首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   4篇
地球物理   9篇
地质学   4篇
海洋学   2篇
自然地理   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  1978年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
This study was conducted to investigate technical and socio-political attributes that lead to the underperformance of two selected irrigation schemes (Shina and Bebeks) in the Lake Tana floodplains, Ethiopia. Irrigation application efficiency (AE) at nine experimental fields showed a wide range, from 20 to 80%, but was mostly between 40 and 60%. Irrigation water-use efficiency (IWUE) varied from 1.9 to 7.2 kg m?3 for onion and 0.9 to 1.2 kg m?3 for maize. The lined and earthen canal conveyance losses in Bebeks were 0.037 and 0.047 l s?1 m?1, whereas in Shina they were 0.033 and 0.044 l s?1 m?1, respectively. The overall consumed ratio (OCR) of water was 0.58 for Bebeks and varied from 0.73 to 1.2 in Shina. Both schemes are performing below the standard based on technical performance indicators. Irrigation water user associations (WUAs) were not implemented, but irrigation committees (ICs), composed of local political leaders, are managing both schemes. Canal and reservoir sedimentation from erosion of upstream catchment areas during the rainy season was the major problem.  相似文献   
2.
Experimental research in the Ethiopian highlands found that saturation excess induced runoff and erosion are common in the sub‐humid conditions. Because most erosion simulation models applied in the highlands are based on infiltration excess, we, as an alternative, developed the Parameter Efficient Distributed (PED) model, which can simulate water and sediment fluxes in landscapes with saturation excess runoff. The PED model has previously only been tested at the outlet of a watershed and not for distributed runoff and sediment concentration within the watershed. In this study, we compare the distributed storm runoff and sediment concentration of the PED model against collected data in the 95‐ha Debre Mawi watershed and three of its nested sub‐watersheds for the 2010 and 2011 rainy seasons. In the PED model framework, the hydrology of the watershed is divided between infiltrating and runoff zones, with erosion only taking place from two surface runoff zones. Daily storm runoff and sediment concentration values, ranging from 0.5 to over 30 mm and from 0.1 to 35 g l?1, respectively, were well simulated. The Nash Sutcliffe efficiency values for the daily storm runoff for outlet and sub‐watersheds ranged from 0.66 to 0.82, and the Nash–Sutcliffe efficiency for daily sediment concentrations were greater than 0.78. Furthermore, the model uses realistic fractional areas for surface and subsurface flow contributions, for example between saturated areas (15%), degraded areas (30%) and permeable areas (55%) at the main outlet, while close similarity was found for the remaining hydrology and erosion parameter values. One exception occurred for the distinctly greater transport limited parameter at the actively gullying lower part of the watershed. The results suggest that the model based on saturation excess provides a good representation of the observed spatially distributed runoff and sediment concentrations within a watershed by modelling the bottom lands (as opposed to the uplands) as the dominant contributor of the runoff and sediment load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
3.
In Northern Ethiopia oil seepage could be traced flowing through fractured basalts at the Mechela river bed near Wereilu town. These rocks make up part of the huge volume of Ethiopia's Oligocene-Miocene Plateau basalts and associated rhyolites that cover most of the central and northern part of the country. They overlie the marine sedimentary formations of Triassic–Cretaceous age and constitute one of the largest visible flood basalts on the face of the earth.2-D and 3-D analyses of the gravity field have been performed to determine the structural pattern and subsurface density distributions beneath the thick volcanic sequences. The resulting images offer significant new insights into the structural pattern and geophysical characterization of the study area. A NW–SE elongated basin of significant dimension has been localized directly beneath the oil seep at Wereilu. The basin is a graben formed within and by the NW–SE trending structures of the Karroo rift system. A younger generation of faults in the NE–SW direction has affected the basin exerting significant control on the geometry and perhaps on the sedimentation pattern that might have played a major role in hydrocarbon accumulation and localization.The nature and thickness of the sub-volcanic sedimentary succession, attaining a significant thickness of more than 5 km, coupled with the overlying thick volcanic sequences providing the necessary thermal gradient for the maturation of the organic material create a favorable condition for the generation and accumulation of hydrocarbon deposit.  相似文献   
4.
Assessment of groundwater vulnerability to pollution is an effective tool for the delineation of groundwater protection zones. DRASTIC approach was used to determine vulnerability zones in Dire Dawa groundwater basin, a semiarid region of Ethiopia. Maps of the seven DRASTIC parameters were prepared. GIS-ArcView was used for mapping and performing weighted-overlay analysis. The result of the analysis indicated that eastern part of the study area, in which Dire Dawa town is located, is highly vulnerable. A low aquifer vulnerability class was determined for the western portion of the study area as a result of greater groundwater depths, higher relative soil-clay content, and relatively low recharge rates for this area. The area between the two zones is of medium vulnerability. Observed nitrate concentrations in boreholes are in accordance with the vulnerability map. Some of the boreholes in the Sabian well field (Dire Dawa area) already deliver groundwater with nitrate levels significantly exceeding health standards set by the World Health Organization, while boreholes in the western part (low vulnerability zone) contain almost no nitrate. The result of this study is useful for risk assessments and for the development of effective groundwater management strategies for this region and others like it.  相似文献   
5.
Although most recharge estimation studies apply multiple methods to identify the possible range in recharge values, many do not distinguish clearly enough between inherent uncertainty of the methods and other factors affecting the results. We investigated the additional value that can be gained from multi-method recharge studies through insights into hydrogeological understanding, in addition to characterizing uncertainty. Nine separate groundwater recharge estimation methods, with a total of 17 variations, were applied at a shallow aquifer in northwest Ethiopia in the context of the potential for shallow groundwater resource development. These gave a wide range of recharge values from 45 to 814 mm/a. Critical assessment indicated that the results depended on what the recharge represents (actual, potential, minimum recharge or change in aquifer storage), and spatial and temporal scales, as well as uncertainties from application of each method. Important insights into the hydrogeological system were gained from this detailed analysis, which also confirmed that the range of values for actual recharge was reduced to around 280-430 mm/a. This study demonstrates that even when assumptions behind methods are violated, as they often are to some degree especially when data are limited, valuable insights into the hydrogeological system can be gained from application of multiple methods.  相似文献   
6.
The Oligocene Afar mantle plume resulted in the eruption of a large volume of basaltic magma, including major sequences of rhyolitic ignimbrites, in a short span of time across Ethiopia. In order to assess the impact of these magmatic processes on the crust and to investigate the general crustal configuration beneath the Ethiopian plateau, northern part of the Main Ethiopian Rift and the Afar depression, analysis and modeling of the gravity field have been conducted. The Bouguer gravity map is dominated by long-wavelength anomalies that primarily arise from the isostatic compensation of the topography. Consequently, anomalies within the crust/upper mantle are masked and quantitative interpretation becomes difficult. The long-wavelength anomalies are approximated using admittance technique and subsequently removed from the Bouguer anomalies to obtain the residual isostatic anomalies. The residual map contains both short- and intermediate-wavelength anomalies related to geologic and tectonic features. The long-wavelength regional isostatic field is used to map the crust-mantle interface and the results are in good agreement with those determined by other geophysical methods. Seismic constrained gravity inversion was performed on the isostatic residual field and series of three-dimensional models have been constructed for the structures of the crust and upper mantle beneath the uplifted and rifted flood basalt province of northern Ethiopia. The inversion results have shown that the NW plateau has thick crust that rests on normal lithospheric mantle. Afar, On the other hand, is marked by thin stretched crust resting on a low-density upper mantle indicating a hotter thermal regime and partial melt. No lithospheric mantle is observed beneath Afar. The models further indicate the presence of an extensive sub-crustal thick (~12 km on average) and high-density (~3.06 gm/cc) mafic accreted igneous layer of fractionated cumulate (magmatic underplating) beneath the NW plateau. The study suggests that the underplate was fundamental to the accretion process and may have played a role in compensating most of the plateau uplift and in localizing stresses.  相似文献   
7.
Boswellia papyrifera, a frankincense producing tree, grows in the arid lowlands of Ethiopia. It is a multipurpose tree species with ecological, environmental, cultural and socio-economic values. The resource has been declining due to unsustainable management. This study is aimed at estimating frankincense yield in a single production year, assessing the relationship between yield and dendrometric variables, and developing predictive yield models. We collected data of one harvesting season from randomly selected sample trees in an exclosure and a free grazing site. We found strong nonlinear relations between yield and dendrometric variables, which are useful for predictive yield modeling. A stepwise linear regression indicated that the yield from the sixth round of tapping could explain about 88% of the variation in annual yield per tree, a finding that can largely facilitate future yield monitoring. The frankincense yield was larger in the exclosure than in the adjacent free grazing site and the difference was statistically significant. To conclude, management of degraded B. papyrifera forest as exclosures should be strengthened to enhance the economic, environmental and cultural benefits from the species. Their effectiveness should be evaluated through yield monitoring and prediction.  相似文献   
8.
Sustainable groundwater management requires knowledge of recharge. Recharge is also an important parameter in groundwater flow and transport models. Spatial variation in recharge due to distributed land-us.e, soil texture, topography, groundwater level, and hydrometeorological conditions should be accounted for in recharge estimation. However, conventional point-estimates of recharge are not easily extrapolated or regionalized. In this study, a spatially distributed water balance model WetSpass was used to simulate long-term average recharge using land-use, soil texture, topography, and hydrometeorological parameters in Dire Dawa, a semiarid region of Ethiopia. WetSpass is a physically based methodology for estimation of the long-term average spatial distribution of surface runoff, actual evapotranspiration, and groundwater recharge. The long-term temporal and spatial average annual rainfall of 626 mm was distributed as: surface runoff of 126 mm (20%), evapotranspiration of 468 mm (75%), and recharge of 28 mm (5%). This recharge corresponds to 817 l/s for the 920.12 km2 study area, which is less than the often-assumed 1,000 l/s recharge for the Dire Dawa groundwater catchment.  相似文献   
9.
Seasonal variations in the biomass (Chl a) and primary production (14C-method) of phytoplankton were studied during 12 months of 2005 in the three Ethiopian Rift Valley Lakes (ERVL) Ziway, Awassa and Chamo. Chl a showed an average value of 40, 20, and 30 mg m−3 for the three lakes, respectively. Integrated areal primary production for the total phytoplankton (g C m−2 d−1) varied 2-fold in the three lakes but on different levels, from 0.67–1.8 in L. Ziway, 1.8–4.6 in L. Awassa, and 1.0–2.6 in L. Chamo. The overall photosynthetic efficiency of utilizing photosynthetically active radiation by the phytoplankton on molar basis (mmol C mol of photons−1) resulted in an average value of 1.4 for L. Ziway, 3.5 for L. Awassa and 1.6 for L. Chamo. Among the different factors regulating phytoplankton primary productivity, light penetration and nutrients were the most important in the three lakes. The seasonal variations of incident radiation (most values between 5 and 7 E m−2 h−1) and water temperature (most values between 22 and 24 °C) were small and unlikely to result in the marked differences in phytoplankton primary production. Although relative increase in nutrient concentrations occurred following the rainy periods, the major algal nutrients were either consistently low (nitrate and/or silicate) or high (phosphate and/or ammonium) and remained within a narrow range for most of the study period in all the three lakes. Consequently, phytoplankton biomass and primary production seem to be maintained more by nutrient regeneration or turnover (facilitated by high temperature) than by allochthonous nutrient input. This would be coupled with wind-induced mixing that would play an important role in determining hydrographic characteristics (water column structure) and the associated redistribution of nutrients and phytoplankton, the availability of light and subsequently the spatial (vertical) and temporal patterns of phytoplankton production in these three ERVL. Phytoplankton production (PP) is regarded as a good predictor of fish yield in lakes and seasonal measurements of PP is a prerequisite for good such estimates.  相似文献   
10.
The Omo basin in south western Ethiopia at the Kenyan boundary is a northern extension of the trans- boundary Turkana rift. It is an Early Pliocene north-south trending depression bounded on either side by normal faulting. The Omo river flows in the middle of the basin and empties itself at its southern end into Lake Turkana.The structural pattern of the Omo basin is determined from 2D and 3D analyses of the gravity field. The basin is an asymmetric half-graben formed by and localized within the NS/NNE trending Early Pliocene normal faults. It is built up on the older NW trending structures that were reactivated and affected the recent NS faults. Automatic depth determination techniques and 3D inversion are used to estimate depth to the basement and determine the sedimentary thickness. The results indicate over 4 km thick sediments were deposited over the graben.The Omo basin lies within the East African Rift system and appears to connect the generally NW trending oil-rich Muglad-Melut basins of south Sudan and the highly prospective and similarly trending Anza graben of Kenya. The Omo basin contains thick sequence of sediments and appears to be a promising future site of intensive hydrocarbon exploration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号