首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Gravity measurements were made in the Mailaram copper mines, Andhra Pradesh. The observations were distributed between the two shafts situated about 220 m apart and in the three levels up to a maximum depth of 100 m. Assuming a normal free-air gradient, average densities for the three layers were determined as 2.631, 2.604, and 2.823 g cm-3, respectively. Upon incorporating the weighted mean density values from measurements on samples, the free-air gradients were found to be 0.315 mGal m-1 for the second layer (i.e. between the first and second levels) and 0.2978 mGal m-1 for the third layer (i.e. between the second and third levels). The density variation map obtained from the gravity data, the deduced anomalies, the weighted mean density values from measurements on rock samples, and the varying free-air coefficients all suggest correspondence with the concentration of ore lodes.  相似文献   

2.
An economic and precise processing system for microgravity surveys is presented. Three computer processing modes covering areal ground and underground measurements, measurements in vertical shafts, and measurements of vertical gravity gradients with a 3 m high tower are dealt with. Diagrams for manual calculation of gravity effects of prismatic walls, vertical shafts, and horizontal galleries, as well as programs for calculation of accurate terrain corrections and corrections for gravity effects of bodies with complicated ground-plan are proposed. The method of processing microgravity data is two to three times quicker than any traditional way, with maximum accuracy preserved in resulting gravity micro-anomalies. Applications from the field of mining geophysics and archaeology are included.  相似文献   

3.
The Beldih open cast mine of the South Purulia Shear Zone in Eastern India is well known for apatite deposits associated with Nb–rare‐earth‐element–uranium mineralization within steeply dipping, altered ferruginous kaolinite and quartz–magnetite–apatite rocks with E–W strikes at the contact of altered mafic–ultramafic and granite/quartzite rocks. A detailed geophysical study using gravity, magnetic, and gradient resistivity profiling surveys has been carried out over ~1 km2 area surrounding the Beldih mine to investigate further the dip, depth, lateral extension, and associated geophysical signatures of the uranium mineralization in the environs of South Purulia Shear Zone. The high‐to‐low transition zone on the northern part and high‐to‐low anomaly patches on the southeastern and southwestern parts of the Bouguer, reduced‐to‐pole magnetic, and trend‐surface‐separated residual gravity–magnetic anomaly maps indicate the possibility of highly altered zone(s) on the northern, southeastern, and southwestern parts of the Beldih mine. The gradient resistivity survey on either side of the mine has also revealed the correlation of low‐resistivity anomalies with low‐gravity and moderately high magnetic anomalies. In particular, the anomalies and modeled subsurface features along profile P6 perfectly match with subsurface geology and uranium mineralization at depth. Two‐dimensional and three‐dimensional residual gravity models along P6 depict the presence of highly altered vertical sheet of low‐density material up to a depth of ~200 m. The drilling results along the same profile confirm the continuation of uranium mineralization zone for the low‐density material. This not only validates the findings of the gravity model but also establishes the geophysical signatures for uranium mineralization as low‐gravity, moderate‐to‐high magnetic, and low‐resistivity values in this region. This study enhances the scope of further integrated geophysical investigations along the South Purulia Shear Zone to delineate suitable target areas for uranium exploration.  相似文献   

4.
Density within the Earth crust varies between 1.0 and 3.0 g/cm3. The Bouguer gravity field measured in south Iran is analyzed using four different regional-residual separation techniques to obtain a residual map of the gravity field suitable for density modeling of topography. A density model of topography with radial and lateral distribution of density is required for an accurate determination of the geoid, e.g., in the Stokes-Helmert approach. The apparent density mapping technique is used to convert the four residual Bouguer anomaly fields into the corresponding four gravity im-plied subsurface density (GRADEN) models. Although all four density models showed good correlation with the geological density (GEODEN) model of the region, the GRADEN models obtained by high-pass filter-ing and GGM high-pass filtering show better numerical correlation with GEODEN model than the other models.  相似文献   

5.
Gravity data have been transformed into a three-layer, three-dimensional model by using an automatic procedure based on linear filtering. The Bouguer anomaly is first transformed by linear filtering into density variations located between two planes 1100 and 2500 m deep. These densities are then transformed into thicknesses with a constant density contrast of 0.4 g/cm3 with two geological constraints for the second and third interface: —minimum at 2500 m depth; —maximum below a variable limit given by geology. This gives the contact between the second and third layer. Differences between measured and computed gravity are then applied by a similar procedure to a layer located between depths of 0 and 500 m, giving the contact between the first and second layer. Interesting secondary anticlines and transverse faults are shown by various structural maps.  相似文献   

6.
A constrained 3D density model of the upper crust along a part of the Deccan Syneclise is carried out based on the complete Bouguer anomaly data. Spectral analysis of the complete Bouguer gravity anomaly map of the study region suggests two major sources: short wavelength anomalies (<100 km) caused primarily due to the density inhomogeneities at shallow crustal level and long wavelength anomalies (>100 km) produced due to the sources deeper than the upper crust. A residual map of the short wavelength anomalies is prepared from the complete Bouguer anomaly using Butterworth high‐pass filter (100 km cut‐off wavelength). Utilizing the constraints from deep resistivity sounding, magnetotellurics and deep seismic sounding studies, 2.5D density models have been generated along 39 profiles of this region. The mismatch between the calculated response of the a priori 2.5D model with the residual (short wavelength) gravity anomalies is minimized by introducing high‐density intrusive bodies (≥2.81 g/cm3) in the basement. With these 2.5D density models, the initial geometry of our 3D density model, which includes alluvium, Deccan trap, Mesozoic sediment and high‐density intrusive bodies in the basement up to a depth of 7 km (upper crust), is generated. In the final 3D model, Deccan trap extends from 200 m to nearly 1700 m below the 90–150 m thick Quaternary sediment. Further down, the sub‐trappean Mesozoic sediment is present at a depth range of 600–3000 m followed by the basement. The derived 3D density model also indicates six intrusive bodies of density 2.83 g/cm3 in the basement at an average depth of about 4–7 km that best fits the residual gravity anomaly of the study area.  相似文献   

7.
The use of the gravity method to predict rock bursts in mines is based on the relationship between the development of a dilatancy process in the exploited rock mass and the time-dependent gravity anomalies induced by this phenomenon. The differences between successive observations of anomalies and the time behaviour of their trend amplitudes as precursors of preceding changes of rock stability are interpreted. The centres of zones of induced rock density variation are determined by computing the position of singular points of the differences between anomalies. Two gravity surveys have been carried out in the Radbod coal mine (Germany). The first survey took place at the level of the Dickebank seam (depth 1030 m), the second in the Sonnenschein seam (depth 1090 m). The observations were made with Worden and LaCoste-Romberg (D-type) gravimeters. The differences between successive anomalies were less than 100 μGal. In the case of the Dickebank seam, the position of singular points demonstrates the effect of two approaching longwalls on a previously mined-out seam and on the gallery in which the gravity observations were made. In the case of the Sonnenschein seam, the trend amplitudes show distinct variations in the formation of the approaching longwall below the edges of all previously mined-out seams. In particular, the effect of a remnant pillar has caused the largest gravity gradients. This result corresponds to the existence of a zone of rock-burst hazard known from test drilling. The computed singular points are grouped together under the remnant pillar indicating two local hazard zones. Both results, the observed development of rock instability with time and the information about the position of the disturbed rock mass relative to the mine workings, are of importance, subsurface gravity surveying can therefore be a valuable tool for predicting rock-bursts.  相似文献   

8.
In this study, measurements of gravity were made to map and model the thickness of Quaternary deposits (sand and clay) overlying Ordovician limestones in a suburb of Ottawa (Orléans, Ontario). Because ground motion amplification is partly related to the thickness of unconsolidated deposits, this work helps refine the assessment of the earthquake damage potential of the area. It also helps the mapping of clay basins, which can locally exceed 100 m in thickness, where ground motion amplification can occur. Previous work, including well log data and seismic methods, have yielded a wealth of information on near-surface geology in Orléans, thereby providing the necessary constraints to test the applicability of gravity modeling in other locations where other methods cannot always be used. Some 104 gravity stations were occupied in an 8 × 12 km test area in the Orléans. Stations were accurately located with differential GPS that provided centimetric accuracy in elevation. Densities of the unconsolidated Quaternary deposits (Champlain Sea clay) determined on core samples and densities determined on limestone samples from outcrops were used to constrain models of the clay layer overlying the higher density bedrock formations (limestone). The gravity anomaly map delineates areas where clay basins attain > 100 m depth. Assuming a realistic density for the Champlain Sea clays (1.9-2.1 g/cm3), the thickness over the higher density bedrock formations (Ordovician carbonate rocks) was modeled and compared with well logs and two seismic reflection profiles. The models match quite well with the information determined from well logs and seismic methods. It was found that gravity and the thickness of unconsolidated deposits are correlated but the uncertainties in both data sets preclude the definition of a direct correlation between the two. We propose that gravity measurements at a local scale be used as an inexpensive means of mapping the thickness of unconsolidated deposits in low-density urban areas. To obtain meaningful results, three conditions must exist. Firstly, elevations of gravity stations must be measured accurately using differential GPS; secondly, that the regional gravity field must be well defined, and thirdly, that the local geology be simple enough to be realistically represented with a two-layer model.  相似文献   

9.
In a general lithospheric model of a simple divergent ocean and continental margin that satisfies the constraints of isostasy and gravity anomalies, the free-air gravity anomaly at the margin is modelled by an oceanic crust that thickens exponentially toward the margin from its common value of 6.4 km about 600 km from the margin to 17.7 km at the margin; this postulated thickening is supported empirically by seismic refraction measurements made near continental margins. The thickness of the oceanic crust matches that of the continental lithosphere at breakup, as observed today in Afar and East Africa, and is interpreted as the initial oceanic surface layer chilled against the continental lithosphere. With continued plate accretion, the chilled oceanic crust thins exponentially to a steadystate thickness, which is achieved about 40 m.y. after breakup. These findings contrast with the generally held view that the oceanic crust has a uniform thickness.During the first 40 m.y. of spreading, the thicker oceanic crust, of density 2.86 g/cm3, displaces the denser (3.32 g/cm3) subjacent material; by isostasy, the spreading ridge and the rest of the seafloor thus stand higher in younger( <40m.y.) oceans than they do in older(>40m.y.) oceans. This is postulated to be the cause of the empirical relationship between the crestal depth of spreading ridges and the age (or half-width) of ocean basins.  相似文献   

10.
为查明涡河断裂的位置、性质等参数,选择重力剖面和激电测深联合勘测方法,对指定区域进行物探勘测工作。结果表明:由密度差异引起的重力异常位置和岩石电阻率、极化率异常位置基本吻合,说明以重力剖面和激电测深为手段的联合勘测是查找断裂的有效方法。  相似文献   

11.
Gravity and magnetic data for the volcanic island of Ischia, Naples, Italy, have been analyzed and interpreted in light of recent geological and volcanological data to define a model of the island's shallow and deep structures. From the interpretation of the gravity data it appears that the shallow structures consist of pyroclastic material (p=2.0 g/cm3). Within these pyroclastics there are domes and lava flows of higher density and eruptive centres filled with lower density material. The basement is a “horst” with the shallowest depth at about 1.0 km, south of the centre of the island, if we assign a density contrast of 0.5 g/cm3 relative to the above pyroclastics.Interpretation of magnetic data measured at 725 stations showed that the basement derived from the gravity interpretation is magnetized. Moreover, this basement is less magnetized on the western side of Ischia which may be caused by the anomalous thermal state of the area, as indicated by surface fumaroles, hot springs etc. and temperature measurements in deep drillings.  相似文献   

12.
This study analyzes spatial variability of snow depth and density from measurements made in February and April of 2010 and 2011 in three 1–2 km2 areas within a valley of the central Spanish Pyrenees. Snow density was correlated with snow depth and different terrain characteristics. Regression models were used to predict the spatial variability of snow density, and to assess how the error in computed densities might influence estimates of snow water equivalent (SWE).The variability in snow depth was much greater than that of snow density. The average snow density was much greater in April than in February. The correlations between snow depth and density were generally statistically significant but typically not very high, and their magnitudes and signs were highly variable among sites and surveys. The correlation with other topographic variables showed the same variability in magnitude and sign, and consequently the resulting regression models were very inconsistent, and in general explained little of the variance. Antecedent climatic and snow conditions prior to each survey help highlight the main causes of the contrasting relation shown between snow depth, density and terrain. As a consequence of the moderate spatial variability of snow density relative to snow depth, the absolute error in the SWE estimated from computed densities using the regression models was generally less than 15%. The error was similar to that obtained by relating snow density measurements directly to adjacent snow depths.  相似文献   

13.
In many modern local and regional gravity field modelling concepts, the short-wavelength gravitational signal modeled by the residual terrain modelling (RTM) technique is used to augment global geopotential models, or to smooth observed gravity prior to data gridding. In practice, the evaluation of RTM effects mostly relies on a constant density assumption, because of the difficulty and complexity of obtaining information on the actual distribution of density of topographic masses. Where the actual density of topographic masses deviates from the adopted value, errors are present in the RTM mass-model, and hence, in the forward-modelled residual gravity field. In this paper we attempt to overcome this problem by combining the RTM technique with a high-resolution mass-density model. We compute RTM gravity quantities over New Zealand, with different combinations of elevation models and mass-density assumptions using gravity and GPS/levelling measurements, precise terrain and bathymetry models, a high-resolution mass-density model and constant density assumptions as main input databases. Based on gravity observations and the RTM technique, optimum densities are detected for North Island of ~2500 kg m?3, South Island of ~2600 kg m?3, and the whole New Zealand of ~2590 kg m?3. Comparison among the three sets of residual gravity disturbances computed from different mass-density assumptions show that, together with a global potential model, the high-resolution New Zealand density model explains ~89.5% of gravitational signals, a constant density assumption of 2670 kg m?3 explains ~90.2%, while a regionally optimum mass-density explains ~90.3%. Detailed comparison shows that the New Zealand density model works best over areas with small residual heights. Over areas with larger residual heights, subsurface density variations appear to affect the residual gravity disturbance. This effect is found to reach about 30 mGal over Southern Alpine Fault. In order to improve the RTM modelling with mass-density maps, a higher-quality mass-density model that provides radially varying mass-density data would be desirable.  相似文献   

14.
Some aspects of the analytical procedure for an automatic fitting of gravity and magnetic anomalies are discussed. An example of application relative to the Campania volcanic district near Naples, Italy, is reported. Gravity anomalies in that area mainly reflect the depth to the carbonate basement rocks. A small gravity high over Vesuvius may indicate buried volcanic layers. Magnetic anomalies near L. Patria and Castel Volturno are interpreted to be caused by buried intrusive rocks of higher susceptibility. Computer models of subsurface rock units with appropriate densities and susceptibilities have been generated to match the observed anomalies.  相似文献   

15.
Summary The geothermal gradient in the Carpathian Basin lies between 40–70 C/km. According to careful measurements in shafts the value of terrestrial heat flow in the southern part of Hungary is (2.055–3.066)·10–6 cal/cm2 sec. These measurements are believed the first ever attempted in continental Europe. Systematic heat flow measurement are being extended to other part of this country.  相似文献   

16.
Published gravity data on active volcanoes generally reflecteither the low density scoriaceous/pumiceous deposits that are localized within ring-fracture collapse depressions, such as the calderas of mature silicic volcanoes,or the high density frozen magma conduits that occur beneath basaltic shields and cones. The intensive gravity surveys reported here over three complex andesite volcanoes reveal features of both types. Their multi-component gravity fields have crater-centred positive anomalies (1–2 km diameter) surrounded by broader zones of negative gravity with similar amplitudes but greater width (5–10 km). The former are thought to reflect sub-crater magma pipes ofnormal density (ca. 2.5–2.6 Mg m−3) surrounded by pyroclastic scoria, ashes and occasional lava flows of muchlower net density (1.8–2.4 Mg m−3) which, in turn, account for the negative anomalous zones because the deeper, more consolidated and older parts of these andesite volcano edifices have more normal densities (2.3–2.6 Mg m−3).The low density materials are particularly interesting because they appear to have filled topographic depressions to depths of several hundred metres, especially where old caldera-like structures have been postulated from the steep gravity gradients over perimeter ring faults. A model is developed whereby short periods of caldera collapse, associated with intermittent, large high level magma bodies, are interspersed by normal crater-like activity with narrow sub-surface magma pipes. Dominantly pyroclastic activity from summit craters generates the materials that gradually fill earlier-formed topographic depressions. This study demonstrates the unique value of detailed gravity surveys, combined with surface geological information, for modelling and understanding the evolution of active volcano summit regions.  相似文献   

17.
The gravity method is one of the geophysical tools used for engineering and environmental investigations where the detection of cavities, karst phenomena, subsoil irregularities, or landfills is essential. In many cases, deep or small-scale heterogeneities generating low-amplitude anomalies have to be detected and the reliability of further interpretation requires highly accurate measurements, carefully corrected for any quantifiable disturbing effects. The purpose of this study is to investigate the factors likely to limit measurement quality and how to make improvements.Calibrations of a Scintrex gravimeter were made between French relative and absolute base stations, and the relative uncertainties on the calibration factors were estimated for these links. Ranging from 10−3, for calibration on an old gravity net, to 10−4, for a high amplitude absolute base line, this accuracy will be generally sufficient for microgravity surveys.Continuous gravity recordings of Scintrex gravimeters, installed at the same stable site, enabled the estimation of the stability and accuracy of the instruments and revealed that some of the time variations of g measurements, such as instrumental drift, tidal effects and seismic noise, are not entirely removed by standard processing procedures. The accuracy of corrected gravity measurements is mainly limited by inadequate corrections of tidal effects and by a poor estimation of ocean loading effects. In comparison with residual defaults in tidal corrections, instrumental and seismic noises are taken more properly into account by statistical data processing.In field operation, residual tidal effects are generally integrated into an experimental terrain drift estimated on the basis of frequent repeated measurements. A differential gravity approach, based on a fixed gravimeter reference whose recordings are used to correct measurements made with a mobile gravimeter, has also been investigated at a test site. Compared to standard processing, this method can help improve repeatability of gravity measurements.Microgravity surveys in the urban environment require effective and accurate consideration of the effects of infrastructures, nearby buildings and basements, as well as those of topography, in the vicinity of a gravity station. Correction procedures, applied at the same experimental site, where gravity points are located close to buildings, walls and basement slope, appear to have almost totally eliminated these disturbances.  相似文献   

18.
Introduction The gravity anomaly is an indicator of the density distribution of the underground material. Therefore the gravity anomalies have been important data used for studying the deep crustal struc-ture for a long time. Many people have made detailed researches on the regional crustal structure inverted by Bouguer anomalies. In particular some empirical formulae and practical algorithms about the crustal thickness were brought forward, and a series of results were obtained (MENG, 1996)…  相似文献   

19.
Gravity surveys in western Texas with station spacing of about 400 m were complemented by carefully observed vertical gradients of gravity making use of specially designed and automated instrumentation. The presented areal surveys of 51 and 52 stations taken in relatively flat terrain are parts of a large survey of close to 1000 stations complemented by an equal number of vertical gradient measurements. Quite irregular anomalous vertical gravity gradients surpassing 10 microgal/m were often encountered. Assuming the causative density contrasts to be located not more than 10 m below ground surface then free air correction errors of ± 0.1 mgal and more must be accepted. From a practical point of view there seems to be no other way to control such unpredictable errors than to carefully observe the local variation of vertical gravity gradients with adequate equipment. Making use of very closely spaced gravity measurements to derive these anomalous features seems more costly and cumbersome.  相似文献   

20.
Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran) to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号