floodwaters. Spatial variations in remobilization were related to localized topography. Sediment remobilized during the first two events for the River Taw floodplain were equivalent to 63 · 8% and 11 · 9%, respectively, of the original mass. Equivalent values for the River Culm floodplain were 49 · 6% and 12 · 5%, respectively, of the original mass. Sediment loss during the third event proved too small to be attributed to remobilization by overbank floodwaters. After the third event, a mean of 22 · 5% and 35 · 2% of the original mass remained on the Taw and Culm floodplains, respectively. These results provide evidence of the storage of the remaining sediment. The findings highlight the importance of remobilization of recently‐deposited sediment on river floodplains during subsequent overbank events and demonstrate the potential of the tracing‐technique. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Q. He  D. E. Walling 《水文研究》1998,12(7):1079-1094
River floodplains have been widely recognized as important sinks for storing suspended sediment and associated contaminants transported by river systems. The grain size composition of floodplain deposits exerts an important influence on contaminant concentrations, and commonly exhibits significant spatial variability in response to the dynamic nature of overbank flow and sediment transport. Information on the spatial variability of the grain size composition of overbank deposits is therefore essential for developing an improved understanding of the processes controlling sediment transport on floodplains, and for investigating the fate of sediment-associated contaminants. Such information is also important for validating existing floodplain sedimentation models. This paper reports the results of a study aimed at investigating the spatial variability of the grain size composition of floodplain sediments at different spatial scales, through analysis of surface sediment samples representative of contemporary floodplain deposits collected from frequently inundated floodplain sites on five British lowland rivers. Significant lateral and downstream variations in the grain size composition of the sediment deposits have been identified in the study reaches. An attempt has been made to relate the observed spatial distribution of the grain size composition of the overbank deposits to the local floodplain geometry and topography. The importance of the particle size characteristics of the suspended sediment transported by the rivers in influencing the spatial variability of the grain size composition of the overbank sediments deposited on these floodplains is also considered. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Large, shallow‐water lakes located on floodplains play an important role in creating highly productive ecosystems and are prone to high concentrations of suspended solids due to sediment resuspension. In this study, the aim was to determine the dominant processes governing the total suspended solid (TSS) concentration at the water surface in Tonle Sap Lake, Cambodia, which is a large, shallow‐water lake. Satellite remotely sensed daily reflectance data from 2003 to 2017 were used. Seasonal changes in TSS concentration indicated that bottom sediment resuspension during dry seasons was mostly caused by wind and the TSS concentration was closely correlated with the water depth of the lake. The TSS concentration during flood periods was controlled by both wind and inflow currents from the Tonle Sap River. Additionally, we confirmed that surface/subsurface flow with a low TSS concentration from forests on the floodplain lowered the TSS concentration year round, except during August and September. This fact implied that the floodplain forest area decrease may increase the lake TSS concentration. An analysis of the long‐term changes in TSS indicated that a decrease in the water level during flood periods resulted in the high TSS concentrations observed during the subsequent dry periods. Therefore, climate change and water resource development, which are likely to cause water level reductions in the Mekong River during flood periods, may increase the TSS concentration in Tonle Sap Lake, particularly during the dry season.  相似文献   

7.
Both climate change and river rehabilitation projects induce changes in floodplain sedimentation. Notably along the lower River Rhine, the sediment deposition patterns and rates are subject to change. To assess the magnitude of these changes, we developed the MoCSED model, a floodplain sedimentation model within a geographical information system for the lower Rhine River. We based MoCSED on the ‘method of characteristics’ (MoC), a particle tracking method that minimizes numerical dispersion. We implemented the MoCSED model in the PCRaster dynamic modelling language. The model input comprises initial suspended sediment concentrations, water levels, flow velocities, and longitudinal and transverse dispersivities. We used a combination of the Krone and Chen concepts to calculate the subsequent sedimentation (SED routine). We compared the model results with sediment trap data for the Bemmel floodplain along the Dutch Waal River during the 2003 inundation. This comparison showed that MoCSED was able to simulate the pattern of sediment deposition. In addition, the model proved to be an improvement in comparison with a conventional raster‐based floodplain sedimentation model for the lower River Rhine. In future, MoCSED may serve well to study the impact of a changing discharge regime due to climate change and floodplain rehabilitation plans on deposition of sediments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
River floodplains constitute an important element in the terrestrial sediment and organic carbon cycle and store variable amounts of carbon and sediment depending on a complex interplay of internal and external driving forces. Quantifying the storage in floodplains is crucial to understand their role in the sediment and carbon cascades. Unfortunately, quantitative data on floodplain storage are limited, especially at larger spatial scales. Rivers in the Scottish Highlands can provide a special case to study alluvial sediment and carbon dynamics because of the dominance of peatlands throughout the landscape, but the alluvial history of the region remains poorly understood. In this study, the floodplain sediment and soil organic carbon storage is quantified for the mountainous headwaters of the River Dee in eastern Scotland (663 km2), based on a coring dataset of 78 floodplain cross-sections. Whereas the mineral sediment storage is dominated by wandering gravel-bed river sections, most of the soil organic carbon storage can be found in anastomosing and meandering sections. The total storage for the Upper Dee catchment can be estimated at 5.2 Mt or 2306.5 Mg ha-1 of mineral sediment and 0.7 Mt or 323.3 Mg C ha-1 of soil organic carbon, which is in line with other studies on temperate river systems. Statistical analysis indicates that the storage is mostly related to the floodplain slope and the geomorphic floodplain type, which incorporates the characteristic stream power, channel morphology and the deposit type. Mapping of the geomorphic floodplain type using a simple classification scheme shows to be a powerful tool in studying the total storage and local variability of mineral sediment and soil organic carbon in floodplains. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Lake sedimentation has a fundamental impact on lake lifetime. In this paper, we show how sensitive calculation of the latter is to the quality of data available and assumptions made during analysis. Based on the collection of a large new dataset, we quantify the sediment masses (1) mobilized on the hillslopes draining towards Lake Tana (Ethiopia), (2) stored in the floodplains, (3) transported into the lake, (4) deposited in the lake and (5) delivered out from the lake so as to establish a sediment budget. In 2012–2013, suspended sediment concentration (SSC) and discharge measurements were made at 13 monitoring stations, including two lake outlets. Altogether, 4635 SSC samples were collected and sediment rating curves that account for land cover conditions and rainfall seasonality were established for the 11 river stations, and mean monthly SSC was calculated for the outlets. Effects of the floodplain on rivers' sediment yield (SY) were investigated using measurements at both sides of the floodplains. SY from ungauged rivers was assessed using a model that includes catchment area and rainfall, whereas bedload and direct sediment input from lake shores were estimated. As a result, the gross annual SY was c. 39.55 (± 0.15) Mt, dominantly from Gilgel Abay and Gumara Rivers. The 2.57 (± 0.17) Mt sediment deposited in floodplains indicate that the floodplains serve as an important sediment sink. Moreover, annually c. 1.09 Mt of sediment leaves the lake through the two outlets. Annual sediment deposition in the lake was c. 36.97 (± 0.22) Mt and organic matter accumulation was 2.15 Mt, with a mean sediment trapping efficiency of 97%. Furthermore, SSC and SY are generally higher at the beginning of the rainy season because soils in cultivated fields are bare and loose due to frequent ploughing and seedbed preparation. Later in the season, increased crop and vegetation cover lead to a decrease in sediment production. Based on the established sediment budget with average rainfall, the lifetime of Lake Tana was estimated as 764 to 1032 years, which is shorter than what was anticipated in earlier studies. The sedimentation rate of Lake Tana (11.7 ± 0.1 kg m?2 yr?1) is in line with the sedimentation rates of larger lakes in the world, like Lake Dongting and Lake Kivu. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
The term connectivity has emerged as a powerful concept in hydrology and geomorphology and is emerging as an innovative component of catchment erosion modeling studies. However, considerable confusion remains regarding its definition and quantification, especially as it relates to fluvial systems. This confusion is exacerbated by a lack of detailed case studies and by the tendency to treat water and sediment separately. Extreme flood events provide a useful framework to assess variability in connectivity, particularly the connection between channels and floodplains. The catastrophic flood of January 2011 in the Lockyer valley, southeast Queensland, Australia provides an opportunity to examine this dimension in some detail and to determine how these dynamics operate under high flow regimes. High resolution aerial photographs and multi‐temporal LiDAR digital elevation models (DEMs), coupled with hydrological modeling, are used to assess both the nature of hydrologic and sedimentological connectivity and their dominant controls. Longitudinal variations in flood inundation extent led to the identification of nine reaches which displayed varying channel–floodplain connectivity. The major control on connectivity was significant non‐linear changes in channel capacity due to the presence of notable macrochannels which contained a > 3000 average recurrence interval (ARI) event at mid‐catchment locations. The spatial pattern of hydrological connectivity was not straight‐forward in spite of bankfull discharges for selected reaches exceeding 5600 m3 s–1. Data indicate that the main channel boundary was the dominant source of sediment while the floodplains, where inundated, were the dominant sinks. Spatial variability in channel–floodplain hydrological connectivity leads to dis‐connectivity in the downstream transfer of sediments between reaches and affected sediment storage on adjacent floodplains. Consideration of such variability for even the most extreme flood events, highlights the need to carefully consider non‐linear changes in key variables such as channel capacity and flood conveyance in the development of a quantitative ‘connectivity index’. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The Mekong Basin in southeast Asia is facing rapid development, impacting its hydrology and sediment dynamics. Although the understanding of the sediment transport rates in the Mekong is gradually growing, the sediment dynamics in the lower Mekong floodplains (downstream from Kratie) are poorly understood. The aim of this study is to conduct an analysis to increase the understanding of the sediment dynamics at the Chaktomuk confluence of the Mekong River, and the Tonle Sap River in the Lower Mekong River in Cambodia. This study is based on the data from a detailed field survey over the three hydrological years (May 2008–April 2011) at the two sites (the Mekong mainstream and the Tonle Sap River) at the Chaktomuk confluence. We further compared the sediment fluxes at Chaktomuk to an upstream station (i.e. Mukdahan) with longer time series. Inflow sediment load towards the lake was lower than that of the outflow, with a ratio on average of 84%. Although annually only a small amount of sediment load from the Tonle Sap contributes to the delta (less than 15%), its share is substantial during the February–April period. The annual sediment load transport from the confluence to the delta in 2009 and 2010 accounted for 54 and 50 Mt, respectively. This was on average only 55% of the sediment fluxes measured at Mukdahan, a more upstream station. Furthermore when compared to sediment loads further downstream at the Cambodia–Vietnam border, we found that the suspended sediment flux continued to decline towards the South China Sea. Our findings thus indicate that the sediment load to the South China Sea is much lower than the previous estimate 150–160 Mt/yr. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Severe floods can have disastrous impacts and cause wide ranging destruction in the Mekong River basin. At the same time groundwater resources are significantly influenced and extensively recharged by flood water in inundation areas of the basin. This study determines the variation of groundwater resources caused by flooding over inundated areas located in lower part of the Mekong River basin using numerical modeling and field observations. The inundation calculations have been evaluated using satellite image outputs. Comparing large, medium and small flood events, we conclude that flood control which reduces the area of inundation, results in a reduction of groundwater resources in the area. In 1993, a 19% reduction in inundation areas resulted in a 31% reduction in groundwater storage. In 1998, a 44% reduction in inundation areas led to a 42% reduction in groundwater storage. Thus, while flood control activities are vital to reduce negative flood impacts in the Mekong River basin, they also negatively impact groundwater resources in the area.  相似文献   

13.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, an approach is presented for handling hydraulic uncertainties in the prediction of floodplain. Different factors affect river flood characteristics. Furthermore, the high changeability of flooding conditions leads to high variability of the inundation. River morphology is one of the most effective factors in river flood characteristics. This factor is influenced by sedimentation and erosion in the river cross sections, which affects the discharge variation. The depth and the width of the river cross section lead to an increase or decrease in the river flow path. This results in changes in the extent of the floodplain based on the generated rainfall. The inundated region boundaries are determined by utilizing the mean first‐order second‐moment analysis. The proposed method is applied to the Kajoo River in the south‐eastern part of Iran. Determination of floodplain uncertainty is a damage‐reduction policy in this region. Also, it is useful to prepare the necessary activities for overcoming the flood hazards. Climate change is the second effective factor on the floodplain uncertainties. Climate change affects the magnitude, extent and depth of inundation and it may intensify the flood problem. Therefore, the future rainfall pattern of the study area under climate change is simulated to evaluate its impacts on the river flow characteristic. Subsequently, a hydraulic routing model is used to determine floodplain. Finally, the copula function is used to estimate the joint probability of the changes in the inundation area due to changes in river morphology and the rainfall changes due to impacts of climate change. Results show that the uncertainties of the extent of floodplain are affected by climate change and river morphology, leading to noticeable changes in the magnitude and frequency of floods. Evaluating these impacts and estimating corresponding river discharges will help in the study of river dynamics, and will also contribute towards devising effective mitigation and management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Hydrogeomorphic processes influencing alluvial gully erosion were evaluated at multiple spatial and temporal scales across the Mitchell River fluvial megafan in tropical Queensland, Australia. Longitudinal changes in floodplain inundation were quantified using river gauge data, local stage recorders and HEC‐RAS modelling based on LiDAR topographic data. Intra‐ and interannual gully scarp retreat rates were measured using daily time‐lapse photographs and annual GPS surveys. Erosion was analysed in response to different water sources and associated erosion processes across the floodplain perirheic zone, including direct rainfall, infiltration‐excess runoff, soil‐water seepage, river backwater and overbank flood inundation. The frequency of river flood inundation of alluvial gullies changed longitudinally according to river incision and confinement. Near the top of the megafan, flood water was contained within the macrochannel up to the 100‐year recurrence interval, but river backwater still partially inundated adjacent gullies eroding into Pleistocene alluvium. In downstream Holocene floodplains, inundation of alluvial gullies occurred beyond the 2‐ to 5‐year recurrence interval and contributed significantly to total annual erosion. However, most gully scarp retreat at all sites was driven by direct rainfall and infiltration‐excess runoff, with the 24‐h rainfall total being the most predictive variable. The remaining variability can be explained by seasonal vegetative conditions, complex cycles of soil wetting and drying, tension crack development, near‐surface pore‐water pressure, soil block undermining from spalling and overland flow, and soil property heterogeneity. Implications for grazing management impacts on soil surface and perennial grass conditions include effects on direct rainfall erosion, water infiltration, runoff volume, water concentration along tracks, and the resistance of highly dispersible soils to gully initiation or propagation under intense tropical rainfall. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
石希  夏军强  周美蓉  辛沛 《湖泊科学》2024,36(2):562-574
植物是大型河流生态系统的重要成分。但受气候变化和人类活动影响,洲滩禾本科植物高度不断发生调整,进而影响洲滩生境和河道防洪安全,故需长期监测。近年来,伴随着星载激光雷达(LiDAR)技术的发展,应用LiDAR卫星数据反演洲滩禾本科植物高度成为一种可能。本文融合新一代星载LiDAR系统GEDI数据与Sentinel-2影像,基于XGBoost算法构建了考虑物候、累积温度与光合有效辐射指标的洲滩典型禾本科植物高度外推模型,同时利用Attention-UNet算法搭建了洪淹区域识别模型。随后以长江中游洲滩为例,探明了星载LiDAR技术在获取洲滩植株高度方面的性能,分析了各指标对模型精度的影响,并初步得出了洲滩典型禾本科植物高度对不同淹没条件的响应模式。主要结论包括:(1)星载LiDAR系统GEDI具有准确探测洲滩植物高度的能力,与无人机航测数据相比RMSE=0.43 m;(2)运用GEDI数据构建禾本科植物高度外推模型时,考虑物候和累积温度等指标可有效提升模型精度,提升幅度为6.8%~10.7%;(3)利用无人机航测数据对模型外推植物高度进行评价,RMSE=0.80m。同时从模型外推结果中可知...  相似文献   

17.
A simple one‐dimensional model is developed to quantitatively predict the change in elevation, over a period of decades, for vertically accreting floodplains. This unsteady model approximates the monotonic growth of a floodplain as an incremental but constant increase of net sediment deposition per flood for those floods of a partial duration series that exceed a threshold discharge corresponding to the elevation of the floodplain. Sediment deposition from each flood increases the elevation of the floodplain and consequently the magnitude of the threshold discharge resulting in a decrease in the number of floods and growth rate of the floodplain. Floodplain growth curves predicted by this model are compared to empirical growth curves based on dendrochronology and to direct field measurements at five floodplain sites. The model was used to predict the value of net sediment deposition per flood which best fits (in a least squares sense) the empirical and field measurements; these values fall within the range of independent estimates of the net sediment deposition per flood based on empirical equations. These empirical equations permit the application of the model to estimate of floodplain growth for other floodplains throughout the world which do not have detailed data of sediment deposition during individual floods. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Hydropower alteration of the natural flow and sediment regime can severely degrade hydromorphology, thereby threatening biodiversity and overall ecosystem processes of rivers and their floodplains. Using sequences of aerial images, we quantified seven decades (1938/1942–2013) of spatiotemporal changes in channel and floodplain morphology, as well as changes in the physical habitats, of three floodplain river reaches of the Swiss pre-Alps, two hydropower-regulated and one near-natural. In the Sarine River floodplain, within the first decades of hydropower impairment, the magnitude and frequency of flood events (Q2, Q10, Q30) decreased substantially. As a result, the area of pioneer floodplain habitats that depend on flood activity and sediment dynamic, such as bare sediments, decreased dramatically by approximately 95%. However, by 2013 vegetated areas had generally increased in comparison to the pre-regulation period in 1943, indicating general vegetative colonization. Between 1943 and 2013, the active channel underwent essential narrowing (up to 62% width reduction in the residual flow reach) and habitat turnover rates were very low (5% of the total floodplain area changed habitat type five to six times). In contrast, from the 1950s onwards, the near-natural floodplain of the Sense River experienced recurrent narrowing and widening, and frequent changes between bare and vegetated areas, reflecting the shifting habitat mosaic concept typical for natural floodplains. In the three reaches investigated, we found that the active floodplain width and erosion of vegetated areas were primarily controlled by medium to large floods (Q10, Q30), which combined with reduced time intervals between ordinary floods ≥ Q2 most likely mobilized streambed sediments and limited the ability of vegetation to establish itself on bare gravel bars within the parafluvial zone. These findings can contribute to restoration action plans such as controlled flooding and sediment replenishments in the Sarine and other floodplain rivers of the Alps. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
For large‐scale sites, difficulties for applying coupled one‐dimensional (1D)/2D models for simulating floodplain inundation may be encountered related to data scarcity, complexity for establishing channel–floodplain connections, computational cost, long duration of floods and the need to represent precipitation and evapotranspiration processes. This paper presents a hydrologic simulation system, named SIRIPLAN, developed to accomplish this aim. This system is composed by a 1D hydrodynamic model coupled to a 2D raster‐based model, and by two modules to compute the vertical water balance over floodplain and the water exchanges between channel and floodplain. Results are presented for the Upper Paraguay River Basin (UPRB), including the Pantanal, one of the world's largest wetlands. A total of 3965 km of river channels and 140 000 km2 of floodplains are simulated for a period of 11 years. Comparison of observed and calculated hydrographs at 15 gauging stations showed that the model was capable to simulate distinct, complex flow regimes along main channels, including channel‐floodplain interactions. The proposed system was also able to reproduce the Pantanal seasonal flood pulse, with estimated inundated areas ranging from 35 000 km2 (dry period) to more than 120 000 km2 (wet period). Floodplain inundation maps obtained with SIRIPLAN were consistent with previous knowledge of Pantanal dynamics, but comparison with inundation extent provided by a previous satellite‐based study indicates that permanently flooded areas may have been underestimated. The results obtained are promising, and further work will focus on improving vertical processes representation over floodplains and analysing model sensitivity to floodplain parameters, time step and precipitation estimates uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号