首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We examine the unsteady response of a neutral atmospheric boundary layer (ABL) of depth h and friction velocity u * when a uniform surface heat flux is applied abruptly or decreased rapidly over a time scale t<inf>θ</inf> less than about h /(10u *). Standard Monin–Obukhov (MO) relationships are used for the perturbed eddy viscosity profile in terms of the changes to the heat flux and mean shear. Analytical solutions for changes in temperature, mean wind and shear stress profile are obtained for the surface layer, when there are small changes in h /|LMO| over the time scale tMO~|L MO|/(10u*) (where L MO and t MO are the length and time scales, respectively). They show that a maximum in the wind speed profile occurs at the top of the thermal boundary layer for weak surface cooling, i.e. a wind jet, whereas there is a flattening of the profile and no marked maximum for weak surface heating. The modelled profiles are approximately the same as those obtained from the U.K. Met Office Unified Model when operating as a mesoscale model at 12-km horizontal resolution. The theoretical model is modified when strong surface heating is suddenly applied, resulting in a large change in h /|L MO| (>>1), over the time scale t MO. The eddy structure is predicted to change significantly and the addition of convective turbulence increases the shear turbulence at the ground. A low-level wind jet can form, with convective turbulence adding to the mean momentum of the flow. This was verified by our laboratory experiment and direct numerical simulations. Additionally, it is shown that the effects of Coriolis acceleration diminish (rather than as suggested in the literature, amplify) the formation of the wind jets in the situations considered here. Hence, only when the surface heat flux changes over time scales greater than 1/f (where f is the Coriolis parameter) does the ABL adjust monotonically between its equilibrium states. These results are also applicable to the ABL passing over spatially varying surface heat fluxes.  相似文献   

2.
We report on a novel approach for the Reynolds-averaged Navier-Stokes (RANS) modelling of the neutral atmospheric boundary layer (ABL), using the standard k-ek-{\varepsilon} turbulence model. A new inlet condition for turbulent kinetic energy is analytically derived from the solution of the k-ek-{\varepsilon} model transport equations, resulting in a consistent set of fully developed inlet conditions for the neutral ABL. A modification of the standard k-ek-{\varepsilon} model is also employed to ensure consistency between the inlet conditions and the turbulence model. In particular, the turbulence model constant C μ is generalized as a location-dependent parameter, and a source term is introduced in the transport equation for the turbulent dissipation rate. The application of the proposed methodology to cases involving obstacles in the flow is made possible through the implementation of an algorithm, which automatically switches the turbulence model formulation when going from the region where the ABL is undisturbed to the region directly affected by the building. Finally, the model is completed with a slightly modified version of the Richards and Hoxey rough-wall boundary condition. The methodology is implemented and tested in the commercial code Ansys Fluent 12.1. Results are presented for a neutral boundary layer over flat terrain and for the flow around a single building immersed in an ABL.  相似文献   

3.
Large-scale turbulence structures in the near-neutral atmospheric boundary layer (ABL) are investigated on the basis of observations made from the 213-m tall meteorological tower at Tsukuba, Japan. Vertical profiles of wind speed and turbulent fluxes in the ABL were obtained with sonic anemometer-thermometers at six levels of the tower. From the archived data, 31 near-neutral cases are selected for the analysis of turbulence structures. For the typical case, event detection by the integral wavelet transform with a large time scale (180 s) from the streamwise velocity component (u) at the highest level (200 m) reveals a descending high-speed structure with a time scale of approximately 100 s (a spatial scale of 1 km at the 200-m height). By applying the wavelet transform to the u velocity component at each level, the intermittent appearance of large-scale high-speed structures extending also in the vertical is detected. These structures usually make a large contribution to the downward momentum transfer and induce the enhancement of turbulent kinetic energy. This behaviour is like that of “active” turbulent motions. From the analysis of the two-point space–time correlation of wavelet coefficients for the u velocity component, the vertical extent and the downward influence of large-scale structures are examined. Large fluctuations in the large-scale range (wavelet variance at the selected time scale) at the 200-m level tend to induce the large correlation between the higher and lower levels.  相似文献   

4.
The atmospheric boundary layer (ABL) model of Weng and Taylor with E−ℓ turbulence closure is applied to simulate the one-dimensional stably stratified ABL. The model has been run for nine hours from specified initial wind, potential temperature and turbulent kinetic energy profiles, and with a specified cooling rate applied at the surface. Different runs are conducted for different cooling rates, geostrophic winds and surface roughnesses. The results are discussed and compared with other models, large-eddy simulations and published field data.  相似文献   

5.
Direct numerical simulations of an Ekman layer are performed to study flow evolution during the response of an initially neutral boundary layer to stable stratification. The Obukhov length, L, is varied among cases by imposing a range of stable buoyancy fluxes at the surface to mimic ground cooling. The imposition of constant surface buoyancy flux , i.e. constant-flux stability, leads to a buoyancy difference between the ground and background that tends to increase with time, unlike the constant-temperature stability case where a constant surface temperature is imposed. The initial collapse of turbulence in the surface layer owing to surface cooling that occurs over a time scale proportional to \(L/u_*\), where \(u_*\) is the friction velocity, is followed by turbulence recovery. The flow accelerates, and a “low-level jet” (LLJ) with inertial oscillations forms during the turbulence collapse. Turbulence statistics and budgets are examined to understand the recovery of turbulence. Vertical turbulence exchange, primarily by pressure transport, is found to initiate fluctuations in the surface layer and there is rebirth of turbulence through enhanced turbulence production as the LLJ shear increases. The turbulence recovery is not monotonic and exhibits temporal intermittency with several collapse/rebirth episodes. The boundary layer adjusts to an increase in the surface buoyancy flux by increased super-geostrophic velocity and surface stress such that the Obukhov length becomes similar among the cases and sufficiently large to allow fluctuations with sustained momentum and heat fluxes. The eventual state of fluctuations, achieved after about two inertial periods (\(ft \approx 4\pi \)), corresponds to global intermittency with turbulent patches in an otherwise quiescent background. Our simplified configuration is sufficient to identify turbulence collapse and rebirth, global and temporal intermittency, as well as formation of low-level jets, as in observations of the stratified atmospheric boundary layer.  相似文献   

6.
A common parametrization over snow-covered surfaces that are undergoing saltation is that the aerodynamic roughness length for wind speed (z 0) scales as au*2/g{\alpha u_\ast^2/g}, where u * is the friction velocity, g is the acceleration of gravity, and α is an empirical constant. Data analyses seem to support this scaling: many published plots of z 0 measured over snow demonstrate proportionality to u*2{u_\ast^2 }. In fact, I show similar plots here that are based on two large eddy-covariance datasets: one collected over snow-covered Arctic sea ice; another collected over snow-covered Antarctic sea ice. But in these and in most such plots from the literature, the independent variable, u *, was used to compute z 0 in the first place; the plots thus suffer from fictitious correlation that causes z 0 to unavoidably increase with u * without any intervening physics. For these two datasets, when I plot z 0 against u * derived from a bulk flux algorithm—and thus minimize the fictitious correlation—z 0 is independent of u * in the drifting snow region, u * ≥ 0.30 ms−1. I conclude that the relation z0 = au*2/g{z_0 = \alpha u_\ast^2/g} when snow is drifting is a fallacy fostered by analyses that suffer from fictitious correlation.  相似文献   

7.
Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, σ u and σ T respectively, measured at a single level. An attractive aspect of this method is that it yields fluxes from measurements that can be obtained with two-dimensional sonic anemometers. These instruments are increasingly being used at official weather stations, where they replace the standard cup anemometer–wind vane system. With methods such as the one described in this note, a widespread, good quality, flux network can be established, which would greatly benefit the modelling community. It is shown that a ‘variance’ dimensionless height (ζ σ) defined from σ u and σ T is highly related to the ‘conventional’ dimensionless stability parameter ζ=z/L, where z is height and L is the Obukhov length. Empirical functions for ζ σ are proposed that allow direct calculation of heat and momentum fluxes from σ u and σ T. The method performs fairly well also during a night of intermittent turbulence.  相似文献   

8.
When modelling the turbulent dispersion of a passive tracer using Reynolds-averaged Navier–Stokes (RANS) simulations, two different approaches can be used. The first consists of solving a transport equation for a scalar, where the governing parameters are the mean velocity field and the turbulent diffusion coefficient, given by the ratio of the turbulent viscosity and the turbulent Schmidt number Sc t . The second approach uses a Lagrangian particle tracking algorithm, where the governing parameters are the mean velocity and the fluctuating velocity field, which is determined from the turbulence kinetic energy and the Lagrangian time T L . A comparison between the two approaches and wind-tunnel data for the dispersion in the wake of a rectangular building immersed in a neutral atmospheric boundary layer (ABL) is presented. Particular attention was paid to the influence of turbulence model parameters on the flow and concentration field. In addition, an approach to estimate Sc t and T L based on the calculated flow field is proposed. The results show that applying modified turbulence model constants to enable correct modelling of the ABL improves the prediction for the velocity and concentration fields when the modification is restricted to the region for which it was derived. The difference between simulated and measured concentrations is smaller than 25% or the uncertainty of the data on 76% of the points when solving the transport equation for a scalar with the proposed formulation for Sc t , and on 69% of the points when using the Lagrangian particle tracking with the proposed formulation for T L .  相似文献   

9.
10.
This paper explores the utility of specifying the eddy viscosity for the horizontally uniform boundary layer as the product of the variance of vertical velocity and an empirical time scale τ w , as opposed to the more usual formulation where k is the turbulent kinetic energy (TKE), λ k is a length scale and α is a dimensionless coefficient. Simulations were compared with the observations on Day 33 of the Wangara experiment, and with a plausible specification of τ w (or λ k ) each model simulated convective boundary-layer development reasonably well, although the closure produced a more realistic width for the entrainment layer. Under the light winds of Day 33, and with the onset of evening cooling, an excessively shallow and strongly-stratified nocturnal inversion developed, and limited its own further deepening. Boundary-layer models that neglect radiative heat transport and parametrize convective transport by eddy viscosity closure are prone to this runaway (unstable) feedback when forced by a negative (i.e. downward) surface flux of sensible heat.  相似文献   

11.
The stable boundary layer which evolved over the lowland of Northern Germany during a clear night with moderate geostrophic winds is studied. Because of the lack of turbulence measurements, a vertical flux-profile of heat and momentum is derived from a mean wind and temperature profile using an integral method. The stability parameter h/L * = 17 indicates that turbulence was sporadic during this particular night. This result is confirmed by the observed inertial oscillations, which occur not only in the residual layer but also in the boundary layer below.The case study shows that turbulent cooling overrules radiational cooling in the lower part of the surface inversion layer. Additionally, warm-air advection occurs. In the upper part, cold-air advection and radiational cooling dominate, while turbulent cooling is reduced. Subsidence warming can be neglected throughout the boundary layer during this particular night.  相似文献   

12.
The limited-length-scale k-e{k-\varepsilon} model proposed by Apsley and Castro for the atmospheric boundary layer (Boundary-Layer Meteorol 83(1):75–98, 1997) is revisited with special attention given to its predictions in the constant-stress surface layer. The original model proposes a modification to the length-scale-governing e{\varepsilon} equation that ensures consistency with surface-layer scaling in the limit of small m/ max (where m is the mixing length and max its maximum) and yet imposes a limit on m as m/ max approaches one. However, within the equilibrium surface layer and for moderate values of z/ max, the predicted profiles of velocity, mixing length, and dissipation rate using the Apsley and Castro model do not coincide with analytical solutions. In view of this, a general e{\varepsilon} transport equation is derived herein in terms of an arbitrary desired mixing-length expression that ensures exact agreement with corresponding analytical solutions for both neutral and stable stability. From this result, a new expression for Ce3{C_{\varepsilon3}} can be inferred that shows this coefficient tends to a constant only for limiting values of z/L; and, furthermore, that the values of Ce3{C_{\varepsilon3}} for z/L → 0 and z/L →∞ differ by a factor of exactly two.  相似文献   

13.
The effect of topographical slope angle and atmospheric stratification on turbulence intensities in the unstably stratified surface layer have been parameterized using observations obtained from a three-dimensional sonic anemometer installed at 8 m height above the ground at the Seoul National University (SNU) campus site in Korea for the years 1999–2001. Winds obtained from the sonic anemometer are analyzed according to the mean wind direction, since the topographical slope angle changes significantly along the azimuthal direction. The effects of the topographical slope angle and atmospheric stratification on surface-layer turbulence intensity are examined with these data. It is found that both the friction velocity and the variance for each component of wind normalized by the mean wind speed decrease with increase of the topographical slope angle, having a maximum decreasing rate at very unstable stratification. The decreasing rate of the normalized friction velocity (u * /U) is found to be much larger than that of the turbulence intensity of each wind component due to the reduction of wind shear with increase in slope angle under unstable stratification. The decreasing rate of the w component of turbulence intensity (σ w /U) is the smallest over the downslope surface whereas that of the u component (σ u /U) has a minimum over the upslope surface. Consequently, σ w /u * has a maximum increasing rate with increase in slope angle for the downslope wind, whereas σ u /u * has its maximum for the upslope wind. The sloping terrain is found to reduce both the friction velocity and turbulence intensity compared with those on a flat surface. However, the reduction of the friction velocity over the sloping terrain is larger than that of the turbulence intensity, thereby enhancing the turbulence intensity normalized by the friction velocity over sloping terrain compared with that over a flat surface.  相似文献   

14.
Scaling velocities relevant for turbulent flows in the planetary boundary layer are discussed. It is suggested that the scaling parameters should be determined by integrated bulk properties of the respective turbulent production terms. According to this concept, a new velocity scale, replacing the friction velocityu*, is proposed depending on bothu* and the geostrophic windu g . The convective velocity scalew* can be determined by the integral of the buoyancy production term and is therefore an appropriate velocity scale. Examination of Minnesota and Kansas data shows that these data do not give the possibility of verifying whether the new scaling velocity is more appropriate thanu*. This is because the range of variability of atmospheric stability during the field measurements is too small. However, theoretical considerations based on integrated properties of the turbulence, through the depth of the planetary boundary layer, are given in support of the new scaling velocity.  相似文献   

15.
The spatial peak surface shear stress tS¢¢{\tau _S^{\prime\prime}} on the ground beneath vegetation canopies is responsible for the onset of particle entrainment and its precise and accurate prediction is essential when modelling soil, snow or sand erosion. This study investigates shear-stress partitioning, i.e. the fraction of the total fluid stress on the entire canopy that acts directly on the surface, for live vegetation canopies (plant species: Lolium perenne) using measurements in a controlled wind-tunnel environment. Rigid, non-porous wooden blocks instead of the plants were additionally tested for the purpose of comparison since previous wind-tunnel studies used exclusively artificial plant imitations for their experiments on shear-stress partitioning. The drag partitioning model presented by Raupach (Boundary-Layer Meteorol 60:375–395, 1992) and Raupach et al. (J Geophys Res 98:3023–3029, 1993), which allows the prediction of the total shear stress τ on the entire canopy as well as the peak (tS ¢¢/t)1/2{(\tau _S ^{\prime\prime}/\tau )^{1/2}} and the average (tS/t)1/2{(\tau _S^{\prime}/\tau )^{1/2}} shear-stress ratios, is tested against measurements to determine the model parameters and the model’s ability to account for shape differences of various roughness elements. It was found that the constant c, needed to determine the total stress τ and which was unspecified to date, can be assumed a value of about c = 0.27. Values for the model parameter m, which accounts for the difference between the spatial surface average tS{\tau _S^{\prime}} and the peak tS ¢¢{\tau _S ^{\prime\prime}} shear stress, are difficult to determine because m is a function of the roughness density, the wind velocity and the roughness element shape. A new definition for a parameter a is suggested as a substitute for m. This a parameter is found to be more closely universal and solely a function of the roughness element shape. It is able to predict the peak surface shear stress accurately. Finally, a method is presented to determine the new a parameter for different kinds of roughness elements.  相似文献   

16.
A scale-similarity model to estimate the subfilter-scale energy using the trace of the Leonard stress tensor is proposed and evaluated for large-eddy simulations of the atmospheric boundary layer (ABL). The model is derived from a stability-dependent model of the energy spectrum in the ABL, which accounts for the effects of buoyancy and mean shear as a function of z/L, the Monin–Obukhov stability variable. An a priori test using ABL turbulence data demonstrates that the model has accurate performance for dimensionless filter widths of Δ/z = 2, 1, and 0.5 for stabilities of −1 ≤ z/L ≤ 0.5, and improves considerably upon a similar model that is derived using an infinite κ −5/3 spectrum. This improvement is especially significant in the first several grid points near the surface in large-eddy simulations of the ABL, where Δ/z is necessarily large. The modelling procedure is then extended to develop a similarity model for the subfilter-scale scalar variance; it is shown to have robust performance for temperature.  相似文献   

17.
Tethered Lifting System (TLS) estimates of the dissipation rate of turbulent kinetic energy (e){(\varepsilon)} are reasonably well correlated with concurrent measurements of vertical velocity variance (sw2){(\sigma_{w}^{2})} obtained from sonic anemometers located on a nearby 60-m tower during the CASES-99 field experiment. Additional results in the first 100 m of the nocturnal stable boundary layer confirm our earlier claim that the presence of weak but persistent background turbulence exists even during the most stable atmospheric conditions, where e{\varepsilon} can exhibit values as low as 10−7 m2 s−3. We also present a set of empirical equations that incorporates TLS measurements of temperature, horizontal wind speed, and e{\varepsilon} to provide a proxy measurement for sw2{\sigma_{w}^{2}} at altitudes higher than tower heights.  相似文献   

18.
Summary ?Simultaneous flight measurements with the research aircraft Do 128 and the helicopter-borne turbulence probe Helipod were performed on 18 June 1998 during the LITFASS-98 field experiment. The area-averaged turbulent vertical fluxes of momentum, sensible, and latent heat were determined on a 15 km × 15 km and a 10 km × 10 km flight pattern, respectively. The flights were carried out over heterogeneous terrain at different altitudes within a moderately convective boundary layer with Cumulus clouds. Co-spectra-analysis demonstrated that the small scale turbulent transport was completely sampled, while the comparatively small flight patterns were possibly of critical size regarding the large-scale turbulence. The phygoide of the airplane was identified as a significant peak in some co-spectra. The turbulent fluxes of momentum and sensible heat at 80 m above the ground showed systematic dependence on the location of the flight legs above the heterogeneous terrain. This was not observed for the latent heat flux, probably due to the vertical distribution of humidity in the boundary layer. Statistical error analysis of the fluxes F showed that the systematic statistical error ΔF was one order of magnitude smaller than the standard deviation σ F . The difference between area-averaged fluxes derived from simultaneous Helipod and Do 128 measurements was much smaller than σ F , indicating that the systematic statistical error was possibly over-estimated by the usual method. In the upper half of the boundary layer the airborne-measured sensible heat flux agreed well with windprofiler/RASS data. A linear fit was the best approximation for the height dependence of all three fluxes. The linear extrapolations of the latent and sensible heat fluxes to the ground were in good agreement with tower, scintillometer, and averaged ground-station measurements on various surface types. Systematic discrepancies between airborne and ground-based measurements were not found. Received June 18, 2001; revised December 21, 2001; accepted June 3, 2002  相似文献   

19.
We present a new account of the kinetic energy budget within an unstable atmospheric surface layer (ASL) beneath a convective outer layer. It is based on the structural model of turbulence introduced by McNaughton (Boundary-Layer Meteorology, 112: 199–221, 2004). In this model the turbulence is described as a self-organizing system with a highly organized structure that resists change by instability. This system is driven from above, with both the mean motion and the large-scale convective motions of the outer layer creating shear across the surface layer. The outer convective motions thus modulate the turbulence processes in the surface layer, causing variable downwards fluxes of momentum and kinetic energy. The variable components of the momentum flux sum to zero, but the associated energy divergence is cumulative, increasing both the average kinetic energy of the turbulence in the surface layer and the rate at which that energy is dissipated. The tendency of buoyancy to preferentially enhance the vertical motions is opposed by pressure reaction forces, so pressure production, which is the work done against these reaction forces, exactly equals buoyant production of kinetic energy. The pressure potential energy that is produced is then redistributed throughout the layer through many conversions, back and forth, between pressure potential and kinetic energy with zero sums. These exchanges generally increase the kinetic energy of the turbulence, the rate at which turbulence transfers momentum and the rate at which it dissipates energy, but does not alter its overall structure. In this model the velocity scale for turbulent transport processes in the surface layer is (kzɛ)1/3 rather than the friction velocity, u*. Here k is the von Kármán constant, z is observation height, ɛ is the dissipation rate. The model agrees very well with published experimental results, and provides the foundation for the new similarity model of the unstable ASL, replacing the older Monin–Obukhov similarity theory, whose assumptions are no longer tenable.  相似文献   

20.
Observations of the dependence of the dimensionless wind speed gradient fm{\phi_m} as a function of the Monin–Obukhov stability parameter z/L o under strong stability diverge from results of large-eddy simulation (LES) modelling. A kinetic energy budget analysis indicates that it is likely caused by violations of the assumptions of stationarity and/or homogeneity of turbulence in the field experiments rather than in imperfections of the LES. This confirms the validity of the widely used linear approximation for fm{\phi_m} not only at weak to moderate stability, but also under strong stability. The new interpretation of the linear approximation of fm{\phi_m} is given in terms of turbulent scales, which gives hope for its applicability to the free atmosphere as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号