首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper analyses the geometry of thin-skinned thrust zones, where the thrusts shallow out at depth and of thicker-skinned fault zones where much of the crust is involved and where the thrusts are frequently observed to become steeper downwards. In the interiors of many orogenic belts the steep dip of faults is not original but due to the folding above lower decoupling zones. The energy involved in the internal deformation of hanging-wall rocks may prohibit many faults becoming more shallow upwards. Such shallowing-upwards faults may occur in more ductile rocks to maintain compatibility between zones which have experienced different deformation intensities, but displacements on the faults are unlikely to be large.Another mechanism for producing faults which steepen downwards is proposed for the major thrusts which form the southern margin to the Himalayas. These carry large thicknesses (30 to 100 km) of crustal and upper mantle rocks to the south, causing flexuring and isostatic depression of the Indian plate. The steeply dipping thrusts are not footwall ramps; these may be some distance behind the steepened zone. This thrust-induced isostatic bending of the crust has important implications when considering regional seismic interpretations as well as thrust mechanics and kinematics.  相似文献   

2.
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic–Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N–S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.  相似文献   

3.
This paper describes how a model of fixed-hinge, basement-involved, fault-propagation folds may be adapted to apply to thin-skinned thrust faults to generate footwall synclines. Fixed-hinge, fault-propagation folding assumes that the fold-axial surfaces diverge upwards, fold hinges are fixed in the rock, the fault propagated through the forelimb, thickness changes occur in the forelimb and the forelimb progressively rotates with increasing displacement on the underlying fault. The original model for fixed-hinge, fault-propagation folds was developed for the case of a planar fault in basement with a tip line that was at the interface between basement and the overlying sedimentary cover rocks. The two geometries applicable to thin-skinned thrusts are for the cases where a fixed-hinge fault-propagation fold develops above an initial bedding-parallel detachment, and an initial fault ramp of constant dip which flattens down-dip into a bedding-parallel detachment.  相似文献   

4.
The Umbria-Marche foreland fold-and-thrust belt in the northern Apennines of Italy provides excellent evidence to test the hypothesis of synsedimentary-structural control on thrust ramp development. This orogenic belt consists of platform and pelagic carbonates, Late Triassic to Miocene in age, whose deposition was controlled by significant synsedimentary extension. Normal faulting, mainly active from Jurassic through Late Cretaceous-Paleogene time, resulted in significant lateral thickness variability within the related stratigraphic sequences. By Late Miocene time the sedimentary cover was detached from the underlying basement and was deformed by east-verging folds and west-dipping thrusts. Two restored balanced cross sections through the southernmost part of the belt show a coincidence between the early synsedimentary normal faults and the late thrust fault ramps. These evidences suggest that synsedimentary tectonic structures, such as faults and the related lithological lateral changes, can be regarded as mechanically important controlling factors in the process of thrust ramp development during positive tectonic inversion processes.  相似文献   

5.
Analysis of a suite of 2-D seismic reflection profiles reveals that the northwestern Sacramento Valley and eastern Coast Range foothills, northern California, are underlain by a system of blind, west-dipping thrust faults. Homoclinally east-dipping and folded Mesozoic marine forearc strata exposed along the western valley margin define the forelimbs of northeast-vergent fault-propagation folds developed in the hanging walls of the thrusts. Exhumed coherent blueschists of the accretionary complex and attenuated remnants of the ophiolitic forearc basement presently exposed in the eastern Coast Ranges are in the hanging wall of the blind thrust system, and have been displaced from their roots in the footwall. Deep, east-dipping magnetic reflectors in the footwall of the thrust system may be fragments of sheared, serpentinized and attenuated ophiolitic basement. Restoration of slip on the thrusts suggests that the Coast Range fault, which is the exposed structural contact between the coherent blueschists and attenuated ophiolite, originally dipped east and is associated with the east-dipping magnetic reflectors in the footwall. This interpretation of the reflection data is consistent with previous inferences about the deep structure in this region, and supports a two-stage model for blueschist exposure in the eastern Coast Ranges: (1) blueschist exhumation relative to the forearc basin by attenuation of the ophiolitic basement along the east-dipping Coast Range fault system in late Cretaceous; (2) blueschists, attenuated ophiolite, and forearc strata all were subsequently uplifted and folded in the hanging wall of the blind thrust system beginning in latest Cretaceous–early Tertiary. The blind thrust system probably rooted in, and was antithetic to, the east-dipping subduction zone beneath the forearc region. Active transpressional plate motion in western California is locally accommodated, in part, by reactivation of blind thrust faults that originally developed during the convergent regime.  相似文献   

6.
Interpretation of seismic data from the Lufeng Sag of the Pearl River Mouth Basin (PRMB) in the northern part of South China Sea shows that different intersection patterns developed in the cover units above basement normal faults. A series of analogue models are used to investigate the intersection patterns and deformation in the sedimentary cover sequences above a basement horst bounded by two non-parallel faults. Modelling results show that during their upward propagation, the basement faults may intersect within the cover sequences and form a graben above the basement horst. Length and width of the graben increase with cover thickness. The strike and dip intersection points are controlled directly by the thickness of the cover sequences, dip and strike of the basement faults, and width of the basement horst. The intersection point migrates along the axis of the graben toward the wide end of the basement horst, when the cover sequence thickens. In contrast, it migrates toward the narrow end of the basement horst, where both fault dip and angle of strike difference increase. The intersection point moves upward with increasing width of the basement horst crest. Model profiles also indicate that in the presence of a ductile layer between the cover and basement such intersection patterns do not form. Interpretation of seismic data and model results show that the intersection pattern developed in the Lufeng Sag is a result of propagation of basement faults into cover units during different extension stages of the basin. Results of this study can be applied to many other sedimentary basins where such fault intersection patterns are likely to form when non-parallel conjugate basement faults are active during sedimentation.  相似文献   

7.
Abstract

Positive structural inversion involves the uplift of rocks on the hanging-walls of faults, by dip slip or oblique slip movements. Controlling factors include the strike and dip of the earlier normal faults, the type of normal faults — whether they were listric or rotated blocks, the time lapsed since extension and the amount of contraction relative to extension. Steeply dipping faults are difficult to invert by dip slip movements; they form buttresses to displacement on both cover detachments and on deeper level but gently inclined basement faults. The decrease in displacement on the hanging-walls of such steep buttresses leads to the generation of layer parallel shortening, gentle to tight folds — depending on the amount of contractional displacement, back-folds and back-thrust systems, and short-cut thrust geometries — where the contractional fault slices across the footwall of the earlier normal fault to enclose a “floating horse”. However, early steeply dipping normal faults readily form oblique to strike slip inversion structures and often tramline the subsequent shortening into particular directions.

Examples are given from the strongly inverted structures of the western Alps and the weakly inverted structures of the Alpine foreland. Extensional faulting developed during the Triassic to Jurassic, during the initial opening of the central Atlantic, while the main phases of inversion date from the end Cretaceous when spreading began in the north Atlantic and there was a change of relative motion between Europe and Africa. During the mid-Tertiary well over 100 km of Alpine shortening took place; Alpine thrusts, often detached along, or close to, the basement-cover interface, stacking the late Jurassic to Cretaceous sediments of the post-extensional subsidence phase. These high level detachments were joined and breached by lower level faults in the basement which, in the external zones of the western Alps, generally reactivated and rotated the earlier east dipping half-graben bounding faults. The external massifs are essentially uplifted half-graben blocks. There was more reactivation and stacking of basement sheets in the eastern part of this external zone, where the faults had been rotated into more gentle dips above a shallower extensional detachment than on the steeper faults to the west.

There is no direct relationship between the weaker inversion of the Alpine foreland and the major orogenic contraction of the western Alps; the inversion structures of southern Britain and the Channel were separated from the Alps by a zone of rifting from late Eocene to Miocene which affected the Rhone, Bresse and Rhine regions. Though they relate to the same plate movements which formed the Alps, the weaker inversion structures must have been generated by within plate stresses, or from those emanating from the Atlantic rather than the Tethyan margin.  相似文献   

8.
The northern part of the Moine Thrust Zone as exposed around the valley of Srath Beag, Sutherland was developed by thrusts propagating in the tectonic transport direction. Deformation on any particular thrust surface evolved from dominantly ductile to dominantly brittle with time.The foreland has been progressively accreted onto the overriding Moine thrust sheet by duplex formation, a process which has continuously folded the roof thrust and the rocks above its hanging-wall. Fold culminations and depression can be related to lateral ramps which may give the rocks above the hanging-wall a complex history of extensional and compressional strains normal to the transport direction.Folds within the thrust zone are laterally independent because they are controlled by short lived variations in deformation style on an evolving thrust footwall topography. Therefore there may be no correlation between structures across or along the thrust zone. This variation limits the construction of balanced cross sections as structure cannot be projected onto particular section lines.  相似文献   

9.
A series of regional deformation phases is described for the metamorphic basement and the Permian cover in an area in the central Orobic Alps, northern Italy. In the basement deformation under low-grade amphibolite metamorphic conditions is followed by a second phase during retrograde greenschist conditions. These two phases predate the deposition of the Permian cover and are of probable Variscan age. An extensional basin formed on the eroded basement during the Late Carboniferous, filled with fan conglomerates and sandstones, and rhyolitic volcanic rocks. Well-preserved brittle extensional faults bound these basins. Further extension deformed basement and cover before the onset of Alpine compressional tectonics. Cover and basement were deformed together during two phases of compressional deformation of post-Triassic age, the first giving rise to tectonic inversion of the older extensional faults, the second to new thrust faults, both associated with south-directed nappe emplacement and regional folding. Foliations develop in the cover only during the first phase of deformation as part of the activity on “shortening faults”. Main activity on the Orobic thrust actually postdates the first phase of thrusting and foliation development in the cover.  相似文献   

10.
A disused Victorian gravel pit [SO 7450 5956] 1 km west of Martley, Worcestershire formerly exposed an inlier of Neoproterozoic meta-igneous rocks and early Palaeozoic quartz arenite. The pit is back-filled, but trenching at the site between 2010 and 2014 re-exposed the rocks of the inlier and the surrounding Silurian and Carboniferous cover rocks. The site lies on the East Malvern Fault (EMF) and the work has proved the relationships between the meta-igneous rocks, quartz arenite and cover rocks, and revealed a complex of thrust faults in the footwall of the EMF. The thrusts are interpreted as footwall shortcuts and provide evidence of the Variscan inversion and compressive events resolved along this fault line (the Malvern Lineament) which has a prolonged and complex history of activation and reactivation. The structures at Martley provide a model in microcosm for other Variscan compressional structures along the Malvern Lineament.  相似文献   

11.
Abstract

The structure of the southern Pyrenees, east of the Albanyà fault (Empordà area), consists of several Alpine thrust sheets. From bottom upwards three main structural units can be distinguished : the Roc de Frausa, the Biure-Bac Grillera and the Figueres units. The former involves basement and Paleogene cover rocks. This unit is deformed by E-W trending kilometric-scale folds, its north dipping floor thrust represents the sole thrust in this area. The middle unit is formed by an incomplete Mesozoic succession overlain by Garumnian and Eocene sediments. Mesozoic rocks internal structure consists of an imbricate stack. The floor thrust dips to the south and climbs up section southwards. The upper unit exibits the most complete Mesozoic sequence. Its floor thrust is subhorizontal. The lower and middle units thrust in a piggy-back sequence. The upper unit was emplaced out of sequence.

Lower Eocene sedimentation in the Biure-Bac Grillera unit was controlled by emergent imbricate thrusts and synchronic extensional faults. One of these faults (La Salut fault) represents the boundary between a platform domain in the footwall and a subsident trough in the hangingwall. Southward thrust propagation produces the inversion of these faults and the development of cleavage-related folds in their hangingwalls (buttressing effect). This inversion is also recorded by syntectonic deposits, which have been grouped in four depositional sequences. The lower sequences represent the filling on the hangingwall trough and the upper sequences the spreading of clastics to the south once the extensional movement ends.  相似文献   

12.
Several selected seismic lines are used to show and compare the modes of Late-Cretaceous–Early Tertiary inversion within the North German and Polish basins. These seismic data illustrate an important difference in the allocation of major zones of basement (thick-skinned) deformation and maximum uplift within both basins. The most important inversion-related uplift of the Polish Basin was localised in its axial part, the Mid-Polish Trough, whereas the basement in the axial part of the North German Basin remained virtually flat. The latter was uplifted along the SW and to a smaller degree the NE margins of the North German Basin, presently defined by the Elbe Fault System and the Grimmen High, respectively. The different location of the basement inversion and uplift within the North German and Polish basins is interpreted to reflect the position of major zones of crustal weakness represented by the WNW-ESE trending Elbe Fault System and by the NW-SE striking Teisseyre-Tornquist Zone, the latter underlying the Mid-Polish Trough. Therefore, the inversion of the Polish and North German basins demonstrates the significance of an inherited basement structure regardless of its relationship to the position of the basin axis. The inversion of the Mid-Polish Trough was connected with the reactivation of normal basement fault zones responsible for its Permo-Mesozoic subsidence. These faults zones, inverted as reverse faults, facilitated the uplift of the Mid-Polish Trough in the order of 1–3 km. In contrast, inversion of the North German Basin rarely re-used structures active during its subsidence. Basement inversion and uplift, in the range of 3–4 km, was focused at the Elbe Fault System which has remained quiescent in the Triassic and Jurassic but reproduced the direction of an earlier Variscan structural grain. In contrast, N-S oriented Mesozoic grabens and troughs in the central part of the North German Basin avoided significant inversion as they were oriented parallel to the direction of the inferred Late Cretaceous–Early Tertiary compression. The comparison of the North German and Polish basins shows that inversion structures can follow an earlier subsidence pattern only under a favourable orientation of the stress field. A thick Zechstein salt layer in the central parts of the North German Basin and the Mid-Polish Trough caused mechanical decoupling between the sub-salt basement and the supra-salt sedimentary cover. Resultant thin-skinned inversion was manifested by the formation of various structures developed entirely in the supra-salt Mesozoic–Cenozoic succession. The Zechstein salt provided a mechanical buffer accommodating compressional stress and responding to the inversion through salt mobilisation and redistribution. Only in parts of the NGB and MPT characterised by either thin or missing Zechstein evaporites, thick-skinned inversion directly controlled inversion-related deformations of the sedimentary cover. Inversion of the Permo-Mesozoic fill within the Mid-Polish Trough was achieved by a regional elevation above uplifted basement blocks. Conversely, in the North German Basin, horizontal stress must have been transferred into the salt cover across the basin from its SW margin towards the basins centre. This must be the case since compressional deformations are concentrated mostly above the salt and no significant inversion-related basement faults are seismically detected apart from the basin margins. This strain decoupling in the interior of the North German Basin was enhanced by the presence of the Elbe Fault System which allowed strain localization in the basin floor due to its orientation perpendicular to the inferred Late Cretaceous–Early Tertiary far-field compression.  相似文献   

13.
An examination of thrust structures in the eastern part of the Dauphinois Zone of the external French Alps (referred to in the literature as the Ultradauphinois Zone) shows that major basement thrusts climb up section to produce cover-basement synclines. These thrusts also climb laterally and are continuous with thrust in the cover rocks. The external basement massifs are recognized as thrust sheets with variably deformed and thrust cover sequences. The distinction made in the previous literature between the Dauphinois and Ultradauphinois Zones is no longer tenable. Cover thrusting proceeded by both smooth slip and rough slip, the latter producing a duplex of cover thrust slices. Restoration of this duplex indicates that a shortening of 70 km in the cover occured during its formation. Possible errors in this estimate include uncertainties in the original stratigraphic thickness and in the overall shape of the duplex. Another duplex is thought to have formed at a basement ramp created by the presence of an early basement normal fault. Partial footwall collapse of this basement ramp gave rise to a basement horse at the bottom of the duplex. The overall relation between cover and basement thrusting is indicated using a hanging wall sequence diagram. Recent geophysical studies suggest that the basement thrusts developed from a mid-crustal décollement which passes down dip to offset the Moho. Model studies of thin-skinned tectonics may not be appropriate to such thrust geometries.  相似文献   

14.
《Geodinamica Acta》2003,16(1):21-38
The Tatric-Fatric-Veporic convergence zone of the Central Western Carpathians involved a basinal area that originated by Lower Jurassic rifting of Variscan continental crust. In mid-Cretaceous times shortening affected first the southern, Veporic margin of the basin, which was converted to the toe of the orogenic wedge prograding from the hinterland. A system of ductile basement/cover large-scale folds formed here by rotation of pre-existing, closely spaced, domino-type normal faults. However, the advancement of the wedge was likely accomplished by formation of a new thrust fault rooted in the ductile lower and/or middle crust. Afterwards, the basement of the lower plate Fatric basin was underthrust below the Veporic wedge; its sedimentary fill was detached and stacked to create the later Krížna decollement cover nappe. Underthrusting continued until the lower plate–Tatric margin collided with the orogenic wedge toe. Large basement slabs were peeled off this margin, shortened internally and thrust at moderate distances over the South Tatric ridge area. Pre-existing domino blocks were only slightly inverted here and passively transported above new thrust faults, which formed along weak crustal layers. It is inferred that the origin and geometry of large-scale, basement-involved structures generated in wide, intracontinental convergent zones is largely dependent on the lower versus upper plate position with distinctly different thermo-mechanical regimes operating during deformation.  相似文献   

15.
《Sedimentary Geology》2002,146(1-2):91-104
Steep thrusts are usually interpreted as oblique-slip thrusts or inverted normal faults. However, recent analogical and numerical models have emphasised the influence of surface mass-transfer phenomena on the structural evolution of compressive systems. This research points to sedimentation and erosion during deformation as an additional explanation for the origin of steeply dipping thrusts. The present study uses both field observations and analogue modelling to attempt to isolate critical parameters of syntectonic sedimentation that might control the geometry of the upper part of thrust systems.A field study of thrust systems bounding two compressive intermountain Tertiary basins of the Iberian Chain is first briefly presented. We describe the surface geometry of thrusts surrounding the Montalbán Basin and the Alto Tajo Syncline at the vicinity of deposits of Oligocene–Early Miocene alluvial fans at the footwall of faults. Field observations suggest that synthrusting sedimentation should influence the structure of thrusts. Indeed, the faults are steeper and splitted at the edge of the syntectonic deposits.Effects of sedimentation rate on footwall of thrusts, and of its change along fault strike are further investigated on two-layer brittle-ductile analogue models submitted to compression and syntectonic sediment supply. Two series of experiments were made corresponding to two end-members of depositional geometries. In the first series, the sedimentation was homogeneously distributed on both sides of the relief developed above the thrust front. In the second series, deposits were localised on a particular area of the footwall of thrust front. In all experiments, the sedimentation rate controls the number and the dip of faults. For low sedimentation rates, a single low-angle thrust develops; whereas for high sedimentation rates, a series of steeper dipping thrust is observed. In experiments with changing sedimentation rate along fault strike, the thrust geometry varies behind the areas with the thickest sediment pile.  相似文献   

16.
合肥盆地断层活动特征及其控制因素   总被引:4,自引:2,他引:2  
利用断层活动速率法定量分析了合肥盆地主要近东西向断层的活动规律,并分析了它们形成与演化的控制因素。研究表明,盆地前侏罗系基底主要发育了近东西向、南倾的逆冲断层,属于印支期前陆变形的产物。这些断层的逆冲速率向南有规律的增加,指示其动力来自南部大别造山带的碰撞造山。盆地在侏罗纪期间接受大量沉积时,并没有发生明显的断裂活动,指示属于前陆拗陷型盆地,其对应着大别造山带的快速隆升。盆地在早白垩世至古近纪期间演变为断陷盆地,印支期基底的逆断层转变为正断层活动。这些盆地内主要的近东西向正断层的伸展活动在早白垩世呈现北强南弱,而随后转变为南强北弱的变化趋势。  相似文献   

17.
During subduction, continental margins experience shortening along with inversion of extensional sedimentary basins. Here we explore a tectonic scenario for the inversion of two-phase extensional basin systems, where the Early-Middle Jurassic intra-arc volcano-sedimentary Oseosan Volcanic Complex was developed on top of the Late Triassic-Early Jurassic post-collisional sequences, namely the Chungnam Basin. The basin shortening was accommodated mostly by contractional faults and related folds. In the basement, regional high-angle reverse faults as well as low-angle thrusts accommodate the overall shortening, and are compatible with those preserved in the cover. This suggests that their spatial and temporal development is strongly dependent on the initial basin geometry and inherited structures.Changes in transport direction observed along the basement-sedimentary cover interface is a characteristic structural feature, reflecting sequential kinematic evolution during basin inversion. Propagation of basement faults also enhanced shortening of the overlying sedimentary cover sequences. We constrain timing of the Late Jurassic-Early Cretaceous(ca. 158-110 Ma) inversion from altered K-feldspar 40 Ar/39 Ar ages in stacked thrust sheets and K-Ar illite ages of fault gouges, along with previously reported geochronological data from the area. This "non-magmatic phase" of the Daebo Orogeny is contemporaneous with the timing of magmatic quiescence across the Korean Peninsula. We propose the role of flat/low-angle subduction of the Paleo-Pacific Plate for the development of the "Laramide-style" basement-involved orogenic event along East Asian continental margin.  相似文献   

18.
在过去的25年里,由于许多原因,作为最常见、分布也最广泛的地质构造形迹之一,逆冲断层成为倍受关注的科学研究主题。文中指出,关于逆冲断层及其几何学特征的许多普遍认识(或观念),并不像以往文献中所阐述的那样简单。其中之一的"薄皮"冲断构造是受地层控制的,极少有或者没有结晶基底物的卷入。文中主张,"薄皮"一词只有逆冲板片的几何学形态含义,而不应包含地层意义,并列举了一些完全由结晶岩石所构成的薄皮逆冲构造的例子来说明这一主张。近来,逆冲双重构造成为构造文献中的热点。关于逆冲双重构造的成因,引用得最多的是1982年Boyer和Elliot在其重要论文"逆冲断层系统"中所作的解释。他们认为,双重道冲构造是通过在冲断坡底部发生下盘破裂。新生断裂不断向前扩展并进入先存断层下盘的一系列变形过程中逐渐形成的。根据Boyer和Elliot提出的这种变形过程,将形成一个具有平面状顶板断层的边冲双重构造,这个顶板断层只在活动断坡的顶部是主动向前扩展的。依笔者之见,在实际的构造变形当中,是不可能具备形成平顶过冲双重构造的地质条件的。而能对平顶过冲双重构造形成作出最好解释的是反序(out-of-sequence,OOS)边冲断层的发育,即断层向着主冲断层的后方发展,在先存道冲构造的上部?  相似文献   

19.
《Geodinamica Acta》1999,12(2):113-132
The Aguilón Subbasin (NE Spain) was originated daring the Late Jurassic-Early Cretaceous rifting due to the action of large normal faults, probably inherited from Late Variscan fracturing. WNW-ESE normal faults limit two major troughs filled by continental deposits (Valanginian to Early Barremian). NE-SW faults control the location of subsidiary depocenters within these troughs. These basins were weakly inverted during the Tertiary with folds and thrusts striking E-W to WNW-ESE involving the Mesozoic-Tertiary cover with a maximum estimated shortening of about 12 %. Tertiary compression did not produce the total inversion of the Mesozoic basin but extensional structures are responsible for the location of major Tertiary folds. Shortening of the cover during the Tertiary involved both reactivation of some normal faults and development of folds and thrusts nucleated on basement extensional steps. The inversion style depends mainly on the occurrence and geometry of normal faults limiting the basin. Steep normal faults were not reactivated but acted as buttresses to the cover translation. Around these faults, affecting both basement and cover, folds and thrusts were nucleated due to the stress rise in front of major faults. Within the cover, the buttressing against normal faults consists of folding and faulting implying little shortening without development of ceavage or other evidence of internal deformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号