首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to simulate earthquake ground motions for the Instanbul (Turkey) region, acceleration time series from western Turkey are modeled by transforming the series into a stationary one which can be described by an autoregressive moving-average (ARMA) process. The ARMA and other parameters used in the stationary transformation are related to physical parameters (e.g. magnitude, distance to epicenter, depth to hypocenter and duration) via a regression analysis. To create simulations for a given set of physical parameters, the modelling procedure is reversed.  相似文献   

2.
There are many traditional methods to find the optimum parameters of a tuned mass damper (TMD) subject to stationary base excitations. It is very difficult to obtain the optimum parameters of a TMD subject to non‐stationary base excitations using these traditional optimization techniques. In this paper, by applying particle swarm optimization (PSO) algorithm as a novel evolutionary algorithm, the optimum parameters including the optimum mass ratio, damper damping and tuning frequency of the TMD system attached to a viscously damped single‐degree‐of‐freedom main system subject to non‐stationary excitation can be obtained when taking either the displacement or the acceleration mean square response, as well as their combination, as the cost function. For simplicity of presentation, the non‐stationary excitation is modeled by an evolutionary stationary process in the paper. By means of three numerical examples for different types of non‐stationary ground acceleration models, the results indicate that PSO can be used to find the optimum mass ratio, damper damping and tuning frequency of the non‐stationary TMD system, and it is quite easy to be programmed for practical engineering applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
It is difficult to analyse the crytic period of the hydrological process, because hydrological time series is probably characterized by heteroscedasticity. To find out the crytic period, a model is constructed as follows: (1) after using zero‐mean transformation for the data, to do Augmented Dickey–Fuller stationary test for the sequence, to build the corresponding AR(p) model and then to do ARCH effects test and white noise test for residual series; (2) for those time series that cannot pass through ARCH test, using logarithm transformation to reduce the heteroscedasticity, and then to redo step (1) until they pass through ARCH test and stationary test; (3) using periodogram analysis to determine all the possible the prime periods and further to put forward three kinds of tests to determine significance level of those prime periods. As examples, the hydrological processes of streamflow from 1784 to 1997 for the gauging stations of Alaer and Xinquman along Tarim River are analysed. After reducing their heteroscedasticity, AR(4) and AR(2) models are developed, respectively. Our results show that the streamflows from the two gauging stations have the same cryptic period of 42·7 years. Furthermore, the reliability for the crytic period model is testified by variance analysis, which shows that the crytic period model is useful and reliable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The paper presents the analysis of the following time series: monthly average temperatures at Urbana, Illinois (1915–1965); monthly precipitations at Morrisonville, Illinois (1896–1969); and monthly streamflows in the Sangamon River at Monticello, Illinois (1915–1969).The identification of a model for these series had been discussed in a previous paper (Torelli and Chow, 1972). In the latter it was shown that a simple transformation makes the series stationary.The analysis of the series is completed in the present paper. By a joint use of spectral and regression analysis one arrives at the formulation of models in which the deterministic process and the variances are described by means of trigonometric functions. This allows a considerable economy of parameters in comparison with the models based on the 24 sample monthly averages and variances.The practical advantages of such an economy of parameters are discussed.  相似文献   

5.
结构平稳随机地震反应时域分析:方法   总被引:3,自引:3,他引:3  
给出了三种常用的随机地震地面运动过程模型,即理想白噪声模型、金井清模型、改进金井清模型的相关函数表达式.引入状态向量,在状态空间中建立地震地面运动激励下的结构振动方程,并求解出结构的复模态特性和复模态反应.利用复模态叠加法推导出线性时不变多自由度体系在这三种随机地震动激励下的平稳协方差反应的解析式,可在时域内直接计算结构随机反应的统计特征.该方法物理概念清晰,结论简便明确,可作为实际工程结构平稳随机地震反应的实用分析方法.  相似文献   

6.
Optimum isolation damping for minimum acceleration response of base-isolated structures subjected to stationary random excitation is investigated. Three linear models are considered to account for the energy dissipation mechanism of the isolation system: a Kelvin element, a linear hysteretic element and a standard solid linear element, commonly used viscoelastic models for isolation systems comprising natural rubber bearings and viscous dampers. The criterion selected for optimality is the minimization of the mean-square floor acceleration response. The effects of the frequency content of the excitation and superstructure properties on the optimum damping and on the mean-square acceleration response are addressed. The study basically shows that the attainable reduction in the floor acceleration largely depends on the energy dissipation mechanism assumed for the isolation system as well as on the frequency content of the ground acceleration process. Special care should be taken in accurately modelling the mechanical behaviour of the energy dissipation devices.  相似文献   

7.
Seismic random processes are characterized by high non-stationarity and, in most cases, by a marked variability of frequency content. The hypothesis modeling seismic signal as a simple product of a stationary signal and a deterministic modulation function, consequently, is hardly ever applicable. Several mathematical models aimed at expressing the recorded process by means of a system of stationary random processes and deterministic amplitude and frequency modulations are proposed. Models oriented into the frequency domain with subsequent response analysis based on integral spectral resolution and models oriented into the time domain based on the multicomponent resolution are investigated. The resolution into individual components (non-stationary signals) is carried out by three methods. The resolution into intrinsic mode functions seems to possess the best characteristics and yields results almost not differing from the results obtained by stochastic simulation. An example of the seismic response of an existing bridge obtained by two older models and three variants of multicomponent resolution is given.  相似文献   

8.
In this paper a semiparametric approach is introduced to decompose an ARFIMA model in the long memory and short memory unobserved components. The procedure is based on the DECOMEL method which produces a statistical decomposition by minimizing the Euclidean distance between the spectrum of the aggregated series and the sum of the parametric spectra of the components. The extension to long memory stationary models is achieved defining an approximate model where the fractional operator is replaced by the ratio of two polynomials of order one. The feasibility and performance of the proposed procedure are discussed through a case study.  相似文献   

9.
Some existing models for the simulation of earthquake acceleration show the difficulties in determining the involved parameters and in describing frequency content. A non-stationary modulated random process obtained as the product of a time envelope function and a stationary random function is used to simulate earthquake acceleration. The parameters and the distribution of frequencies of the simulation process are obtainable from past earthquake records. This simple and realistic model is suggested for use as the input process in aseismic design of structures.  相似文献   

10.
A Markov method of analysis is presented for obtaining the seismic response of cable‐stayed bridges to non‐stationary random ground motion. A uniformly modulated non‐stationary model of the random ground motion is assumed which is specified by the evolutionary r.m.s. ground acceleration. Both vertical and horizontal components of the motion are considered to act simultaneously at the bridge supports. The analysis duly takes into account the angle of incidence of the earthquake, the spatial correlation of ground motion and the quasi‐static excitation. A cable‐stayed bridge is analysed under a set of parametric variations in order to study the non‐stationary response of the bridge. The results of the numerical study indicate that (i) frequency domain spectral analysis with peak r.m.s. acceleration as input could provide more r.m.s. response than the peak r.m.s. response obtained by the non‐stationary analysis; (ii) the longitudinal component of the ground motion significantly influences the vertical vibration of the bridge; and (iii) the angle of incidence of the earthquake has considerable influence on the deck response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
采用考虑地震加速度的近场距离饱和与震级饱和特征模型的衰减关系,通过收集关中平原区及邻区大量的地震资料,建立起本区的地震烈度衰减关系.将美国西部地区作为参考区,采用不同映射的转换方法,得到了关中平原区的基岩水平加速度衰减关系,并对不同的映射方法得到的结果进行了对比分析.  相似文献   

12.
A long-span structure is a common type of public building, but its seismic characteristics are distinct from other types of buildings because of its long span. Calculation models considering multi-point excitation are required in the seismic analysis of long-span structures. However, correlative studies have already clearly shown that important but often overlooked errors exist in previously developed multi-point excitation calculation models. The process of establishing displacement and acceleration models for multi-point seismic analysis is reviewed. Error sources and criteria of the two models are explained using rigorous theoretical derivation. Error characteristics and distributions in multiple structural types, such as ordinary structures without dampers and damper-installed structures with concentrated damping, are also described. Modifications for multi-point excitation displacement and acceleration models, for time history and stochastic analysis, respectively, are proposed, and these modified models are used to assess errors in the conventional models. Numerical examples are solved using conventional displacement and acceleration models and two corresponding modified models. The properties, components and distribution of errors in the conventional models are demonstrated. The findings presented in this paper can provide a sound basis for the practical application of multi-point excitation calculation models in seismic analysis.  相似文献   

13.
Stationary solutions including wave solutions with constant amplitudes are found for nonlinear equations of thermal convection in a layer with nonlinear rheology. The solution is based on the Fourier expansion of unknown velocities and temperatures with only the first and first two terms retained in the velocity and temperature series, respectively. This method, which can be regarded as the Lorenz method, yields the Lorenz equations that fairly well describe the thermal convection in a layer with Newtonian rheology if the Rayleigh number is not very large. The obtained generalization of the Lorenz equations to the case of an integral (having a memory) nonlinear rheology implies that only the first term is retained in the Fourier series for the stress components, i.e., the nonlinear rheological equation is harmonically linearized. However, in the Fourier series of temperature, it is essential to keep the second term: this term, which is independent of the horizontal coordinate, models the thermal boundary layer that characterizes the developed convection. We constructed the bifurcation curves that describe the stationary convection in the nonlinear integral medium simulating the rheology of the mantle, and analyzed the stability of stationary convective flows. The Lorenz method is applied to study small-scale thermal convection in the lithosphere of the Earth.  相似文献   

14.
The effects of Rayleigh damping model on the engineering demand parameters of two steel moment‐resisting frame buildings were evaluated. Two‐dimensional models of the buildings were created and response history analysis were conducted for three different hazard levels. The response history analysis results indicate that mass‐proportional damping leads to high damping forces compared with restoring forces and may lead to overestimation of floor acceleration demands for both buildings. Stiffness‐proportional damping, on the other hand, is observed to suppress the higher‐mode effects in the nine‐story building resulting in lower story drift demands in the upper floors compared with other damping models. Rayleigh damping models, which combine mass‐proportional and stiffness‐proportional components, that are anchored at reduced modal frequencies lead to reasonable damping forces and floor acceleration demands for both buildings and does not suppress higher‐mode effects in the nine‐story building. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Statistical analysis of extremes currently assumes that data arise from a stationary process, although such an hypothesis is not easily assessable and should therefore be considered as an uncertainty. The aim of this paper is to describe a Bayesian framework for this purpose, considering several probabilistic models (stationary, step-change and linear trend models) and four extreme values distributions (exponential, generalized Pareto, Gumbel and GEV). Prior distributions are specified by using regional prior knowledge about quantiles. Posterior distributions are used to estimate parameters, quantify the probability of models and derive a realistic frequency analysis, which takes into account estimation, distribution and stationarity uncertainties. MCMC methods are needed for this purpose, and are described in the article. Finally, an application to a POT discharge series is presented, with an analysis of both occurrence process and peak distribution.  相似文献   

16.
This paper presents three approaches to defining the stationary power spectrum density function (PSDF) of strong ground acceleration, for prediction of structural response corresponding to the strong-motion stationary part of the input excitation. The first approach defines the PSDF in terms of the Fourier amplitude spectrum and a stationary duration of ground acceleration. The PSDF obtained by this approach predicts accurately the response of structures with low to intermediate natural periods. In the second approach, we introduce the concept of stationary duration of response, which is defined as a function of the natural period and damping ratio of the oscillator. Using this approach, it is possible to get accurate estimates of response amplitudes for the broad range of natural periods. However, it is not convenient in practical applications to deal with several stationary durations for a given input excitation. Further, to evaluate these durations it is necessary to specify both the Fourier and the response spectra of ground accelerations; whereas the common engineering practice is to specify the response spectrum only. Therefore, the third approach suggests the use of the response ‘spectrum compatible’ PSDF. The paper presents several improvements in the general methodology used for this purpose. The improvements mainly relate to using more accurate peak factors and to using the transient nature of response. The spectrum compatible PSDFs, as evaluated in the present study, provide realistic specification of strong ground motion for stochastic seismic response analyses of structures.  相似文献   

17.
WANFIS, a conjunction model of discreet wavelet transform (DWT) and adaptive neuro-fuzzy inference system (ANFIS) was developed for forecasting the current-day flow in a river when only available data are historical flows. Discreet wavelet transform decomposed the observed flow time series (OFTS) into wavelet components which captured useful information on three resolution levels. A smoothened flow time series (SFTS) was formed by filtering out the noise wavelet components and recombining the effective wavelet components. WANFIS model is essentially an ANFIS model with SFTS hydrograph as the input, while ANFIS and autoregression (AR) models, developed for comparison purpose, use OFTS hydrograph as input. For performance evaluation, the developed models were utilized for predicting daily monsoon flows for the Gandak River in Bihar state of India. During monsoon (June–October), this river carries large flows making the entire North Bihar unsafe for habitation or cultivation. Based on various performance indices, it was concluded that WANFIS models simulate the monsoon flows in the Gandak more reliably than ANFIS and AR models. The best performing WANFIS model, with four previous days’ flows as input, predicted the current-day Gandak flows with 80.7% accuracy while ANFIS and AR models predicted it with only 71.8 and 51.2% accuracies.  相似文献   

18.
An approach is presented to stiffness–damping simultaneous optimization for displacement–acceleration simultaneous control. To make a shear building model stiffer, the sum of mean-square interstorey drifts to stationary random excitations is minimized or the mean-square top-floor absolute acceleration is maximized subject to the constraints on total storey stiffness capacity and total damper capacity. Optimality conditions are derived and a two-step optimization method using the optimality conditions is devised. In the first step, the optimal design is found for a specified set of total storey stiffness capacity and total damper capacity. In the second step, a series of optimal designs is found with respect to a varied set of total storey stiffness capacity and total damper capacity. While increase of total stiffness capacity and increase of total damper capacity are both effective in reduction of deformation, only increase of total damper capacity is effective in reduction of acceleration. Acceleration control is carried out in the second step via increase of total damper capacity. It is shown through numerical examples that the proposed method is efficient and reliable. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the determination of critical earthquake load models for linear structures subjected to single‐point seismic inputs. The primary objective of this study is to examine the realism in critical excitations and critical responses vis a vis the framework adopted for the study and constraints that these excitations are taken to satisfy. Two alternative approaches are investigated. In the first approach, the critical earthquake is expressed in terms of a Fourier series that is modulated by an enveloping function that imparts transient nature to the inputs. The Fourier coefficients are taken to be deterministic and are constrained to satisfy specified upper and lower bounds. Estimates on these bounds, for a given site, are obtained by analysing past earthquake records from the same site or similar sites. The unknown Fourier coefficients are determined such that the response of a given structure is maximized subjected to these bounds and additional constraints on intensity, peak ground acceleration, peak ground velocity and peak ground displacement. In the second approach, the critical earthquake is modelled as a partially specified non‐stationary Gaussian random process which is defined in terms of a stationary random process of unknown power spectral density (psd) function modulated by a deterministic envelope function. The input is constrained to possess specified variance and average zero crossing rate. Additionally, a new constraint in terms of entropy rate representing the expected level of disorder in the excitation is also imposed. The unknown psd function of the stationary part of the input is determined so that the response of a given structure is maximized. The optimization problem in both these approaches is solved by using sequential quadratic programming method. The procedures developed are illustrated by considering the seismic response of a tall chimney and an earth dam. It is concluded that the imposition of lower and upper bounds on Fourier coefficients in the first approach and constraints on amount of disorder in the second approach are crucial in arriving at realistic critical excitations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Strong motion observations and recordings from the great Wenchuan Earthquake   总被引:23,自引:5,他引:18  
The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号