首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of a Lennard-Jones calculation for estimation of molecular diffusivity of gases like SO2 for use in scavenging models is recommended. A profile of molecular diffusivity of SO2 in air through the PBL is obtained. Results indicate a change of about 17.5% between the diffusivity values at the surface and at the top of the PBL. The possible changes that could result in scavenging model calculations due to this change are also discussed.  相似文献   

2.
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NOx transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O3 at the surface.The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NOx loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.  相似文献   

3.
The results from a one-dimensional photochemical model of the troposphere representative of summertime conditions at Northern Hemisphere mid-latitudes are presented. A parameterization of mixing processes within the planetary boundary layer (PBL) has been incorporated into the model for both the daytime convective PBL and the formation of the nocturnal PBL. One result of the parameterized PBL is that the concentrations of some trace species in the free troposphere are 20–30% higher than when mixing processes are described by a vertical eddy diffusion coefficient which is held constant with respect to height and time.The calculations indicate that the lifetime of the oxides of nitrogen (NO x =NO+NO2) against photochemical conversion to nitric acid (HNO3) during summertime conditions is on the order of 6 h. This lifetime is short enough to deplete most of the NO x in the PBL, resulting in the finding that other reactive nitrogen species (HNO3 and peroxyacetyl nitrate) are more abundant than NO x throughout the free troposphere, even though NO x is the most abundant reactive nitrogen species at the surface. The effects of the inclusion of anthropogenic nonmethane hydrocarbon (NMHC) chemistry are also discussed. The inclusion of NMHC chemistry has a pronounced effect on the photochemistry of tropospheric oxone and increases thein situ column production by more than 30%.  相似文献   

4.
Mesoscale models using a non-local K-scheme for parameterization of boundary-layer processes require an estimate of the planetary boundary layer (PBL) height z i at all times. In this paper, two-dimensional sea-breeze experiments are carried out to evaluate three different formulations for the advective contribution in the z i prognostic equation of Deardorff (1974).Poor representation of the thermal internal boundary layer in the sea breeze is obtained when z i is advected by the wind at level z i . However, significantly better results are produced if the mean PBL wind is used for the advecting velocity, or if z i is determined simply by checking for the first sufficiently stable layer above the ground.A Lagrangian particle model is used to demonstrate the effect of each formulation on plume dispersion by the sea breeze.  相似文献   

5.
A mesoscale Planetary Boundary Layer (PBL) model with a simple turbulence closure scheme based on the turbulence kinetic energy (TKE) equation and the dissipation () equation is used to simulate atmospheric flow over mesoscale topography. Comparative studies with different parameterizations suggest that with a proper closure assumption for turbulence dissipation, the E-model can simulate the circulation induced by the mesoscale topography with results similar to those obtained using the E- model. On the other hand, the first-order closure using O'Brien's cubic interpolation for eddy diffusivities (K) generally produces much larger K profiles in the stable and the unstable regions, which is believed to be due to the overprediction of the height of the PBL. All models with the TKE equation yield quite similar ensemble mean fields, which are found to be little sensitive to the closure assumption for turbulence dissipation, though their predicted magnitudes of TKE and K may differ appreciably. A discussion on the diurnal evolution of the mesoscale topography-induced circulation and the spatial variations of the turbulence fluxes in the surface layer is also given based on the E- model results.  相似文献   

6.
The spatial variability and temporal behavior of the vertical flux of ozone have been investigated from turbulence measurements collected on aircraft flight legs in the daytime period during two consecutive summer experimental field programs. The data were obtained during horizontal flight legs conducted over agricultural crops and forested land in three different regions of the eastern United States.Results from individual experimental cases and statistics derived from all cases in each region are presented. Ozone flux generally exhibited a significant height dependency. The strongest negative (downward) fluxes in the lowest-level flight legs were primarily attributed to the uptake of ozone by the surface and vegetative cover. Fluxes were near-zero in the middle of the convective boundary layer (CBL) in the afternoon period. As ozone flux was proportional to concentration, slightly stronger fluxes were found in low-level urban plume segments where ozone concentrations were 10–20 ppb higher than in the surrounding area. The derived deposition velocity showed no such bias as a function of position across the urban plume. Ozone flux differences were not apparent between the more heavily forested sections and the primarily agricultural cropland areas in these regions. During the afternoon period when no clear temporal trend was evident, means from values obtained below 0.15Z i (Z i being the CBL height) were -0.421 and -0.431 ppb m-2 s-1 for ozone flux and 0.81 and 0.82 cm s-1 for the derived mean deposition velocity in the southeastern Pennsylvania and central Ohio areas, respectively. These experimental results for ozone provide support to a dry deposition parameterization module which computes grid-area averaged deposition velocities for use in regional-scale models.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

7.
A global ocean general circulation model (L30T63) is employed to study the uptake and distribution of anthropogenic CO2 in the ocean. A subgrid-scale mixing scheme called GM90 is used in the model. There are two main GM90 parameters including isopycnal diffusivity and skew (thickness) diffusivity. Sensitivities of the ocean circulation and the redistribution of dissolved anthropogenic CO2 to these two parameters are examined. Two runs estimate the global oceanic anthropogenic CO2 uptake to be 1.64 and 1.73 Pg C yr-1 for the 1990s, and that the global ocean contained 86.8 and 92.7 Pg C of anthropogenic CO2 at the end of 1994, respectively. Both the total inventory and uptake from our model are smaller than the data-based estimates. In this presentation, the vertical distributions of anthropogenic CO2 at three meridional sections are discussed and compared with the available data-based estimates. The inventory in the individual basins is also calculated. Use of large isopycnal diffusivity can generally improve the simulated results, including the exchange flux, the vertical distribution patterns, inventory, storage, etc. In terms of comparison of the vertical distributions and column inventory, we find that the total inventory in the Pacific Ocean obtained from our model is in good agreement with the data-based estimate, but a large difference exists in the Atlantic Ocean, particularly in the South Atlantic. The main reasons are weak vertical mixing and that our model generates small exchange fluxes of anthropogenic CO2 in the Southern Ocean. Improvement in the simulation of the vertical transport and sea ice in the Southern Ocean is important in future work.  相似文献   

8.
Summary This paper investigates the influence of the planetary boundary-layer (PBL) parameterization and the vertical distribution of model layers on simulations of an Alpine foehn case that was observed during the Mesoscale Alpine Programme (MAP) in autumn 1999. The study is based on the PSU/NCAR MM5 modelling system and combines five different PBL schemes with three model layer settings, which mainly differ in the height above ground of the lowest model level (z 1). Specifically, z 1 takes values of about 7 m, 22 m and 36 m, and the experiments with z 1 = 7 m are set up such that the second model level is located at z = 36 m. To assess if the different model setups have a systematic impact on the model performance, the simulation results are compared against wind lidar, radiosonde and surface measurements gathered along the Austrian Wipp Valley. Moreover, the dependence of the simulated wind and temperature fields at a given height (36 m above ground) on z 1 is examined for several different regions. Our validation results show that at least over the Wipp Valley, the dependence of the model skill on z 1 tends to be larger and more systematic than the impact of the PBL scheme. The agreement of the simulated wind field with observations tends to benefit from moving the lowest model layer closer to the ground, which appears to be related to the dependence of lee-side flow separation on z 1. However, the simulated 2 m-temperatures are closest to observations for the intermediate z 1 of 22 m. This is mainly related to the fact that the simulated low-level temperatures decrease systematically with decreasing z 1 for all PBL schemes, turning a positive bias at z 1 = 36 m into a negative bias at z 1 = 7 m. The systematic z 1-dependence is also observed for the temperatures at a fixed height of 36 m, indicating a deficiency in the self-consistency of the model results that is not related to a specific PBL formulation. Possible reasons for this deficiency are discussed in the paper. On the other hand, a systematic z 1-dependence of the 36-m wind speed is encountered only for one out of the five PBL schemes. This turns out to be related to an unrealistic profile of the vertical mixing coefficient. Correspondence: Günther Z?ngl, Meteorologisches Institut der Universitat München, 80333 München, Germany  相似文献   

9.
A simple nonlinear three-box ocean model of the North Atlantic Ocean including the rudiments of eddy mixing, vertical stratification and thermohaline circulation is first presented. It is subject to uniform latitudinal differential heating, q, and net evaporation m e , and includes a linear equation of state. Two quite different limiting steady-state solutions exist. The first has a warm saline surface water and a cold, low-salinity deep ocean; deep water is primarily formed in higher latitudes by the prevalence of differential heating. A second limiting solution consists of a warm saline deep ocean underlying a cool, low-salinity surface ocean; deep water is formed primarily in lower latitudes as a consequence of large differential evaporation. A coupled ocean-atmosphere model, in which the oceanic surface heat fluxes are determined internally but with differential evaporation at the ocean surface m e remaining an external parameter, is next presented. The atmosphere component is a simple energy balance model that emphasizes the vertical fluxes of radiative, sensible and latent heat fluxes but does not include temperature-albedo feedback. Model response depends on the external parameters m e and , controlling the magnitude of the thermohaline-driven circulation, and on the magnitudes of the eddy mixing coefficients and the solar constant. For small m e , a steady-state solution corresponding to a cold fresh deep ocean is found, qualitatively similar to the modern ocean. For large m e , a steady-state solution with a warm saline deep ocean occurs; this solution resembles conceptual models that have been proposed for the warm saline Cretaceous ocean. There exists an intermediate region of values of m e for which the solutions are more complex. On the lower end of this region, both the cold fresh deep-ocean and warm saline deep-ocean circulations coexist as stable equilibria. On the upper end, the cold-deep ocean becomes unstable, manifesting oscillations with growing amplitude, and ultimately reaches the warm saline deep-ocean solution. In the neighborhood of a cusp on the , m e plane, that is, for relatively small , more complex behaviour occurs, which has not yet been fully analyzed. The model response in the region of complexity is not sensitive to changes in the solar constant but is sensitive to the eddy mixing coefficients.  相似文献   

10.
Atmospheric surface layer meteorological observations obtained from 20-m-high meteorological tower at Mangalore, situated along the west coast of India are used to estimate the surface layer scaling parameters of roughness length (z o) and drag coefficient (C D), surface layer fluxes of sensible heat and momentum. These parameters are computed using the simple flux–profile relationships under the framework of Monin–Obukhov (M–O) similarity theory. The estimated values of z o are higher (1.35–1.54 m) than the values reported in the literature (>0.4–0.9 m) probably due to the undulating topography surrounding the location. The magnitude of C D is high for low wind speed (<1.5 m s?1) and found to be in the range 0.005–0.03. The variations of sensible heat fluxes (SHF) and momentum fluxes are also discussed. Relatively high fluxes of heat and momentum are observed during typical days on 26–27 February 2004 and 10–11 April 2004 due to the daytime unstable atmospheric conditions. Stable or near neutral conditions prevail after 1700 h IST with negative SHF. A mesoscale model PSU/NCAR MM5 is run using a high-resolution (1 km) grid over the study region to examine the influence of complex topography on the surface layer parameters and the simulated fluxes are compared with estimated values. Spatial variations of the frictional velocity (u *), C D, surface fluxes, planetary boundary layer (PBL) height and surface winds are noticed according to the topographic variations in the simulation.  相似文献   

11.
Two parameterization schemes for vertical eddy diffusivity were utilized to investigate their impacts on both the daily and monthly mean concentrations of ozone and NOy, which are the major fractions of the sum of all reactive nitrogen species, i.e., NOy=NO+NO2+HNO3+PAN. Simulations indicate that great changes in the vertical diffusivity usually occur within the planetary boundary layer (PBL). Daily and monthly mean concentrations of NOy are much more sensitive to changes in the vertical diffusivity than those of ozone and ozone and NOy levels only at or in (relatively) clean sites and areas, where long-range transport plays a crucial role, display roughly equivalent sensitivity. The results strongly suggest that a widely-accepted parameterization scheme be selected and the refinement of the model's vertical resolution in the PBL be required, even for regional and long-term studies, and ozone only being examined in an effort to judge the model's performance be unreliable, and NOy be included for model evaluations.  相似文献   

12.
In an earlier paper by one of the authors (Smith, 1968), a momentum integral method was developed to parameterize the gross constraint imposed by the surface boundary layer of a steady, axisymmetric, tropical cyclone on the meridional circulation within the vortex itself. Specifically, the method provides an effective means of estimating the radial variation of mean upflow/downflow induced by the boundary layer, compatible with a prescribed radial variation of azimuthal velocity just above the boundary layer,V gr. However, it relies on a judicious choice of vertical profiles of radial and azimuthal velocity components within the boundary layer. An especially suitable set of profiles is discussed herein; these are Ekman-like profiles in which turbulent mixing is characterized by a vertically constant eddy diffusivityK M , matched to a constant stress sublayer just above the sea surface. An attractive feature of the formulation is that a suitable value forK M as a function of radius, which is extremely difficult to extract from observational data, can be calculated when the state of the sea surface, described by a roughness lengthZ 0, is prescribed. Although observations ofZ 0 at high wind speeds are not yet available, the effect of radial variations in sea surface roughness can be assessed and it is shown that these affect the upflow to a significant degree.  相似文献   

13.
Summary In this paper a simple climate model is presented which is used to perform some sensitivity experiments. The atmospheric part is represented by a vertically and zonally averaged layer in which the surface air temperature, radiative fluxes at the surface and at the top of the atmosphere, the turbulent fluxes between atmosphere and surface and the snow cover are calculated. This atmospheric layer is coupled to a two-dimensional advection-diffusion ocean model in which the zonal overturning pattern is prescribed. The ocean model evaluates the temperature distribution, the amount of sea-ice and the meridional and vertical heat fluxes. The present-day climate simulated by the model compares reasonably well with observations of the seasonal and latitudinal distribution of temperature, radiation, surface alebdo, sea-ice and snow cover and meridional energy fluxes. Then, the sensitivity of the model-simulated present-day climate to perturbations in the incident solar radiation at the top of the atmosphere is investigated. The temperature response displays large latitudinal and seasonal variations, which is in qualitative agreement with results obtained with other climate models. It is found that the seasonal variation of sea-ice cover (and hence, the effective oceanic heat capacity) is one of the most important elements determining seasonal variations in climate sensitivity. Differences in sensitivity between the seasonal and annual mean version of the model are discussed. Finally, the equilibrium response to perturbations in some selected model variables is presented; these variables include meridional diffusion coefficients, drag coefficient, sea-ice thickness, atmospheric CO2-concentration and cloud optical thickness.With 13 Figures  相似文献   

14.
This study investigates the performance of two planetary boundary layer (PBL) parameterisations in the regional climate model RegCM4.2 with specific focus on the recently implemented prognostic turbulent kinetic energy parameterisation scheme: the University of Washington (UW) scheme. When compared with the default Holtslag scheme, the UW scheme, in the 10-year experiments over the European domain, shows a substantial cooling. It reduces winter warm bias over the north-eastern Europe by 2 °C and reduces summer warm bias over central Europe by 3 °C. A part of the detected cooling is ascribed to a general reduction in lower tropospheric eddy heat diffusivity with the UW scheme. While differences in temperature tendency due to PBL schemes are mostly localized to the lower troposphere, the schemes show a much higher diversity in how vertical turbulent mixing of the water vapour mixing ratio is governed. Differences in the water vapour mixing ratio tendency due to the PBL scheme are present almost throughout the troposphere. However, they alone cannot explain the overall water vapour mixing ratio profiles, suggesting strong interaction between the PBL and other model parameterisations. An additional 18-member ensemble with the UW scheme is made, where two formulations of the master turbulent length scale in unstable conditions are tested and unconstrained parameters associated with (a) the evaporative enhancement of the cloud-top entrainment and (b) the formulation of the master turbulent length scale in stable conditions are systematically perturbed. These experiments suggest that the master turbulent length scale in the UW scheme could be further refined in the current implementation in the RegCM model. It was also found that the UW scheme is less sensitive to the variations of the other two selected unconstrained parameters, supporting the choice of these parameters in the default formulation of the UW scheme.  相似文献   

15.
A land-surface model (LSM) is coupled with a large-eddy simulation (LES) model to investigate the vegetation-atmosphere exchange of heat, water vapour, and carbon dioxide (CO2) in heterogeneous landscapes. The dissimilarity of scalar transport in the lower convective boundary layer is quantified in several ways: eddy diffusivity, spatial structure of the scalar fields, and spatial and temporal variations in the surface fluxes of these scalars. The results show that eddy diffusivities differ among the three scalars, by up to 10–12%, in the surface layer; the difference is partly attributed to the influence of top-down diffusion. The turbulence-organized structures of CO2 bear more resemblance to those of water vapour than those of the potential temperature. The surface fluxes when coupled with the flow aloft show large spatial variations even with perfectly homogeneous surface conditions and constant solar radiation forcing across the horizontal simulation domain. In general, the surface sensible heat flux shows the greatest spatial and temporal variations, and the CO2 flux the least. Furthermore, our results show that the one-dimensional land-surface model scheme underestimates the surface heat flux by 3–8% and overestimates the water vapour and CO2 fluxes by 2–8% and 1–9%, respectively, as compared to the flux simulated with the coupled LES-LSM.  相似文献   

16.
This paper reports on measurements of sensible and latent heat and CO2 fluxes made over an irrigated potato field, growing next to a patch of desert. The study was conducted using two eddy correlation systems. One measurement system was located within the equilibrium boundary layer 800 m downwind from the edge of the potato field. The other measurement system was mobile and was placed at various downwind positions to probe the horizontal transition of vertical scalar fluxes. Latent (LE) and sensible (H) heat fluxes, measured at 4 m above the surface, exhibited marked variations with downwind distance over the field. Only after the fetch to height ratio exceeded 75 to 1 didLE andH become invariant with downwind distance. When latent and sensible heat fluxes were measured upwind of this threshold, significant advection of humidity-deficit occurred, causing a vertical flux divergence ofH andLE.The measured fluxes of momentum, heat, and moisture were compared with predictions from a second-order closure two-dimensional atmospheric boundary layer model. There is good agreement between measurements and model predictions. A soil-plant-atmosphere model was used to examine nonlinear feedbacks between humidity-deficits, stomatal conductance and evaporation. Data interpretation with this model revealed that the advection of hot dry air did not enhance surface evaporation rates near the upwind edge of the potato field, because of negative feedbacks among stomatal conductance, humidity-deficits, andLE. This finding is consistent with results from several recent studies.  相似文献   

17.
The structure-function parametersC T 2 andC v 2 of temperature and velocity, respectively, from the 1973 Minnesota experiments and from large-eddy and direct numerical simulations show a smooth transition from M–O similarity to the local scaling hypothesized by Nieuwstadt for the outer regions of the stable boundary layer. Under that hypothesis, turbulence statistics aloft depend on the local vertical fluxes of momentum and temperature, so these results suggest that remote-sensing measurements ofC T 2 andC v 2 could be used to infer vertical profiles of those fluxes. We argue that the sensitivity of the fluxes to unsteadiness, baroclinity, terrain slope, and breaking gravity waves precludes the universality of the vertical profiles of structure-function parameters in the stable PBL. We find that theC T 2 profile is particularly sensitive to these effects, which is consistent with observations that it varies considerably from case to case.  相似文献   

18.
A three-dimensional numerical meteorological model is used to perform large-eddy simulations of the upslope flow circulation over a periodic ridge-valley terrain. The subgrid-scale quantities are modelled using a prognostic turbulence kinetic energy (TKE) scheme, with a grid that has a constant horizontal resolution of 50 m and is stretched along the vertical direction. To account for the grid anisotropy, a modified subgrid length scale is used. To allow for the response of the surface fluxes to the valley-flow circulation, the soil surface temperature is imposed and the surface heat and momentum fluxes are computed based on Monin–Obukhov similarity theory. The model is designed with a symmetrical geometry using periodic boundary conditions in both the x and y directions. Two cases are simulated to study the influence of along-valley geostrophic wind forcing with different intensities. The presence of the orography introduces numerous complexities both in the mean properties of the flow and in the turbulent features, even for the idealized symmetric geometry. Classical definitions for the height of the planetary boundary layer (PBL) are revisited and redefined to capture the complex structure of the boundary layer. Analysis of first- and second-moment statistics, along with TKE budget, highlights the different structure of the PBL at different regions of the domain.  相似文献   

19.
The potential for using the ensemble square root filter data assimilation technique to estimate soil moisture profiles, surface heat fluxes, and the state of the planetary boundary layer (PBL) is explored. An observing system simulation experiment is designed to mimic the assimilation of near-surface soil moisture observations (θo ) and in-situ measurements of 2-m temperature (To ), 2-m specific humidity (Qo ), and 10-m horizontal winds [Vo =(Uo , Vo )]. The background forecasts are generated by a one-dimensional coupled land surface-boundary layer model (CLS-BLM) with soil, surface-layer and PBL parameterization schemes similar to those used in the Weather Research and Forecasting (WRF) model. Soil moisture, surface heat fluxes, and the state of the PBL evolve on different characteristic timescales, so the minimum assimilation time intervals required for skillful estimates of each target component are different. Correct estimates of the soil moisture profile are obtained effectively when a 6-h update time interval is used, while skillful estimates of surface fluxes and the PBL state require more frequent updates. The CLS-BLM requires a shorter assimilation time interval to correctly estimate the soil moisture profile than previously indicated by experiments using an off-line land surface model (LSM). Results from assimilating different subsets of observations show that θo makes a larger contribution to soil moisture estimates, while To , θo , and Vo are more important for estimates of surface heat fluxes and the PBL state. It is therefore necessary to combine these variables to accurately estimate the states of both the land surface and the PBL. Experimentation with different prescribed observational errors shows that the assimilation system is more sensitive to increases in observational errors than to reductions in observational errors.  相似文献   

20.
It is frequently observed in field experiments that the eddy covariance heat fluxes are systematically underestimated as compared to the available energy. The flux imbalance problem is investigated using the NCAR’s large-eddy simulation (LES) model imbedded with an online scheme to calculate Reynolds-averaged fluxes. A top–down and a bottom–up tracer are implemented into the LES model to quantify the influence of entrainment and bottom–up diffusion processes on flux imbalance. The results show that the flux imbalance follows a set of universal functions that capture the exponential decreasing dependence on u */w *, where u * and w * are friction velocity and the convective velocity scale, respectively, and an elliptic relationship to z/z i , where z i is the mixing-layer height. The source location in the boundary layer is an important factor controlling the imbalance magnitude and its horizontal and vertical distributions. The flux imbalance of heat and the bottom–up tracer is tightly related to turbulent coherent structures, whereas for the top–down diffusion, such relations are weak to nonexistent. Our results are broadly consistent with previous studies on the flux imbalance problem, suggesting that the published results are robust and are not artefacts of numerical schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号