首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suspended sediment is the primary source for a sustainable agro‐ecosystem in the Mekong Delta by providing nutrient input for the subsequent cropping season. In addition, the suspended sediment concentration (SSC) plays an important role in the erosion and deposition processes in the Delta; that is, it influences the morphologic development and may counteract the deltaic subsidence and sea level rise. Despite this importance, little is known about the dynamics of suspended sediment in the floodplains of the Mekong Delta. In particular, quantitative analyses are lacking mainly because of data scarcity with respect to the inundation processes in the floodplains. In 2008, therefore, a comprehensive in situ system to monitor the dynamics of suspended sediment in a study area located in the Plain of Reeds was established, aiming at the characterization and quantification of suspended sediment dynamics in the deeply inundated parts of the Vietnamese part of the Mekong Delta. The monitoring system was equipped with seven water quality–monitoring stations. They have a robust design and autonomous power supply suitable for operation on inundated floodplains, enabling the collection of reliable data over a long period of time with a high temporal resolution. The data analysis shows that the general seasonal dynamics of suspended sediment transport in the Delta is controlled by two main mechanisms: the flood wave of the Mekong River and the tidal backwater influences from the coast. In the channel network, SSC decreases exponentially with distance from the Mekong River. The anthropogenic influence on SSC could also be identified for two periods: at the start of the floodplain inundation and at the end of the flood period, when subsequent paddy rice crops are prepared. Based on the results, we recommend an operation scheme for the sluice gates, which intends to distribute the sediment and thus the nutrients equally over the floodplain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Deposition and erosion play a key role in the determination of the sediment budget of a river basin, as well as for floodplain sedimentation. Floodplain sedimentation, in turn, is a relevant factor for the design of flood protection measures, productivity of agro‐ecosystems, and for ecological rehabilitation plans. In the Mekong Delta, erosion and deposition are important factors for geomorphological processes like the compensation of deltaic subsidence as well as for agricultural productivity. Floodplain deposition is also counteracting the increasing climate change induced hazard by sea level rise in the delta. Despite this importance, a sediment database of the Mekong Delta is lacking, and the knowledge about erosion and deposition processes is limited. In the Vietnamese part of the Delta, the annually flooded natural floodplains have been replaced by a dense system of channels, dikes, paddy fields, and aquaculture ponds, resulting in floodplain compartments protected by ring dikes. The agricultural productivity depends on the sediment and associated nutrient input to the floodplains by the annual floods. However, no quantitative information regarding their sediment trapping efficiency has been reported yet. The present study investigates deposition and erosion based on intensive field measurements in three consecutive years (2008, 2009, and 2010). Optical backscatter sensors are used in combination with sediment traps for interpreting deposition and erosion processes in different locations. In our study area, the mean calculated deposition rate is 6.86 kg/m2 (≈ 6 mm/year). The key parameters for calculating erosion and deposition are estimated, i.e. the critical bed shear stress for deposition and erosion and the surface constant erosion rate. The bulk of the floodplain sediment deposition is found to occur during the initial stage of floodplain inundation. This finding has direct implications on the operation of sluice gates in order to optimize sediment input and distribution in the floodplains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The term connectivity has emerged as a powerful concept in hydrology and geomorphology and is emerging as an innovative component of catchment erosion modeling studies. However, considerable confusion remains regarding its definition and quantification, especially as it relates to fluvial systems. This confusion is exacerbated by a lack of detailed case studies and by the tendency to treat water and sediment separately. Extreme flood events provide a useful framework to assess variability in connectivity, particularly the connection between channels and floodplains. The catastrophic flood of January 2011 in the Lockyer valley, southeast Queensland, Australia provides an opportunity to examine this dimension in some detail and to determine how these dynamics operate under high flow regimes. High resolution aerial photographs and multi‐temporal LiDAR digital elevation models (DEMs), coupled with hydrological modeling, are used to assess both the nature of hydrologic and sedimentological connectivity and their dominant controls. Longitudinal variations in flood inundation extent led to the identification of nine reaches which displayed varying channel–floodplain connectivity. The major control on connectivity was significant non‐linear changes in channel capacity due to the presence of notable macrochannels which contained a > 3000 average recurrence interval (ARI) event at mid‐catchment locations. The spatial pattern of hydrological connectivity was not straight‐forward in spite of bankfull discharges for selected reaches exceeding 5600 m3 s–1. Data indicate that the main channel boundary was the dominant source of sediment while the floodplains, where inundated, were the dominant sinks. Spatial variability in channel–floodplain hydrological connectivity leads to dis‐connectivity in the downstream transfer of sediments between reaches and affected sediment storage on adjacent floodplains. Consideration of such variability for even the most extreme flood events, highlights the need to carefully consider non‐linear changes in key variables such as channel capacity and flood conveyance in the development of a quantitative ‘connectivity index’. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Flood risk management is an essential responsibility of state governments and local councils to ensure the protection of people residing on floodplains. Globally, floodplains are under increasing pressure from growing populations. Typically, the engineering‐type solutions that are used to predict local flood magnitude and frequency based on limited gauging data are inadequate, especially in settings which experience high hydrological variability. This study highlights the importance of incorporating geomorphological understanding into flood risk management in southeast Queensland (SEQ), an area badly affected by extreme flood events in 2011 and 2013. The major aim of this study is to outline the hydrological and sedimentological characteristics of various ‘inundation surfaces’ that are typical of catchments in the sub‐tropics. It identifies four major inundation surfaces; within‐channel bench [Q ~ 2.33 yr average recurrence interval (ARI)]; genetic floodplain (Q = 20 yr ARI); hydraulic floodplain (20 yr < Q ≤ 200 yr ARI) and terrace (Q > 1000 yr ARI). These surfaces are considered typical of inundation areas within, and adjacent to, the large macrochannels common to this region and others of similar hydrological variability. An additional area within genetic floodplains was identified where flood surfaces coalesce and produce an abrupt reduction in channel capacity. This is referred to here as a Spill‐out Zone (SOZ). The associated vulnerability and risk of these surfaces is reviewed and recommendations made based on incorporating this geomorphological understanding into flood risk assessments. These recommendations recognize the importance to manage for risks associated with flow inundation and sediment erosion, delivery and deposition. The increasing availability of high resolution topographic data opens up the possibility of more rapid and spatially extensive assessments of key geomorphic processes which can readily be used to predict flood risk. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
石希  夏军强  周美蓉  辛沛 《湖泊科学》2024,36(2):562-574
植物是大型河流生态系统的重要成分。但受气候变化和人类活动影响,洲滩禾本科植物高度不断发生调整,进而影响洲滩生境和河道防洪安全,故需长期监测。近年来,伴随着星载激光雷达(LiDAR)技术的发展,应用LiDAR卫星数据反演洲滩禾本科植物高度成为一种可能。本文融合新一代星载LiDAR系统GEDI数据与Sentinel-2影像,基于XGBoost算法构建了考虑物候、累积温度与光合有效辐射指标的洲滩典型禾本科植物高度外推模型,同时利用Attention-UNet算法搭建了洪淹区域识别模型。随后以长江中游洲滩为例,探明了星载LiDAR技术在获取洲滩植株高度方面的性能,分析了各指标对模型精度的影响,并初步得出了洲滩典型禾本科植物高度对不同淹没条件的响应模式。主要结论包括:(1)星载LiDAR系统GEDI具有准确探测洲滩植物高度的能力,与无人机航测数据相比RMSE=0.43 m;(2)运用GEDI数据构建禾本科植物高度外推模型时,考虑物候和累积温度等指标可有效提升模型精度,提升幅度为6.8%~10.7%;(3)利用无人机航测数据对模型外推植物高度进行评价,RMSE=0.80m。同时从模型外推结果中可知...  相似文献   

7.
In this study, an approach is presented for handling hydraulic uncertainties in the prediction of floodplain. Different factors affect river flood characteristics. Furthermore, the high changeability of flooding conditions leads to high variability of the inundation. River morphology is one of the most effective factors in river flood characteristics. This factor is influenced by sedimentation and erosion in the river cross sections, which affects the discharge variation. The depth and the width of the river cross section lead to an increase or decrease in the river flow path. This results in changes in the extent of the floodplain based on the generated rainfall. The inundated region boundaries are determined by utilizing the mean first‐order second‐moment analysis. The proposed method is applied to the Kajoo River in the south‐eastern part of Iran. Determination of floodplain uncertainty is a damage‐reduction policy in this region. Also, it is useful to prepare the necessary activities for overcoming the flood hazards. Climate change is the second effective factor on the floodplain uncertainties. Climate change affects the magnitude, extent and depth of inundation and it may intensify the flood problem. Therefore, the future rainfall pattern of the study area under climate change is simulated to evaluate its impacts on the river flow characteristic. Subsequently, a hydraulic routing model is used to determine floodplain. Finally, the copula function is used to estimate the joint probability of the changes in the inundation area due to changes in river morphology and the rainfall changes due to impacts of climate change. Results show that the uncertainties of the extent of floodplain are affected by climate change and river morphology, leading to noticeable changes in the magnitude and frequency of floods. Evaluating these impacts and estimating corresponding river discharges will help in the study of river dynamics, and will also contribute towards devising effective mitigation and management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This article presents results from an investigation of the hydraulic characteristics of overbank flows on topographically‐complex natural river floodplains. A two‐dimensional hydraulic model that solves the depth‐averaged shallow water form of the Navier–Stokes equations is used to simulate an overbank flow event within a multiple channel reach of the River Culm, Devon, UK. Parameterization of channel and floodplain roughness by the model is evaluated using monitored records of main channel water level and point measurements of floodplain flow depth and unit discharge. Modelled inundation extents and sequences are assessed using maps of actual inundation patterns obtained using a Global Positioning System, observational evidence and ground photographs. Simulation results suggest a two‐phase model of flooding at the site, which seems likely to be representative of natural floodplains in general. Comparison of these results with previous research demonstrates the complexity of overbank flows on natural river floodplains and highlights the limitations of laboratory flumes as an analogue for these environments. Despite this complexity, frequency distributions of simulated depth, velocity and unit discharge data closely follow a simple gamma distribution model, and are described by a shape parameter (α) that exhibits clear systematic trends with changing discharge and floodplain roughness. Such statistical approaches have the potential to provide the basis for computationally efficient flood routing and overbank sedimentation models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
For large‐scale sites, difficulties for applying coupled one‐dimensional (1D)/2D models for simulating floodplain inundation may be encountered related to data scarcity, complexity for establishing channel–floodplain connections, computational cost, long duration of floods and the need to represent precipitation and evapotranspiration processes. This paper presents a hydrologic simulation system, named SIRIPLAN, developed to accomplish this aim. This system is composed by a 1D hydrodynamic model coupled to a 2D raster‐based model, and by two modules to compute the vertical water balance over floodplain and the water exchanges between channel and floodplain. Results are presented for the Upper Paraguay River Basin (UPRB), including the Pantanal, one of the world's largest wetlands. A total of 3965 km of river channels and 140 000 km2 of floodplains are simulated for a period of 11 years. Comparison of observed and calculated hydrographs at 15 gauging stations showed that the model was capable to simulate distinct, complex flow regimes along main channels, including channel‐floodplain interactions. The proposed system was also able to reproduce the Pantanal seasonal flood pulse, with estimated inundated areas ranging from 35 000 km2 (dry period) to more than 120 000 km2 (wet period). Floodplain inundation maps obtained with SIRIPLAN were consistent with previous knowledge of Pantanal dynamics, but comparison with inundation extent provided by a previous satellite‐based study indicates that permanently flooded areas may have been underestimated. The results obtained are promising, and further work will focus on improving vertical processes representation over floodplains and analysing model sensitivity to floodplain parameters, time step and precipitation estimates uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Natural floodplains are spatially heterogeneous and dynamic ecosystems but at the same time, a highly endangered landscape feature due to climate change and human impacts such as water storage, flood control and hydropower production. Flow is considered a master variable that shapes channel morphology and the heterogeneity, distribution, and turnover of floodplain habitats. Despite their highly dynamic nature, the relative abundance of different habitat elements (islands, gravel bars) in natural floodplains seems to remain relatively constant over ecological periods and is referred to as the shifting mosaic steady state concept. In this conceptual context, we analysed spatiotemporal changes in relative habitat abundance and channel complexity of an alpine floodplain from its near natural state in 1940 before water abstraction and levee construction until 2007 using historical aerial images. Within the first decades of impairment, the relative abundance of floodplain habitats that depend on flood and flow pulses such as parafluvial channels and islands shifted toward a greater abundance of terrestrial forest and grassland habitats. After 1986, the duration and frequencies of high‐precipitation events (>60 mm 24 h–1) triggering major, channel‐reworking floods increased substantially and caused a restructuring of the floodplain and decrease in the abundance of more terrestrial habitat types. These results are contrary to expectations of the shifting mosaic steady state concept yet suggest its potential application as an indicator of landscape transformation and human impacts on floodplain ecosystems. Last, the results raise the applied question as to whether an increased frequency of high flow events induced by climate change can contribute to floodplain restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A simple one‐dimensional model is developed to quantitatively predict the change in elevation, over a period of decades, for vertically accreting floodplains. This unsteady model approximates the monotonic growth of a floodplain as an incremental but constant increase of net sediment deposition per flood for those floods of a partial duration series that exceed a threshold discharge corresponding to the elevation of the floodplain. Sediment deposition from each flood increases the elevation of the floodplain and consequently the magnitude of the threshold discharge resulting in a decrease in the number of floods and growth rate of the floodplain. Floodplain growth curves predicted by this model are compared to empirical growth curves based on dendrochronology and to direct field measurements at five floodplain sites. The model was used to predict the value of net sediment deposition per flood which best fits (in a least squares sense) the empirical and field measurements; these values fall within the range of independent estimates of the net sediment deposition per flood based on empirical equations. These empirical equations permit the application of the model to estimate of floodplain growth for other floodplains throughout the world which do not have detailed data of sediment deposition during individual floods. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Remotely sensed land cover was used to generate spatially‐distributed friction coefficients for use in a two‐dimensional model of flood inundation. Such models are at the forefront of research into the prediction of river flooding. Standard practice, however, is to use single (static) friction coefficients on both the channel and floodplain, which are varied in a calibration procedure to provide a “best fit” to a known inundation extent. Spatially‐distributed friction provides a physically grounded estimate of friction that does not require fitting to a known inundation extent, but which can be fitted if desired. Remote sensing offers the opportunity to map these friction coefficients relatively straightforwardly and for low cost. Inundation was predicted using the LISFLOOD‐FP model for a reach on the River Nene, UK. Friction coefficients were produced from land cover predicted from Landsat TM imagery using both ML and fuzzy c‐means classifiction. The elevetion data used were from combined contour and differential global positioning system (GPS) elevation data. Predicted inundation using spatially‐distributed and static friction were compared. Spatially‐distributed friction had the greatest effect on the timing of flood inundation, but a small effect on predicted inundation extent. The results indicate that spatially‐distributed friction should be considered where the timing of initial flooding (e.g. for early warning) is important. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Floodplains and terraces in river valleys play important roles in the transport dynamics of water and sediment. While flat areas in river valleys can be identified from LiDAR data, directly characterizing them as either floodplain or terraces is not yet possible. To address this challenge, we hypothesize that, since geomorphic features are strongly coupled to hydrological and hydraulic dynamics and their associated variability, there exists a return frequency, or possibly a narrow band of return frequencies, of flow that is associated with floodplain formation; and this association can provide a distinctive signature for distinguishing them from terraces. Based on this hypothesis we develop a novel approach for distinguishing between floodplains and terraces that involves transforming the transverse cross‐sectional geometry of a river valley into a curve, named a river valley hypsometric (RVH) curve, and linking hydraulic inundation frequency with the features of this curve. Our approach establishes that the demarcation between floodplains and terraces can be established from the structure of steps and risers in the RVH curves which can be obtained from the DEM data. Further, it shows that these transitions may themselves be shaped by floods with 10‐ to 100‐year recurrence. We additionally show that, when floodplain width and height (above channel bottom) are normalized by bankfull width and depth, the ratio lies in a narrow range independent of the scale of the river valley. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Restoring hydrologic connectivity between channels and floodplains is common practice in stream and river restoration. Floodplain hydrology and hydrogeology impact stream hydraulics, ecology, biogeochemical processing, and pollutant removal, yet rigorous field evaluations of surface water–groundwater exchange within floodplains during overbank floods are rare. We conducted five sets of experimental floods to mimic floodplain reconnection by pumping stream water onto an existing floodplain swale. Floods were conducted throughout the year to capture seasonal variation and each involved two replicate floods on successive days to test the effect of varying antecedent moisture. Water levels and specific conductance were measured in surface water, soil, and groundwater within the floodplain, along with surface flow into and out of the floodplain. Vegetation density varied seasonally and controlled the volume of surface water storage on the floodplain. By contrast, antecedent moisture conditions controlled storage of water in floodplain soils, with drier antecedent moisture conditions leading to increased subsurface storage and slower flood wave propagation across the floodplain surface. The site experienced spatial heterogeneity in vertical connectivity between surface water and groundwater across the floodplain surface, where propagation of hydrostatic pressure, preferential flow, and bulk Darcy flow were all mechanisms that may have occurred during the five floods. Vertical connectivity also increased with time, suggesting higher frequency of floodplain inundation may increase surface water–groundwater exchange across the floodplain surface. Understanding the variability of floodplain impacts on water quality noted in the literature likely requires better accounting for seasonal variations in floodplain vegetation and antecedent moisture as well as heterogeneous exchange flow mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
River floodplains act as sinks for fine‐sediment and sediment‐associated contaminants. Increasing recognition of their environmental importance has necessitated a need for an improved understanding of the fate and residence times of overbank sediment deposits over a broad range of timescales. Most existing investigations have focused on medium‐term accretion rates, which represents net deposition from multiple flood events over several decades. In contrast, the fate of recently‐deposited sediment during subsequent overbank events has received only limited attention. This paper presents a novel tracing‐technique for documenting the remobilization of recent overbank sediment on river floodplains during subsequent inundation events, using the artificial radionuclides, caesium‐134 (134Cs) and cobalt‐60 (60Co). The investigation was conducted within floodplains of the Rivers Taw and Culm in Devon, UK. Small quantities of fine‐sediment (< 63 µm dia.), pre‐labelled with known activities of either 134Cs or 60Co, were deposited at 15 locations across each floodplain. Surface inventories, measured before and after three consecutive flood events, were used to estimate sediment loss (in g m–2). Significant reductions provided evidence of the remobilization of the labelled sediment by inundating floodwaters. Spatial variations in remobilization were related to localized topography. Sediment remobilized during the first two events for the River Taw floodplain were equivalent to 63 · 8% and 11 · 9%, respectively, of the original mass. Equivalent values for the River Culm floodplain were 49 · 6% and 12 · 5%, respectively, of the original mass. Sediment loss during the third event proved too small to be attributed to remobilization by overbank floodwaters. After the third event, a mean of 22 · 5% and 35 · 2% of the original mass remained on the Taw and Culm floodplains, respectively. These results provide evidence of the storage of the remaining sediment. The findings highlight the importance of remobilization of recently‐deposited sediment on river floodplains during subsequent overbank events and demonstrate the potential of the tracing‐technique. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrogeomorphic processes influencing alluvial gully erosion were evaluated at multiple spatial and temporal scales across the Mitchell River fluvial megafan in tropical Queensland, Australia. Longitudinal changes in floodplain inundation were quantified using river gauge data, local stage recorders and HEC‐RAS modelling based on LiDAR topographic data. Intra‐ and interannual gully scarp retreat rates were measured using daily time‐lapse photographs and annual GPS surveys. Erosion was analysed in response to different water sources and associated erosion processes across the floodplain perirheic zone, including direct rainfall, infiltration‐excess runoff, soil‐water seepage, river backwater and overbank flood inundation. The frequency of river flood inundation of alluvial gullies changed longitudinally according to river incision and confinement. Near the top of the megafan, flood water was contained within the macrochannel up to the 100‐year recurrence interval, but river backwater still partially inundated adjacent gullies eroding into Pleistocene alluvium. In downstream Holocene floodplains, inundation of alluvial gullies occurred beyond the 2‐ to 5‐year recurrence interval and contributed significantly to total annual erosion. However, most gully scarp retreat at all sites was driven by direct rainfall and infiltration‐excess runoff, with the 24‐h rainfall total being the most predictive variable. The remaining variability can be explained by seasonal vegetative conditions, complex cycles of soil wetting and drying, tension crack development, near‐surface pore‐water pressure, soil block undermining from spalling and overland flow, and soil property heterogeneity. Implications for grazing management impacts on soil surface and perennial grass conditions include effects on direct rainfall erosion, water infiltration, runoff volume, water concentration along tracks, and the resistance of highly dispersible soils to gully initiation or propagation under intense tropical rainfall. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In the Senegal River valley and Niger Inner Delta, the annual floods inundate a wide floodplain consisting of a complex network of lakes and channels, where topographic information needed by standard hydraulic models is difficult to obtain. To represent the flood propagation between mainstream and floodplain, we use a model designed for flood propagation in river mainstreams with flat bed and large overflow and without topographic data. Depending on the water level in the riverbed, the model calibrated on the levels observed at two stations gives the level in the floodplains and propagation time between stations. Several cases are tested for various types of hydraulic connections between mainstream and floodplain. The model could correctly reproduce the flood rise and fall in the floodplain, even for a lake connected by a single channel to the riverbed or in the case of a strong attenuation of the flood between very distant stations.  相似文献   

19.
D. Yu  S. N. Lane 《水文研究》2011,25(1):36-53
Numerical modelling of flood inundation over large and complex floodplains often requires mesh resolutions coarser than the structural features (e.g. buildings) that are known to influence the inundation process. Recent research has shown that this mismatch is not well represented by conventional roughness treatments, but that finer‐scale features can be represented through porosity‐based subgrid‐scale treatments. This paper develops this work by testing the interactions between feature representation, subgrid‐scale resolution and mesh resolution. It uses as the basis for this testing a 2D diffusion‐based flood inundation model which is applied to a 2004 flood event in a topologically complex upland floodplain in northern England. This study formulated simulations with different grid mesh resolution and subgrid mesh ratio. The sensitivity of the model to mesh resolution and roughness specification was investigated. Model validation and verification suggest that the subgrid treatment with higher subgrid mesh ratio can give much improved predictions of flood propagation, in particular, in terms of the predicted water depth. This study also highlighted the limitation of using at‐a‐point in time inundation extent for validation of flood models of this type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the development of flood hazard and flood risk delineations that account for uncertainty as improvements to standard floodplain maps for coastal watersheds. Current regulatory floodplain maps for the Gulf Coastal United States present 1% flood hazards as polygon features developed using deterministic, steady‐state models that do not consider data uncertainty or natural variability of input parameters. Using the techniques presented here, a standard binary deterministic floodplain delineation is replaced with a flood inundation map showing the underlying flood hazard structure. Additionally, the hazard uncertainty is further transformed to show flood risk as a spatially distributed probable flood depth using concepts familiar to practicing engineers and software tools accepted and understood by regulators. A case study of the proposed hazard and risk assessment methodology is presented for a Gulf Coast watershed, which suggests that storm duration and stage boundary conditions are important variable parameters, whereas rainfall distribution, storm movement, and roughness coefficients contribute less variability. The floodplain with uncertainty for this coastal watershed showed the highest variability in the tidally influenced reaches and showed little variability in the inland riverine reaches. Additionally, comparison of flood hazard maps to flood risk maps shows that they are not directly correlated, as areas of high hazard do not always represent high risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号