首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
According to a proposal of Lloyd-Evans (1985), the average charge of particles in the cosmic radiation near 1014eV can be determined by observing the effect of the solar magnetic field on the Sun's shadow in the angular distribution of energetic primary cosmic ray particles. This suggestion is shown to be realizable with a new type of EAS-array proposed for the purpose of high energy -ray astronomy. The same measurement provides information on the integrated strength of the solar magnetic field. As the array will be sensitive and provide good angular resolution down to a few times 1012eV, more detailed results on the primary composition near 1013eV can be obtained by investigating the shape of the shadow of the Moon as affected by the geomagnetic field.  相似文献   

2.
Abstract— We derived the cosmic‐ray and solar particle exposure history for the two lunar meteorites Elephant Moraine (EET) 96008 and Dar al Gani (DaG) 262 on the basis of the noble gas isotopic abundances including the radionuclide 81Kr. For EET 96008, we propose a model for the exposure to cosmic rays and solar particles in three stages on the Moon: an early stage ~500 Ma ago, lasting less than 9 Ma at a shallow shielding depth of 20 g/cm2, followed by a stage when the material was buried, without exposure, until it was exposed in a recent stage. This recent stage, at a shielding depth in a range of 200–600 g/cm2, lasted for ~26 Ma until ejection. This model is essentially the same as that previously found for lunar meteorite EET 87521; thus, pairing of the two Elephant Moraine lunar meteorites that were recovered on the same icefield in Antarctica is confirmed by our data. The cosmic‐ray‐produced isotopes, the trapped solar and lunar atmospheric noble gases, as well as the radionuclide 81Kr observed for the DaG 262 lunar meteorite are consistent with a one‐stage lunar exposure history. The average burial depth of the Dar al Gani material before ejection was within a range of 50–80 g/cm2. The exposure to cosmic rays at this depth lasted 500–1000 Ma. This long residence time for Dar al Gani at relatively shallow depth explains the high concentrations of implanted solar noble gases.  相似文献   

3.
Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry.  相似文献   

4.
We perform Monte Carlo simulations of cosmic ray-induced hard X-ray radiation from the Earth's atmosphere. We find that the shape of the spectrum emergent from the atmosphere in the energy range 25–300 keV is mainly determined by Compton scatterings and photoabsorption, and is almost insensitive to the incident cosmic ray spectrum. We provide a fitting formula for the hard X-ray surface brightness of the atmosphere as would be measured by a satellite-borne instrument, as a function of energy, solar modulation level, geomagnetic cut-off rigidity and zenith angle. A recent measurement by the INTEGRAL observatory of the atmospheric hard X-ray flux during the occultation of the cosmic X-ray background by the Earth agrees with our prediction within 10 per cent. This suggests that Earth observations could be used for in-orbit calibration of future hard X-ray telescopes. We also demonstrate that the hard X-ray spectra generated by cosmic rays in the crusts of the Moon, Mars and Mercury should be significantly different from that emitted by the Earth's atmosphere.  相似文献   

5.
New satellite measurements of the lunar-surface radiation temperature are used to construct the spatial angular function of thermal radiation of the Moon in the infrared (10.5–12.5 m) spectral range. The basic material for investigations is the scanned cosmic spectrozonal images of the lunar surface transmitted by the first Russian geostationary artificial meteorological satellite GOMS. The formulas for calculating the angular parameters are given, and the photometric function of thermal radiation of the Moon is plotted as a function of the incidence angle, the reflection angle, and the azimuthal angle between the planes of the incident and reflected rays.  相似文献   

6.
It is suggested that cosmic rays of energies as high as 1020 eV consist of dust grains of relativistic energies. Such dust grains as typical in interstellar space are accelerated first by a strong radiation pressure of luminous, compact galaxies and then by magnetic processes. A grain with the mass of about 10–16 g and the Lorentz factor of about 103 attains an energy as large as 1020 eV and produces a huge extensive air shower. Such grains survive against the collisions with cosmic microwave photons. This would remove the serious difficulty, if both the cosmic microwave radiation and the huge extensive air showers, which were regarded as due to protons of energies greater than 1019 eV, existed in spite of that the protons should strongly attenuate by the collisions with the radiation.  相似文献   

7.
We analyze the polarization effects of the radiation scattered in conical optically thin plasma envelopes. The density of free electrons in the envelope is assumed to decrease in inverse proportion to the square of the distance from the radiation source. The magnetic field, radial or azimuthal, is also assumed to vary in inverse proportion to the square of the distance from the center of the system. We take into account the fact that the scattered radiation near the surface of a star or a quasar is virtually unpolarized (the model of a nonpoint star). The spectra of linear polarization and its position angle are given for conical-envelope opening half-angles of 7.5°, 15°, and 30°. The inclination of the cone axis with respect to the observer’s direction took on values of 30°, 45°, 60°, 90°, 120°, 135°, and 150°. We allowed for the fact that part of the envelope is screened from the observer by the star itself. We also give polarization spectra for the radiation scattered in two mutually opposite conical envelopes. We use the results of our theoretical calculations to analyze the polarimetric observations of relativistic jets in cosmic gamma-ray bursts and active galactic nuclei. As a result, we estimated the magnetic fields in these objects. The constraint on the density of relativistic electrons is <107 cm?3.  相似文献   

8.
Analytical studies are reported here for two cosmogenic effects due to low energy particles in extraterrestrial samples:
  1. Formation of latent chemically etchable tracks in crystalline materials due to solid state damage as a result of ionisation losses suffered by multicharged cosmic ray nuclei, and
  2. Production of low threshold isotopes due to nuclear interactions of solar cosmic ray particles.
The present analytical treatment is different from those previously reported and is more directly applicable to recent studies of low energy cosmogenic effects in meteorites and in lunar samples. We consider irradiation of ellipsoidal rocks in space and on the Moon. In the latter case, different irradiation geometries corresponding to different burials in the regolith are also considered. It is shown that results of irradiation of an object on the surface of a parent body differ from that of an object in free space in more complex manner than a uniform reduction by a factor of two due to the change over from 2π to 4π irradiation. Isocontours for ‘tracks’ or ‘isotopes’ are found to be markedly different in the two cases. Thus, the irradiation geometry must be explicitly taken into account in interpreting low-energy cosmogenic effects in lunar rocks. Simultaneous analyses of tracks and radioisotopes of different half-lives should allow one to establish principal irradiation geometries both for meteorites and lunar samples.  相似文献   

9.
Abstract— We determined He, Ne, Ar, 10Be, 26Al, 36Cl, and 14C concentrations, as well as cosmic-ray track densities and halogen concentrations in different specimens of the H6 chondrite Torino, in order to constrain its exposure history to cosmic radiation. The Torino meteoroid had a radius of ~20 cm and travelled in interplanetary space for 2.5–10 Ma. Earlier, Torino was part of a larger body. The smallest possible precursor had a radius of 55 cm and a journey through space longer than ~65 Ma. If the first-stage exposure took place in a body with a radius of >3 m or in the parent asteroid, then it lasted nearly 300 Ma. The example of Torino shows that it is easy to underestimate first-stage exposure ages when constructing two-stage histories.  相似文献   

10.
Mass measurements have been performed on stopping cosmic ray carbon nuclei in a nuclear emulsion stack, which was exposed to the primary radiation in a high altitude balloon flight. The mass determinations are based on measurements of mean track width and residual range in the range intervals 0<R<0.75 mm and 1<R<12 mm. The mean track width measurements have been performed with nuclear track photometers of special construction. The mass measurements in the interval 0<R<0.75 mm have given a nearly symmetrical mass distribution. The width of the distribution is equal to that expected for a distribution which contains only one isotope. The result indicates that one of the stable isotopes is appreciably more abundant than the other. The measurements in the range interval 1<R<12 mm gave the isotopic ratio13C/12C+13C)=0.08. The ratio has been extrapolated to the cosmic ray source. It is found to be smaller in the source than at the point of measurement. Different assumptions about the origin of the cosmic radiation are discussed with regard to the results obtained in this investigation.  相似文献   

11.
It is shown that an appreciable flux of positrons below a few MeV in the cosmic radiation could arise from the decay of cobalt nuclei in the decay chain56Ni56Co56Fe, which occurs in the silicon burning shells of supernovae just after their ejection at relativistic velocities. The equilibrium spectrum of positrons in the interstellar space has been calculated on the assumption that the observed abundance of iron nuclei in the cosmic radiation is the result of the above process. It is found that the observation below about 10 MeV can be well explained with a moderate acceleration of the positrons in the expanding envelope of supernovae prior to their propagation in the interstellar space. The total56Ni content in the shells of supernova necessary to account for the observed positrons is in agreement with that required to explain the peak luminosity during the supernova outburst. Since this model deals with positrons created at the time of injection of cosmic rays into the interstellar space, it becomes possible to study the shape of the injection spectrum of cosmic rays.On leave from Tata Institute of Fundamental Research, Bombay, India.  相似文献   

12.
Abstract— Cosmic-ray produced 14C (t1/2 = 5730 years), 36Cl (3.01 × 105 years), 26Al (7.05 × 105 years), and 10Be (1.5 × 106 years) in the recently discovered lunar meteorites Queen Alexandra Range 93069 (QUE 93069) and 94269 (QUE 94269) were measured by accelerator mass spectrometry. The abundance pattern of these four cosmogenic radionuclides and of noble gases indicates QUE 93069 and QUE 94269 were a paired fall and were exposed to cosmic rays near the surface of the Moon for at least several hundred million years before ejection. After the meteorite was launched from the Moon, where it had resided at a depth of 65–80 g/cm2, it experienced a short transition time, ~20–50 ka, before colliding with the Earth. The terrestrial age of the meteorite is 5–10 ka. Comparison of the cosmogenic nuclide concentrations in QUE 93069/94269 and MAC 88104/88105 clearly shows that these meteorites were not ejected by a common event from the Moon.  相似文献   

13.
We measured the concentrations and isotopic compositions of the stable isotopes of He, Ne, Ar, Kr, and Xe in the two lunar impact‐melt breccias Abar al’ Uj (AaU) 012 and Shi?r 166 to obtain information on their cosmic‐ray exposure histories and possible launch pairing; the latter was suggested because of their similar chemical composition. AaU 012 has higher gas concentrations than Shi?r 166 and clearly contains implanted solar wind gases, indicating a shallow to moderate shielding for this meteorite in the lunar regolith. The maximum shielding depth of AaU 012 was most likely ≤310 g cm?2 and its lunar regolith residence time was ≥420 ± 70 Ma. Our results indicate that in Shi?r 166 the trapped component is a mixture of air and solar wind. The low concentration of cosmogenic and solar wind gases indicate substantial diffusive gas loss and a shielding depth of <700 g cm?2 on the Moon for Shi?r 166. All differences seen in the concentrations and isotopic compositions of the noble gases suggest that AaU 012 and Shi?r 166 are most likely not launch pairs, although a different exposure history on the Moon does not exclude the possibility that the two meteorites were ejected by a single, large impact event.  相似文献   

14.
Measurements of the relative abundance of cosmic isotopes and of the energy dependence of their fluxes may clarify our present understanding on the confinement time of charged cosmic rays in the Galaxy. Experimental studies of these propagation clocks have been carried out by balloon and space missions at energies of a few 100 MeV/amu by means of detection techniques based on multiple dE/dx sampling, coupled with a measurement of the energy released in a thick absorber. At larger energies, the isotopic separation of light nuclei (as, for instance,9Be/10Be) can be achieved by combining a precise measurement of the particle’s rigidity with an high resolution determination of its velocity, via the observation of the Cherenkov effect in a radiator.In this paper, we propose the introduction - for the first time in a space experiment - of the DIRC technique (Detection of Internal Reflected Cherenkov light) for the identification of cosmic-ray isotopes. This type of detector has been successfully used in electron-positron colliders for particle identification and in particular for π-K separation. While for particles with unit charge the light yield is a limiting factor, in the case of a nucleus of charge Z the larger photostatistics (due to the Z2 dependence of Cherenkov light emission) is the key to reach an adequate angular resolution to provide a mass discrimination for isotopes of astrophysical interest. We report on the early development phase of a DIRC prototype with a focussing scheme (FDIRC) to collect the Cherenkov light onto a detector plane instrumented with a Silicon PhotoMultiplier (SiPM) array.  相似文献   

15.
The extragalactic sources of ultra-high-energy (E > 4 × 1019 eV) cosmic rays that make a small contribution to the flux of particles recorded by ground-based arrays are discussed. We show that cosmic rays from such sources can produce a noticeable diffuse gamma-ray flux in intergalactic space compared to the the data obtained with Fermi LAT (onboard the Fermi space observatory). A possible type of active galactic nuclei (AGNs) in which cosmi-ray protons can be accelerated to energies 1021 eV is considered as an illustration of such sources. We conclude that ultra-high-energy cosmic rays from the AGNs being discussed can contribute significantly to the extragalactic diffuse gamma-ray emission. In addition, a constraint on the fraction of the AGNs under consideration relative to the BL Lac objects and radio galaxies has been obtained from a comparison with the Fermi LAT data.  相似文献   

16.
The possibility that a series of explosions of the galactic nuclei every 5×106 yr can cause a substantial flux of cosmic ray particles at the vicinity of the Earth is investigated. The steady flux of cosmic radiation forces the conclusion that there have been explosions back to 109 yr if this is a dominant source of cosmic rays.  相似文献   

17.
A recent measurement of thee +/(e ++e ) ratio in cosmic rays between 5 and 50 GeV (HEAT experiment), is consistent with positron production theories via primary cosmic radiation interactions in the interstellar medium. This paper will show that atmospheric corrections result in a 50% level of uncertainty in thee +/(e ++e ) ratio measurements carried out with balloon-borne experiments. In light of the current theories on electron-positron production in neutron stars and by using different calculations for atmospheric corrections, a lower limit on Milky Way pulsar birthrate of 30–60 years can be set on the basis of recent observations of the positron fraction in cosmic rays.  相似文献   

18.
We present simulation results for the detection of ultra-high energy (UHE) cosmic ray (CR) and neutrino interactions in the Moon by radio-telescopes. We simulate the expected radio signal at Earth from such interactions, expanding on previous work to include interactions in the sub-regolith layer for single dish and multiple telescope systems. For previous experiments at Parkes, Goldstone (GLUE), and Kalyazin we recalculate the sensitivity to an isotropic flux of UHE neutrinos. We find the published sensitivity for the GLUE experiment to be too high (too optimistic) by an order of magnitude, and consequently the GLUE limit to be too low by an order of magnitude. Our predicted sensitivity for future experiments using the Australia Telescope Compact Array (ATCA) and the Australian SKA Pathfinder (ASKAP) indicate these instruments will be able to detect the more optimistic UHE neutrino flux predictions, while the square kilometre array (SKA) will also be sensitive to all bar one prediction of a diffuse ‘cosmogenic’, or ‘GZK’, neutrino flux.Outstanding theoretical uncertainties at both high-frequency and low-frequency limits currently prevent a reliable estimate of the sensitivity of the lunar Cherenkov technique for UHE cosmic ray (CR) astronomy. Here, we place limits on the effects of large-scale surface roughness on UHE CR detection, and find that when near-surface ‘formation-zone’ effects are ignored, the proposed SKA low-frequency aperture array could detect CR events above 56 EeV at a rate between 15 and 40 times that of the current Pierre Auger Observatory. Should further work indicate that formation-zone effects have little impact on UHE CR sensitivity, observations of the Moon with the SKA would allow directional analysis of UHE cosmic rays, and investigation of correlations with putative cosmic ray source populations, to be conducted with very high statistics.  相似文献   

19.
We report measurements of the oxidation state of Fe nanoparticles within lunar soils that experienced varied degrees of space weathering. We measured >100 particles from immature, submature, and mature lunar samples using electron energy‐loss spectroscopy (EELS) coupled to an aberration‐corrected transmission electron microscope. The EELS measurements show that the nanoparticles are composed of a mixture of Fe0, Fe2+, and Fe3+ oxidation states, and exhibit a trend of increasing oxidation state with higher maturity. We hypothesize that the oxidation is driven by the diffusion of O atoms to the surface of the Fe nanoparticles from the oxygen‐rich matrix that surrounds them. The oxidation state of Fe in the nanoparticles has an effect on modeled reflectance properties of lunar soil. These results are relevant to remote sensing data for the Moon and to the remote determination of relative soil maturities for various regions of the lunar surface.  相似文献   

20.
During the GRIF experiment onboard the Mir orbiting station, cosmic gamma-ray bursts (GRBs) were observed in the photon energy range 10–300 keV. We developed a technique for selecting events, cosmic GRB candidates, based on output readings from the PX-2 scintillation spectrometer, the main astrophysical instrument. Six events interpreted as cosmic GRBs were identified at a threshold sensitivity level of ≥10?7 erg cm?2. The GRIF burst detection rate recalculated to all the sky is ~103 yr?1 (fluence ≥10?7 erg cm?2). This rate matches the BATSE/CGRO estimate and significantly differs from the value predicted by the S?3/2 dependence, which holds for a spatially uniform source distribution. The GRB detection rate at low peak fluxes is compared with the results of analysis for BATSE/CGRO “nontriggered” events and with predictions of major cosmological models. We conclude that the PX-2 observational data on faint cosmic GRBs are consistent with predictions of models with the highest frequency of GRB occurrence at z ≥1.5–2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号