首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A constrained 3D density model of the upper crust along a part of the Deccan Syneclise is carried out based on the complete Bouguer anomaly data. Spectral analysis of the complete Bouguer gravity anomaly map of the study region suggests two major sources: short wavelength anomalies (<100 km) caused primarily due to the density inhomogeneities at shallow crustal level and long wavelength anomalies (>100 km) produced due to the sources deeper than the upper crust. A residual map of the short wavelength anomalies is prepared from the complete Bouguer anomaly using Butterworth high‐pass filter (100 km cut‐off wavelength). Utilizing the constraints from deep resistivity sounding, magnetotellurics and deep seismic sounding studies, 2.5D density models have been generated along 39 profiles of this region. The mismatch between the calculated response of the a priori 2.5D model with the residual (short wavelength) gravity anomalies is minimized by introducing high‐density intrusive bodies (≥2.81 g/cm3) in the basement. With these 2.5D density models, the initial geometry of our 3D density model, which includes alluvium, Deccan trap, Mesozoic sediment and high‐density intrusive bodies in the basement up to a depth of 7 km (upper crust), is generated. In the final 3D model, Deccan trap extends from 200 m to nearly 1700 m below the 90–150 m thick Quaternary sediment. Further down, the sub‐trappean Mesozoic sediment is present at a depth range of 600–3000 m followed by the basement. The derived 3D density model also indicates six intrusive bodies of density 2.83 g/cm3 in the basement at an average depth of about 4–7 km that best fits the residual gravity anomaly of the study area.  相似文献   

2.
Introduction Since the middle of the century, gravitational isostasy has been a fundamental hypothesis for inverting the gravity data to find the crust thickness. Geophysicists have done a lot of researches on using gravity data to investigate the depth of Moho discontinuity. Since 1980, the International Lithosphere Program emphasized the importance of investigating the Moho depth variation. Thereafter a lot of results have been published in the world (Braitenberg et al, 2000; Kaban et al,…  相似文献   

3.
We hereby present a new Bouguer gravity map of the La Gomera island (Canarian Archipelago), which is analysed and interpreted by means of a 3-dimensional inversion, in order to contribute to the knowledge of the structural setting of this volcanic island and its evolutionary history. A land gravity data set covering the whole island of La Gomera is used in combination with offshore measurements to achieve a better determination of the gravity field in areas near the coasts.The study of this map let us to shed some light on the hypothesis established about the volcanism of this island. Moreover, it shows the information that is hidden from a geological surface exploration, modelling deep sections of the crust in La Gomera, which have been unknown until now.A first interpretation of the Bouguer gravity anomaly is achieved from 1) the residual gravity map calculated by removing a regional component and 2) the total horizontal gradient of the gravity. These residual and derivative maps allow us to identify the horizontal location and borders of the shallowest gravity sources. This provides a useful tool to study the structures associated to the latest periods of the volcanism in the area. Moreover, the information so obtained supports the hypothesis about the migration of volcanic activity towards the south of the island.Subsequently, an inversion process is carried out looking for the 3D-modelisation of the sources of the observed gravity field, which provides a comprehensive view of the structures in volcanic environments. The inversion technique used is based on a genetic algorithm (GA) applied upon a prismatic partition of the subsoil volume, and adopting a priori values of density contrast (positive and negative). The main advantage of this method is that let us to model deep and shallow bodies which exhibit very different geometries and density contrasts. So, results indicate that this inversion strategy can be very effective for characterization of volcanic structures, improving the information from previous geologic and volcanologic studies. The inversion model obtained shows correlation between several sources of the gravity field and the volcanic units associated with the growth of La Gomera Island. The main gravity source of this model is associated with the oldest unit, called the Basal Complex. This unit corresponds to the first submarine growth stage and it is modelled as the most important and deepest high density structure. According to previous geological studies, the following edifice (Old Edifice) was also submarine in its initial phases, later being represented by a wide basaltic shield volcano. The original location and morphology of this Old Edifice is deduced from the distribution of positive density contrasts that appears in the model. Moreover, other gravity field sources are identified and associated to several feeding systems of this stage of the volcanism in La Gomera. The shallowest sections of the model let us recognise the distribution of light material inside the Vallehermoso caldera, surrounded by high density structures. This gives us some insight into the internal structure and morphology of the caldera, pointing to a vertical collapse origin followed by erosion and other destructive processes. Finally, other conclusions are obtained from the correlation found between the sources of the gravity field and the migration of the volcanic activity towards the southern area of the island.  相似文献   

4.
在云南省西部,跨越中、缅两国交界的横断山系地区(97°E~102°E,24°N~30°N)有近一半的面积尚没有重力测点、即重力数据空白区和重力测点稀少的普查级测区.以前的有关文献、图集中所给出对此地区的重力场都是十分模糊的结果与图件.因此应用这些资料无法详细地研究该地区重力场特征与深部地壳结构(构造).本文应用卫星重力异常资料作为“近似空间重力异常”,经中间层改正后给出的“计算布格重力异常”,其分布特征与该地区的地形高程呈很好的镜像相关.对相应山脉、河谷以及断裂构造都有所反映.特别是在横断山系地区该布格重力异常呈现为近南北的走向.为此,据该“计算布格重力异常”,并选定对该区有代表性的一条重力异常剖面作正反演计算,以得到其地壳深部结构剖面.结果表明,在横断山脉地区的地壳厚度在51~56 km间起伏变化;滇西北云岭山系以及玉龙山区的地壳厚度约在60 km以上. 最后,对所得结果与图件进行了讨论,并提出了几点认识和纠正的建议.  相似文献   

5.
A detailed gravity survey was carried out on the island of Vulcano, Aeolian Islands, Italy. Gravity was measured on 107 stations and the Bouguer anomalies were computed by assuming geological densities. Aim of this survey was to complete the island structural pattern relatively to the shallower structures. Separation of the gravity anomaly field was carried out by means of data filtering, and two main components were discerned. The λ>2.2 km wavelength component, filtered out of the longer wavelength components, was interpreted quantitatively along a NW profile. The best fitting model consists of an upper layer of recent pyroclastic products (p=2.1 g/cm3) lying upon a highly compacted pyroclastic series or lavas (p=2.4 g/cm3). The shorter wavelength residual gravity field (λ<2.2 km) is characterized by two anomalies, located on Vulcanello and the «Fossa di Vulcano» crater. Vulcanello anomaly could be interpreted, given the geothermal state of the area, as due to an increase of the rock density consequent to propylization processes by high temperature fluids (T>200°C). «Fossa di Vulcano» anomaly is instead attributable to the local volcanic chimney. A schematic comprehensive model of Vulcano is also presented, which accounts for the available main geological and geophysical data.  相似文献   

6.
In many modern local and regional gravity field modelling concepts, the short-wavelength gravitational signal modeled by the residual terrain modelling (RTM) technique is used to augment global geopotential models, or to smooth observed gravity prior to data gridding. In practice, the evaluation of RTM effects mostly relies on a constant density assumption, because of the difficulty and complexity of obtaining information on the actual distribution of density of topographic masses. Where the actual density of topographic masses deviates from the adopted value, errors are present in the RTM mass-model, and hence, in the forward-modelled residual gravity field. In this paper we attempt to overcome this problem by combining the RTM technique with a high-resolution mass-density model. We compute RTM gravity quantities over New Zealand, with different combinations of elevation models and mass-density assumptions using gravity and GPS/levelling measurements, precise terrain and bathymetry models, a high-resolution mass-density model and constant density assumptions as main input databases. Based on gravity observations and the RTM technique, optimum densities are detected for North Island of ~2500 kg m?3, South Island of ~2600 kg m?3, and the whole New Zealand of ~2590 kg m?3. Comparison among the three sets of residual gravity disturbances computed from different mass-density assumptions show that, together with a global potential model, the high-resolution New Zealand density model explains ~89.5% of gravitational signals, a constant density assumption of 2670 kg m?3 explains ~90.2%, while a regionally optimum mass-density explains ~90.3%. Detailed comparison shows that the New Zealand density model works best over areas with small residual heights. Over areas with larger residual heights, subsurface density variations appear to affect the residual gravity disturbance. This effect is found to reach about 30 mGal over Southern Alpine Fault. In order to improve the RTM modelling with mass-density maps, a higher-quality mass-density model that provides radially varying mass-density data would be desirable.  相似文献   

7.
Local line-of-sight (LOS) Bouguer gravity anomalies of the Apennines and Taurus Mountains of the Moon have been calculated form low-altitude LOS free-air Doppler gravity profiles. The topography of the mountain areas is reflected by free-air gravity highs indicating no complete isostatic compensation. The resultant Bouguer gravity shows no anomalies for the Apennines, indicating lack of isostatic compensation. For the older Taurus Mountains significant local Bouguer minima of about ? 15 mgal indicate at least partial compensation.If a viscoelastic compensation mechanism (bending of a viscoelastic plate overlying a fluid half-space) is assumed, models for the crustal viscosity as a function of time give limits of the range of possible models from 1024 to 5 × 1025 P at 4.4 × 109 y BP, 1026 – 1027 P at 3.9 × 109 y, and 5 × 1026 – 1028 P at 3.0 × 109 y. For earlier times only a lower bound of 1027 P can be given.Two profiles of the Taurus area have been investigated; they show no significant Bouguer anomalies across the mare basalt patches of Lacus Bonitatis and Sinus Amoris and thus can be used to estimate an upper limit for the basalt thicknesses. For Lacus Bonitatis this limit is 1.3 km; the limit is reached for Sinus Amoris at an average thickness of 0.3 km, with 1.5 km in the centre. Earlier results from DeHon and Waskom are consistent with the gravity data.  相似文献   

8.
高精度金星重力场的获取,是金星探测的重要内容.本文利用最新的金星地形和重力模型,通过高通滤波后的残差地形(RTM)并在考虑均衡改正的情况下改进了重力的短波成分,最终提出了一个新的金星重力模型VGM2013,该模型赤道分辨率达10 km量级,大大高于现有的金星重力场模型,最终结果是金星表面重力加速度和重力扰动.研究中同时发现金星在Airy-Heiskanen均衡模型下的全球最优补偿深度为30 km,金星地壳的密度可能小于当前认为的2700~2900 kg·m-3.VGM2013模型的结果可为将来的金星探测器定轨和着陆导航提供参考,作为重力计算的先验模型.但由于该模型没有包含短波重力观测信息,不建议直接用于更小尺度的地质和地球物理解释.  相似文献   

9.
华北地区重力场与沉积层构造   总被引:12,自引:2,他引:12  
位于中朝准地台的华北地区是由几个不同的断块组成的,重力异常场的分布具有很强的浅部效应、块状分布和深浅叠加场的特点。重力的高程效应很复杂,不同波长的起伏变化有不同的影响系数。本文对布格改正的有关问题进行了讨论,指出华北如区表浅层的密度值偏低(2520kg/m3),该区合理的布格改正公式为△g2=-0.0879H。将重力场的垂直导数和向上延拓结合起来,有利于揭示地壳上部构造特征。本文搜集整理了由第四系到寒武系的沉积层资料,给出了沉积层总厚度和视密度的分布。对深部重力异常的分析表明,华北沉积层的形成有深源性质,在均衡调节中起着一定的内载荷作用。  相似文献   

10.
11.
蒙古及周边地区重力异常和地壳不均匀体分布   总被引:4,自引:1,他引:3       下载免费PDF全文
基于全球EGM2008自由空气重力异常模型,本文计算了蒙古及周边地区的布格重力异常和AiryHeiskanen均衡重力异常.在此基础上,本文采用Crust 1.0地壳模型为参考,通过重力正演方法,对蒙古及周边地区不同深度地壳密度结构模型的重力异常进行了计算,并对得到的正演布格重力异常与实际重力异常进行了对比和分析.研究结果表明:蒙古西部杭爱山地区与阿尔泰山地区的构造变形差异性明显,现今均衡重力异常中杭爱山周边没有明显的均衡异常高值区,而阿尔泰山地区西南方向存在均衡重力异常高值分布,分析与新构造运动密切相关;Crust 1.0模型给出的壳幔横向密度不均匀体分布对于计算Moho面起伏引起的重力异常作用明显;Crust 1.0给出的地壳内界面变形可以反映深大活动断裂的深部构造变形.研究结果对于认识蒙古东西部构造特征差异,以及现今西部活动断裂的地球物理场特征具有参考意义,也可以为进一步应用Crust 1.0模型为参考开展三维密度结构反演提供一定帮助.  相似文献   

12.
The Oligocene Afar mantle plume resulted in the eruption of a large volume of basaltic magma, including major sequences of rhyolitic ignimbrites, in a short span of time across Ethiopia. In order to assess the impact of these magmatic processes on the crust and to investigate the general crustal configuration beneath the Ethiopian plateau, northern part of the Main Ethiopian Rift and the Afar depression, analysis and modeling of the gravity field have been conducted. The Bouguer gravity map is dominated by long-wavelength anomalies that primarily arise from the isostatic compensation of the topography. Consequently, anomalies within the crust/upper mantle are masked and quantitative interpretation becomes difficult. The long-wavelength anomalies are approximated using admittance technique and subsequently removed from the Bouguer anomalies to obtain the residual isostatic anomalies. The residual map contains both short- and intermediate-wavelength anomalies related to geologic and tectonic features. The long-wavelength regional isostatic field is used to map the crust-mantle interface and the results are in good agreement with those determined by other geophysical methods. Seismic constrained gravity inversion was performed on the isostatic residual field and series of three-dimensional models have been constructed for the structures of the crust and upper mantle beneath the uplifted and rifted flood basalt province of northern Ethiopia. The inversion results have shown that the NW plateau has thick crust that rests on normal lithospheric mantle. Afar, On the other hand, is marked by thin stretched crust resting on a low-density upper mantle indicating a hotter thermal regime and partial melt. No lithospheric mantle is observed beneath Afar. The models further indicate the presence of an extensive sub-crustal thick (~12 km on average) and high-density (~3.06 gm/cc) mafic accreted igneous layer of fractionated cumulate (magmatic underplating) beneath the NW plateau. The study suggests that the underplate was fundamental to the accretion process and may have played a role in compensating most of the plateau uplift and in localizing stresses.  相似文献   

13.
基于布格重力异常相对于地形起伏光滑分布的约束条件,从一维自由空气重力异常数据出发,采用贝叶斯方法估算近地表岩石密度,同时采用三次B样条函数拟合布格重力异常,获取光滑分布的布格重力异常.数据拟合和光滑约束之间的权重采用Akaike贝叶斯准则(ABIC准则)自动确定.均匀剖分模型和不均匀剖分模型数据试验都验证了该方法的有效性.相关参数评价表明,足够多的样条系数可以提高估计结果的准确性,样条系数的个数接近测点数时可获得较稳定的估计结果.增大异常的噪声水平时,ABIC准则可有效地自动增大先验光滑约束的权重.云南地区两条重力剖面应用结果表明,剖面沿线的近地表密度值起伏变化明显(达2.45~2.8g·cm^-3),前寒武纪和古生代地层密度相对较高(主要为2.53~2.75g·cm^-3),而中生代密度较低(2.45~2.73g·cm^-3);本文估计的近地表密度结果与区域物性资料及地表地质特征较吻合;估计的剖面布格重力异常具有光滑性;红河断裂两侧近地表密度差异较大,可达0.4g·cm^-3.本文获得的两条剖面近地表密度结构和布格重力异常为该区深部结构与构造研究提供更可靠的重力基础数据.  相似文献   

14.
We compute globally the consolidated crust-stripped gravity disturbances/anomalies. These refined gravity field quantities are obtained from the EGM2008 gravity data after applying the topographic and crust density contrasts stripping corrections computed using the global topography/bathymetry model DTM2006.0, the global continental ice-thickness data ICE-5G, and the global crustal model CRUST2.0. All crust components density contrasts are defined relative to the reference crustal density of 2,670 kg/m3. We demonstrate that the consolidated crust-stripped gravity data have the strongest correlation with the crustal thickness. Therefore, they are the most suitable gravity data type for the recovery of the Moho density interface by means of the gravimetric modelling or inversion. The consolidated crust-stripped gravity data and the CRUST2.0 crust-thickness data are used to estimate the global average value of the crust-mantle density contrast. This is done by minimising the correlation between these refined gravity and crust-thickness data by adding the crust-mantle density contrast to the original reference crustal density of 2,670?kg/m3. The estimated values of 485 kg/m3 (for the refined gravity disturbances) and 481?kg/m3 (for the refined gravity anomalies) very closely agree with the value of the crust-mantle density contrast of 480?kg/m3, which is adopted in the definition of the Preliminary Reference Earth Model (PREM). This agreement is more likely due to the fact that our results of the gravimetric forward modelling are significantly constrained by the CRUST2.0 model density structure and crust-thickness data derived purely based on methods of seismic refraction.  相似文献   

15.
基于EGM2008重力场模型计算获得了渭河盆地及邻区布格重力异常。采用小波多尺度分解方法对布格重力异常进行了4阶小波逼近和小波细节分解,同时基于平均径向对数功率谱方法定量化地计算出1~4阶小波细节和小波逼近所对应的场源平均埋深。结合区域地质和地震资料,对获得的重力场结果进行分析,得到如下结论:①鄂尔多斯地块、渭河盆地、秦岭造山带3个一级构造单元的布格重力异常之间存在明显差异;构造区内部重力异常也存在横向的显著差异。布格重力异常的走向、规模、分布特征与二级构造区及主要的断裂具有一定的对应关系。②渭河盆地及邻区布格重力异常1~4阶细节对应4~23 km不同深度的场源信息,鄂尔多斯地块南缘东、西部的地壳结构存在明显的差异;渭河盆地凹陷、凸起构造区边界清晰,断裂边界与重力异常边界具有较好的一致性;秦岭造山带重力异常连贯性不好,东、西部重力异常变化特征表现出明显的差异。③渭河盆地及邻区布格重力异常分布与莫霍面埋深具有非常明显的镜像关系。渭河盆地及邻区地震主要分布在六盘山—陇县—宝鸡断裂带、渭河断裂与渭南塬前断裂交汇处、韩城断裂与双泉—临猗断裂交汇处。渭河盆地及邻区重力异常主要由中上地壳剩余密度体所影响,这可能是该区地震以浅源地震为主的主要原因。  相似文献   

16.
The gravity field of the seismogenic upper crust was derived from the Bouguer gravity map by applying the Butterworth high-pass filter in the wave-number domain. The cutoff wavelength of the filter was 110 km, to pass the gravity signals of structures within the 18 km thick seismogenic layer. The derived residual gravity map reveals potential stress concentrating structures, which may cause seismicity provided they lie within the existing zones of weakness. Furthermore we derived a shaded relief map of the horizontal gravity gradient, which highlighted the tectonic lines accompanied by density contrast. The directional analysis of this map shows three dominant strike directions. The most prominent one is “the Hercynian” NW-SE strike direction represented by the Franconian Line, the Gera-Jáchymov Fault Zone and the Elbe Zone. The second dominant strike is the Rhenisch NNE-SSW trending represented by the Upper Rhine Graben Zone, Rheinsberg-Heldburg Line and several Proterozoic volcanic belts in the Teplá-Barrandien Unit. The third pronounced trending of the ENE-WSW direction is represented by the Erzgebirge and Eger Graben gravity low. The N-S trending Rostock-Leipzig-Regensburg Zone (Pritzwalk-Naab Lineament) is not distinctly reflected in the derived gravity maps, although many fault segments have a meridian direction. The relative reactivation potential of some pre-existing fault systems identified in the gravity map was studied with respect to the wide range of the recent stress configuration determined in the West Bohemia/Vogtland region. The resulting diagrams show that the steep NNW-SSE to N-S faults (represented by some segments of the Mariánské Lázně Fault Zone) are oriented favourably for reactivation. On the contrary, the orientation of the ENE-WSW faults limiting the Eger Graben (Litoměřice Fault, etc.) is unfavourable for reactivation for all dip values.  相似文献   

17.
喜玛拉雅“东构造结”地区特异重力场的探讨   总被引:4,自引:6,他引:4       下载免费PDF全文
跨越中、印、缅三国交界的青藏高原东南的喜玛拉雅“东构造结”地区(92°E~97°E,26°N~30°N)一半以上的面积尚没有重力测点,是重力数据空白区,故无法直接研究其重力场特征与深部地壳结构(构造).本文分析了卫星重力异常的特性,提出应用卫星重力异常作为近似空间重力异常,并作布格改正后,得到的布格重力异常具有与该地区地形高程呈镜像相关的特征,可用以研究深部地壳结构.据三条重力剖面计算得到该地区三个地壳深部结构剖面的结果,给出青藏高原地壳厚度>70 km;喜马拉雅造山带为55 km左右;布拉马普特拉河谷盆地为33~35 km;那加山山脉地区为40~45 km,显示出三者为三个不同的构造单元.同时给出布拉马普特拉构造单元为相对高密度的刚性物质构成,随着印度洋板块向北运移,在碰撞、挤压下,插入青藏高原东南缘一带.导致该地带的强烈构造运动,和频发大、小地震.最后提出了几点认识和建议.  相似文献   

18.
本文利用三个高阶重力场模型LP150Q、GLGM-3和SGM150j以及嫦娥地形模型CLTM-s01,在频率域内使用固定窗口的方法,研究了不同重力场模型的重力/地形局部导纳谱与局部相关谱的全球分布,以及典型质量瘤盆地重力/地形局部导纳谱与局部相关谱分布的特征.结果表明:加入远月面重力场信息有助于增强重力场模型在中高频段的信号强度;三个重力场模型LP150Q、GLGM-3和SGM150j均适合于作近月面重力/地形局部导纳与局部相关性的分析和近月面地球物理参数的估计;重力场模型LP150Q和GLGM-3较适合作远月面大范围的研究,不适合于作远月面重力/地形局部导纳谱与局部相关谱的分析以及作远月面局部区域地球物理参数的估计,SGM150j较适合于作远月面局部区域地球物理参数的估计;近月面大型质量瘤盆地异常质量的尺度比远月面质量瘤盆地异常质量的大,而深度也比远月面的深.  相似文献   

19.
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault (F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.  相似文献   

20.
A compiled gravity anomaly map of the Western Himalayan Syntaxis is analysed to understand the tectonics of the region around the epicentre of Kashmir earthquake of October 8, 2005 (Mw = 7.6). Isostatic gravity anomalies and effective elastic thickness (EET) of lithosphere are assessed from coherence analysis between Bouguer anomaly and topography. The isostatic residual gravity high and gravity low correspond to the two main seismic zones in this region, viz. Indus–Kohistan Seismic Zone (IKSZ) and Hindu Kush Seismic Zones (HKSZ), respectively, suggesting a connection between siesmicity and gravity anomalies. The gravity high originates from the high-density thrusted rocks along the syntaxial bend of the Main Boundary Thrust and coincides with the region of the crustal thrust earthquakes, including the Kashmir earthquake of 2005. The gravity low of HKSZ coincides with the region of intermediate–deep-focus earthquakes, where crustal rocks are underthrusting with a higher speed to create low density cold mantle. Comparable EET (∼55 km) to the focal depth of crustal earthquakes suggests that whole crust is seismogenic and brittle. An integrated lithospheric model along a profile provides the crustal structure of the boundary zones with crustal thickness of about 60 km under the Karakoram–Pamir regions and suggests continental subduction from either sides (Indian and Eurasian) leading to a complex compressional environment for large earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号