首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Comptes Rendus Geoscience》2008,340(9-10):644-650
The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.  相似文献   

2.
Economic damage assessment for flood risk estimation is established in many countries, but attentions have been focused on macro- or meso-scale approaches and less on micro-scale approaches. Whilst the macro- or meso-scale approaches of flood damage assessment are suitable for regional- or national-oriented studies, micro-scale approaches are more suitable for cost–benefit analysis of engineered protection measures. Furthermore, there remains lack of systematic and automated approaches to estimate economic flood damage for multiple flood scenarios for the purpose of flood risk assessment. Studies on flood risk have also been driven by the assumption of stationary characteristic of flood hazard, hence the stationary-oriented vulnerability assessment. This study proposes a novel approach to assess vulnerability and flood risk and accounts for adaptability of the approach to nonstationary conditions of flood hazard. The approach is innovative in which an automated concurrent estimation of economic flood damage for a range of flood events on the basis of a micro-scale flood risk assessment is made possible. It accounts for the heterogeneous distribution of residential buildings of a community exposed to flood hazard. The feasibility of the methodology was tested using real historical flow records and spatial information of Teddington, London. Vulnerability curves and residual risk associated with a number of alternative extents of property-level protection adoptions are estimated by the application of the proposed methodology. It is found that the methodology has the capacity to provide valuable information on vulnerability and flood risk that can be integrated in a practical decision-making process for a reliable cost–benefit analysis of flood risk reduction options.  相似文献   

3.
Modelling woody material transport and deposition in alpine rivers   总被引:3,自引:2,他引:1  
Recent flood events in Switzerland and Western Austria in 2005 were characterised by an increase in impacts and associated losses due to the transport of woody material. As a consequence, protection measures and bridges suffered considerable damages. Furthermore, cross-sectional obstructions due to woody material entrapment caused unexpected flood plain inundations resulting in severe damage to elements at risk. Until now, the transport of woody material is neither sufficiently taken into account nor systematically considered, leading to prediction inaccuracies during the procedure of hazard mapping. To close this gap, we propose a modelling approach that (1) allows the estimation of woody material recruitment from wood-covered banks and flood plains; (2) allows the evaluation of the disposition for woody material entrainment and transport to selected critical configurations along the stream and that (3) enables the delineation of hazard process patterns at these critical configurations. Results from a case study suggest the general applicability of the concept. This contribution to woody material transport analysis refines flood hazard assessments due to the consideration of woody material transport scenarios.  相似文献   

4.
The frequency in occurrence and severity of floods has increased globally. However, many regions around the globe, especially in developing countries, lack the necessary field monitoring data to characterize flood hazard risk. This paper puts forward methodology for developing flood hazard maps that define flood hazard risk, using a remote sensing and GIS-based flood hazard index (FHI), for the Nyamwamba watershed in western Uganda. The FHI was compiled using analytical hierarchy process and considered slope, flow accumulation, drainage network density, distance from drainage channel, geology, land use/cover and rainfall intensity as the flood causative factors. These factors were derived from Landsat, SRTM and PERSIANN remote sensing data products, except for geology that requires field data. The resultant composite FHI yielded a flood hazard map pointing out that over 11 and 18% of the study area was very highly and highly susceptible to flooding, respectively, while the remaining area ranged from medium to very low risk. The resulting flood hazard map was further verified using inundation area of a historical flood event in the study area. The proposed methodology was effective in producing a flood hazard map at the watershed local scale, in a data-scarce region, useful in devising flood mitigation measures.  相似文献   

5.
Flooding is a serious hazard across Europe, with over 200 major floods documented in the last two decades. Over this period, flood management has evolved, with a greater responsibility now placed on at-risk communities to understand their risk and take protective action to develop flood resilience. Consequently, communicating flood risk has become an increasingly central part of developing flood resilience. However, research suggests that current risk communications have not resulted in the intended increase in awareness, or behavioural change. This paper explores how current risk communications are used by those at risk, what information users desire and how best this should be presented. We explore these questions through a multi-method participatory experiment, working together with a competency group of local participants in the town of Corbridge, Northumberland, the UK. Our research demonstrates that current risk communications fail to meet user needs for information in the period before a flood event, leaving users unsure of what will happen, or how best to respond. We show that participants want information on when and how a flooding may occur (flood dynamics), so that they can understand their risk and feel in control of their decisions on how to respond. We also present four prototypes which translate these information needs into new approaches to communicating flood risk. Developed by the research participants, these proposals meet their information needs, increase their flood literacy and develop their response capacity. The findings of the research have implications for how we design and develop future flood communications, but also for how we envisage the role of flood communications in developing resilience at a community level.  相似文献   

6.
Flood hazard evaluation is an important input for Nuclear Power Plants external events safety studies. In the present study, flood hazard at various nuclear sites in India due to rainfall has been evaluated. Hazard estimation is a statistical procedure by which rainfall intensity versus occurrence frequency is estimated from historical records of rainfall data and extrapolated with asymptotic extreme value distribution. Rainfall data needed for flood hazard assessment are daily annual maximum rainfall (24?h data). The observed data points have been fitted using Gumbel, power law and exponential distribution, and return period has been estimated. To study the stationarity of rainfall data, a moving window estimate of the parameters has been performed. The rainfall pattern is stationary in both coastal and inland regions over the period of observation. The coastal regions show intense rainfall and higher variability than inland regions. Based on the plant layout, catchment area and drainage capacity, the prototype fast breeder reactor (PFBR) site is unlikely to be flooded.  相似文献   

7.
Flood disasters and its consequent damages are on the rise globally. Pakistan has been experiencing an increase in flood frequency and severity along with resultant damages in the past. In addition to the regular practices of loss and damage estimation, current focus is on risk assessment of hazard-prone communities. Risk measurement is complex as scholars engaged in disaster science and management use different quantitative models with diverse interpretations. This study tries to provide clarity in conceptualizing disaster risk and proposes a risk assessment methodology with constituent components such as hazard, vulnerability (exposure and sensitivity) and coping/adaptive capacity. Three communities from different urban centers in Pakistan have been selected based on high flood frequency and intensity. A primary survey was conducted in selected urban communities to capture data on a number of variables relating to flood hazard, vulnerability and capacity to compute flood risk index. Households were categorized into different risk levels, such as can manage risk, can survive and cope, and cannot cope. It was found that risk levels varied significantly across the households of the three communities. Metropolitan city was found to be highly vulnerable as compared to smaller cities due to weak capacity. Households living in medium town had devised coping mechanisms to manage risk. The proposed methodology is tested and found operational for risk assessment of flood-prone areas and communities irrespective of locations and countries.  相似文献   

8.
The level of damage of flood events does not solely depend on exposure to flood waters. Vulnerabilities due to various socio-economic factors such as population at risk, public awareness, and presence of early warning systems, etc. should also be taken into account. Federal and state agencies, watershed management coalitions, insurance companies, need reliable decision support system to evaluate flood risk, to plan and design flood damage assessment and mitigation systems. In current practice, flood damage evaluations are generally carried out based on results obtained from one dimensional (1D) numerical simulations. In some cases, however, 1D simulation is not able to accurately capture the dynamics of the flood events. The present study describes a decision support system, which is based on 2D flood simulation results obtained with CCHE2D-FLOOD. The 2D computational results are complemented with information from various resources, such as census block layer, detailed survey data, and remote sensing images, to estimate loss of life and direct damages (meso or micro scale) to property under uncertainty. Flood damage calculations consider damages to residential, commercial, and industrial buildings in urban areas, and damages to crops in rural areas. The decision support system takes advantage of fast raster layer operations in a GIS platform to generate flood hazard maps based on various user-defined criteria. Monte Carlo method based on an event tree analysis is introduced to account for uncertainties in various parameters. A case study illustrates the uses of the proposed decision support system. The results show that the proposed decision support system allows stake holders to have a better appreciation of the consequences of the flood. It can also be used for planning, design, and evaluation of future flood mitigation measures.  相似文献   

9.
The production of flood hazard assessment maps is an important component of flood risk assessment. This study analyses flood hazard using flood mark data. The chosen case study is the 2013 flood event in Quang Nam, Vietnam. The impacts of this event included 17 deaths, 230 injuries, 91,739 flooded properties, 11,530 ha of submerged and damaged agricultural land, 85,080 animals killed and widespread damage to roads, canals, dykes and embankments. The flood mark data include flood depth and flood duration. Analytic hierarchy process method is used to assess the criteria and sub-criteria of the flood hazard. The weights of criteria and sub-criteria are generated based on the judgements of decision-makers using this method. This assessment is combined into a single map using weighted linear combination, integrated with GIS to produce a flood hazard map. Previous research has usually not considered flood duration in flood hazard assessment maps. This factor has a rather strong influence on the livelihood of local communities in Quang Nam, with most agricultural land within the floodplain. A more comprehensive flood hazard assessment mapping process, with the additional consideration of flood duration, can make a significant contribution to flood risk management activities in Vietnam.  相似文献   

10.
The study proposes an original methodology for producing probability-weighted hazard maps based on an ensemble of numerical simulations. These maps enable one to compare different strategies for flood risk management. The methodology was applied over a 270-km2 flood-prone area close to the left levee system of a 28-km reach of the river Reno (Northern Central Italy). This reach is characterised by the presence of a weir that allows controlled flooding of a large flood-prone area during major events. The proposed probability-weighted hazard maps can be used to evaluate how a structural measure such as the mentioned weir alters the spatial variability of flood hazard in the study area. This article shows an application by constructing two different flood hazard maps: a first one which neglects the presence of the weir using a regular levee system instead, and a second one that reflects the actual geometry with the weir. Flood hazard maps were generated by combining the results of several inundation scenarios, simulated by coupling 1D- and 2D-hydrodynamic models.  相似文献   

11.
The disign of flood warning — flood response systems is often performed as part of the overall engineering analysis of flood damage mitigation schemes. However, an important part of the flood response component of such systems is human perception of the flood hazard and its implication for the responses undertaken. This human dimension is examined from three viewpoints, the perception of the flood, the issues in the warning dissemination process, and the implications for the actions undertaken by individual flood plain occupants in response to a warning. Evidence is provided to show how the human characteristics of the flood plain occupants can signigicantly affect the benefits derived from a flood warning — flood response system. The importance of these non-engineering aspects of the problem leads to recommendations for closer collaboration between traditional technical experts and social scientists. The cooperation should extend beyond the assessment of the reduction in flood damages expected from a particular flood warning scheme into actual design of the dissemination process and response mechanisms.  相似文献   

12.
This paper illustrates the development of flood hazard and risk maps in Greater Dhaka of Bangladesh using geoinformatics. Multi-temporal RADARSAT SAR and GIS data were employed to delineate flood hazard and risk areas for the 1998 historical flood. Flood-affected frequency and flood depth were estimated from multi-date SAR data and considered as hydrologic parameters for the evaluation of flood hazard. Using land-cover, gemorphic units and elevation data as thematic components, flood hazard maps were created by considering the interactive effect of flood frequency and flood water depth concurrently. Analysis revealed that a major portion of Greater Dhaka was exposed to high to very high hazard zones while a smaller portion (2.72%) was free from the potential flood hazard. Flood risk map according to administrative division showed that 75.35% of Greater Dhaka was within medium to very high risk areas of which 53.39% of areas are believed to be fully urbanized by the year 2010.  相似文献   

13.
Lechowska  Ewa 《Natural Hazards》2022,111(3):2343-2378
Natural Hazards - The study of flood risk perception factors can be considered by using different paradigms. In an attempt to understand risk perception, two basic paradigms can be distinguished:...  相似文献   

14.
A lightweight decision support system is presented, oriented also to statistics, useful for assisting weather forecasters and other parties interested in hazard assessment associated with extreme weather. The system can be used in enhancing the warning procedures, ahead of a flood or a flash flood whose probability of occurrence is based on the history of such events in a particular region. A software application has been built that integrates meteorological data with Geographical Information Systems procedures, in a unified informational aggregate. This system stores various types of data related to flood and flash flood events, so it is able to provide the user with any piece of information related to a documented event. It also catalogues any information that users provide it with, to further document a past, or an ongoing event. The system can be used to raise awareness of forecasters over a particular context, before a possibly hazardous situation, and it can also offer automatic warnings and suggestions to those interested in disaster mitigation.  相似文献   

15.
Vulnerability assessment of an urban flood in Nigeria: Abeokuta flood 2007   总被引:1,自引:0,他引:1  
The paper presents the result of a vulnerability assessment of urban dwellers to a major flood hazard in Abeokuta, southwestern Nigeria in July 2007. This was achieved by means of questionnaire survey administered to 248 flood area residents. Flood vulnerability was assessed by examining exposure, susceptibility, and coping indicators in the study area. Findings of the study show that although about 50% of respondents had experienced floods, in Abeokuta or elsewhere in the past, majority (66%) did not anticipate a flood event of such magnitude to occur despite its location on a flood plain and, therefore, were unprepared for such hazard. Pre-warning of the flood event was generally lacking among flood area residents as only 8% of respondents indicated pre-warning, which was based on personal observations. Response to the flood hazard was mainly reactive for both private and public agents as flood risk reduction measures were not in place.  相似文献   

16.
Landslides, debris flows and stream floods are common natural processes inNorthern Italy. Their occurrence can be correctly assessed in space and timeonly through a sound basis of knowledge acquired by the scientific use of alarge number of historical documents. Over the last 30 years, the CNR IRPIInstitute of Turin has made archive data utilisation one of its main points ofscientific research, through the collection of hundreds of thousands of recordscontained in published and unpublished documents and historical reports onnatural damaging events over the last 500 years, particularly since XIX Century.The historical data, interpreted and selected on a scientific basis, have beenorganised in a database and utilised for landscape planning and hydrogeologicalprevention. In co-operation with public organisations, the IRPI Institute hassupplied information (type, location, magnitude, frequency and effects) abouthazardous events in Northern Italy. To give an example, in the last 4 yearsabout 4,500 failure events have been detected along the road network of theTurin Province and many debris flow, rockfall, landslide and flood events inthe Lombardy Region. These data are reported as points linked to the relevantevent-card on technical cartography (scale 1:10,000 or 1:25,000), so that theycan be immediately utilised either on paper or digitally (e.g., GIS, Arcview software).The present day elaboration of archival data permit the possible analytical applications for structural interventions in natural hazard remediation in built-up areas. In all cases, the results of research allow public awareness of natural danger and the correct layout of civil protection strategies.  相似文献   

17.

The priority of flood management planning is physical victimization and focuses on taking structural measures. Although this approach is an accurate approach, more information is needed in implementing efficient precautionary and planning decisions. It is an indisputable fact that the existence of nothing that is not sustainable in nature cannot continue. Hence, it is necessary to implement a planning decision suitable for the structure of the population living in the region so that the continuity of the policies to be carried out against natural hazards of hydrometeorological origin such as a flood is ensured. How the socio-demographic structures affect the flood risk perception of 245 people living in the city center of Bayburt is examined in this study. It is the first research conducted for the province of Bayburt for this perspective. The participants were asked to fill a questionnaire containing 24 items and consisting of 2 sections. T test and one-way ANOVA (one-way analysis of variance) statistical methods were used to ascertain the difference between the responses of the participants to the questionnaire, based on their demographic structure. As the result of the study, significant differences were observed between the expressions depicting flood risk perception and the participant's age, income levels and educational background. In addition, it has been noted that there is a positive relationship between education and income levels and flood risk perception.

  相似文献   

18.
In this paper, I applied statistical, econometric, and mathematical methodologies to evaluate the conditions required for implementing a publicly supported trans-boundary flood risk management plan in accordance with the EU Floods Directive (2007/60/EU). Although this paper adopts a focus on the methodology rather than on solving a specific problem, the Scheldt estuary is used to provide an illustrative case study of this approach. I showed that, apart from some expected minor differences, the Belgians and the Dutch can be considered a relatively homogeneous population. Moreover, I estimated the main determinants of both perceived flood risk (PFR) and willingness to pay (WTP) for a compensation fund by using a linear model and an ordered probit model (based on a double-bounded dichotomous-choice approach), respectively. Some policies appear to be potentially effective: a campaign to inform the general public about evacuation and trauma management could increase WTP by 19 and 21 %, respectively; an information campaign focused on young women could reduce PFR; and a campaign to inform the general public about flood strategies and the need to disregard flood events in the press could reduce PFR by 56 and 54 %, respectively. Finally, I showed that, apart from some expected differences between the values at risk in Belgium and the Netherlands, both individual rationality and overall feasibility conditions are met. Thus, if information campaigns and other measures are designed to account for differences between the Belgians and the Dutch, a publicly supported trans-boundary flood risk management plan can be successfully implemented.  相似文献   

19.
This article deals with methods for the estimation of loss of life due to flooding. These methods can be used to assess the flood risks and to identify mitigation strategies. The first part of this article contains a comprehensive review of existing literature. Methods have been developed for different types of floods in different regions. In general these methods relate the loss of life in the flooded area to the flood characteristics and the possibilities for evacuation and shelter. An evaluation showed that many of the existing methods do not take into account all of the most relevant determinants of loss of life and that they are often to a limited extent based on empirical data of historical flood events. In the second part of the article, a new method is proposed for the estimation of loss of life caused by the flooding of low-lying areas protected by flood defences. An estimate of the loss of life due to a flood event can be given based on: (1) information regarding the flood characteristics, (2) an analysis of the exposed population and evacuation, and (3) an estimate of the mortality amongst the exposed population. By analysing empirical information from historical floods, new mortality functions have been developed. These relate the mortality amongst the exposed population to the flood characteristics. Comparison of the outcomes of the proposed method with information from historical flood events shows that it gives an accurate approximation of the number of observed fatalities during these events. The method is applied to assess the consequences for a large-scale flooding of the area of South Holland, in the Netherlands. It is estimated that the analysed coastal flood scenario can lead to approximately 3,200 fatalities in this area.
A. C. W. M. VrouwenvelderEmail:
  相似文献   

20.
Floods are regular feature in rapidly urbanizing Dhaka, the capital city of Bangladesh. It is observed that about 60% of the eastern Dhaka regularly goes under water every year in monsoon due to lack of flood protection. Experience gathered from past devastating floods shows that, besides structural approach, non-structural approach such as flood hazard map and risk map is effective tools for reducing flood damages. In this paper, assessment of flood hazard by developing a flood hazard map for mid-eastern Dhaka (37.16 km2) was carried out by 1D hydrodynamic simulation on the basis of digital elevation model (DEM) data from Shuttle Radar Topography Mission and the hydrologic field-observed data for 32 years (1972–2004). As the topography of the area has been considerably changed due to rapid land-filling by land developers which was observed in recent satellite image (DigitalGlobe image; Date of imagery: 7th March 2007), the acquired DEM data were modified to represent the current topography. The inundation simulation was conducted using hydrodynamic program HEC-RAS for flood of 100-year return period. The simulation has revealed that the maximum depth is 7.55 m at the southeastern part of that area and affected area is more than 50%. A flood hazard map was prepared according to the simulation result using the software ArcGIS. Finally, to assess the flood risk of that area, a risk map was prepared where risk was defined as the product of hazard (i.e., depth of inundation) and vulnerability (i.e., the exposure of people or assets to flood). These two maps should be helpful in raising awareness of inhabitants and in assigning priority for land development and for emergency preparedness including aid and relief operations in high-risk areas in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号