首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil failure can be used for seismic protection of structures   总被引:2,自引:2,他引:0  
A new seismic design philosophy is illuminated, taking advantage of soil “failure” to protect the superstructure. Instead of over-designing the foundation to ensure that the loading stemming from the structural inertia can be “safely” transmitted onto the soil (as with conventional capacity design), and then reinforce the superstructure to avoid collapse, why not do exactly the opposite by intentionally under-designing the foundation to act as a “safety valve” ? The need for this “reversal” stems from the uncertainty in predicting the actual earthquake motion, and the necessity of developing new more rational and economically efficient earthquake protection solutions. A simple but realistic bridge structure is used as an example to illustrate the effectiveness of the new approach. Two alternatives are compared : one complying with conventional capacity design, with over-designed foundation so that plastic “hinging” develops in the superstructure; the other following the new design philosophy, with under-designed foundation, “inviting” the plastic “hinge” into the soil. Static “pushover” analyses reveal that the ductility capacity of the new design concept is an order of magnitude larger than of the conventional design: the advantage of “utilising” progressive soil failure. The seismic performance of the two alternatives is investigated through nonlinear dynamic time history analyses, using an ensemble of 29 real accelerograms. It is shown that the performance of both alternatives is totally acceptable for moderate intensity earthquakes, not exceeding the design limits. For large intensity earthquakes, exceeding the design limits, the performance of the new design scheme is proven advantageous, not only avoiding collapse but hardly suffering any inelastic structural deformation. It may however experience increased residual settlement and rotation: a price to pay that must be properly assessed in design.  相似文献   

2.
Though rocking shallow foundations could be designed to possess many desirable characteristics such as energy dissipation, isolation, and self-centering, current seismic design codes often avoid nonlinear behavior of soil and energy dissipation beneath foundations. This paper compares the effectiveness of energy dissipation in foundation soil (during rocking) with the effectiveness of structural energy dissipation devices during seismic loading. Numerical simulations were carried out to systematically study the seismic energy dissipation in structural elements and passive controlled energy dissipation devices inserted into the structure. The numerical model was validated using shaking table experimental results on model frame structures with and without energy dissipation devices. The energy dissipation in the structure, drift ratio, and the force and displacement demands on the structure are compared with energy dissipation characteristics of rocking shallow foundations as observed in centrifuge experiments, where shallow foundations were allowed to rock on dry sandy soil stratum during dynamic loading. For the structures with energy dissipating devices, about 70–90% of the seismic input energy is dissipated by energy dissipating devices, while foundation rocking dissipates about 30–90% of the total seismic input energy in foundation soil (depending on the static factor of safety). Results indicate that, if properly designed (with reliable capacity and tolerable settlements), adverse effects of foundation rocking can be minimized, while taking advantage of the favorable features of foundation rocking and hence they can be used as efficient and economical seismic energy dissipation mechanisms in buildings and bridges.  相似文献   

3.
Prediction of displacement demand to assess seismic performance of structures is a necessary step where nonlinear static procedures are followed. While such predictions have been well established in literature for fixed-base structures, fewer bodies of researches have been carried out on the effect of rocking and uplifting of shallow foundations supported by soil, on such prediction. This paper aimed to investigate the effect of soil structure interaction on displacement amplification factor C1 using the beam on nonlinear Winkler foundation concept. A practical range of natural period, force reduction factors, and wide range of anticipated behavior from rocking, uplifting and hinging are considered and using thousands nonlinear time history analysis, displacement amplification factors are evaluated. The results indicate that the suggested equations in current rehabilitation documents underestimate displacement demands in the presence of foundation rocking and uplift. Finally, using regression analyses, new equations are proposed to estimate mean values of C1.  相似文献   

4.
This paper aims to explore the limitations associated with the design of “rocking-isolated” frame structures. According to this emerging seismic design concept, instead of over-designing the isolated footings of a frame (as entrenched in current capacity–design principles), the latter are under-designed with the intention to limit the seismic loads transmitted to the superstructure. An idealized 2-storey frame is utilized as an illustrative example, to investigate the key factors affecting foundation design. Nonlinear FE analysis is employed to study the seismic performance of the rocking-isolated frame. After investigating the margins of safety against toppling collapse, a simplified procedure is developed to estimate the minimum acceptable footing width Bmin, without recourse to sophisticated (and time consuming) numerical analyses. It is shown that adequate margins of safety against toppling collapse may be achieved, if the toppling displacement capacity of the frame δtopl (i.e. the maximum horizontal displacement that does not provoke toppling) is sufficiently larger than the seismic demand δdem. With respect to the capacity, the use of an appropriate “equivalent” rigid-body is suggested, and shown to yield a conservative estimate of δtopl. The demand is estimated on the basis of the displacement spectrum, and the peak spectral displacement SDmax is proposed as a conservative measure of δdem. The validity and limitations of such approximation are investigated for a rigid-block on rigid-base, utilizing rigorous analytical solutions from the bibliography; and for the frame structure on nonlinear soil, by conducting comprehensive nonlinear dynamic time history analyses. In all cases examined, the simplified SDmax approach is shown to yield reasonably conservative estimates.  相似文献   

5.
This paper explores the effectiveness of a new approach to foundation seismic design. Instead of the present practice of over‐design, the foundations are intentionally under‐dimensioned so as to uplift and mobilize the strength of the supporting (stiff) soil, in the hope that they will thus act as a rocking–isolation mechanism, limiting the inertia transmitted to the superstructure, and guiding plastic ‘hinging’ into soil and the foundation–soil interface. An idealized simple but realistic one‐bay two‐story reinforced concrete moment resisting frame serves as an example to compare the two alternatives. The problem is analyzed employing the finite element method, taking account of material (soil and superstructure) and geometric (uplifting and P–Δ effects) nonlinearities. The response is first investigated through static pushover analysis. It is shown that the axial forces N acting on the footings and the moment to shear (M/Q) ratio fluctuate substantially during shaking, leading to significant changes in footing moment‐rotation response. The seismic performance is explored through dynamic time history analyses, using a wide range of unscaled seismic records as excitation. It is shown that although the performance of both alternatives is acceptable for moderate seismic shaking, for very strong seismic shaking exceeding the design, the performance of the rocking‐isolated system is advantageous: it survives with no damage to the columns, sustaining non‐negligible but repairable damage to its beams and non‐structural elements (infill walls, etc.). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil‐footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking‐isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self‐centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   

7.
In this study, the evaluation of static and seismic bearing capacity factors for a shallow strip footing was carried out by using the method of characteristics, which was extended to the seismic condition by means of the pseudo-static approach. The results, for both smooth and rough foundations, were checked against those obtained through finite element analyses.Under seismic conditions the three bearing capacity problems for Nc, Nq and Nγ were solved independently and the seismic bearing capacity factors were evaluated accounting separately for the effect of horizontal and vertical inertia forces arising in the soil, in the lateral surcharge and in the superstructure.Empirical formulae approximating the extensive numerical results are proposed to compute the static values of Nγ and the corrective coefficients that can be introduced in the well-known Terzaghi׳s formula of the bearing capacity to extend its applicability to seismic design of foundations.  相似文献   

8.
It is widely known that the bearing capacity of a shallow foundation is reduced when the foundation is subjected to rocking moments and horizontal loads during an earthquake event. Analytical solutions generally require an assumption to be made of the kinematic failure mechanism in the soil, when the true failure mechanism is unknown. This paper discusses a series of experiments carried out on a new 1g shaking table at Cambridge University in order to measure the displacements of a shallow foundation due to seismic loading and also the development of the failure mechanism within the soil. The failure mechanism was studied using the technique of Particle Image Velocimetry (PIV), combined with high-speed videography and photogrammetry. In this paper, the failure mechanisms observed in these experiments will be compared with the theoretical results found from upper- and lower-bound solutions and the effects of such parameters as earthquake magnitude, frequency and embedment ratio (and hence surcharge) will be discussed.  相似文献   

9.
The capability of a simplified approach to model the behaviour of shallow foundations during earthquakes is explored by numerical simulation of a series of shaking table tests performed at the Public Works Research Institute, Tsukuba, Japan. After a summary of the experimental work, the numerical model is introduced, where the whole soil–foundation system is represented by a multi‐degrees‐of‐freedom elasto‐plastic macro‐element, supporting a single degree‐of‐freedom superstructure. In spite of its simplicity and of the large intensity of the excitation involving a high degree of nonlinearity in the foundation response, the proposed approach is found to provide very satisfactory results in predicting the rocking behaviour of the system and the seismic actions transmitted to the superstructure. The agreement is further improved by introducing a simple degradation rule of the foundation stiffness parameters, suitable to capture even some minor details of the observed rocking response. On the other hand, the performance of the model is not fully satisfactory in predicting vertical settlements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A new modeling for the seismic response assessment of free-standing, rigid or flexible, pure rocking systems is presented. The proposed modeling is based on equivalent single degree-of-freedom (SDOF) oscillators that can be implemented with common engineering software or user-made structural analysis codes. The SDOF models adopted use beam elements that are connected to a nonlinear rotational spring with negative stiffness that describes the self-centering capacity of the rocking member. The loss of energy at impact is treated with an “event-based” approach consistent with Housner's theory. Different variations pertinent to rigid blocks are first presented, and then the concept is extended to the flexible case. The implementation of the method requires some minor programming skills, while thanks to the versatility of the finite element method, it is capable to handle a variety of rocking problems. This is demonstrated with two applications: (a) a vertically restrained block equipped with an elastic tendon and (b) a rigid block coupled with an elastic SDOF oscillator. The accuracy and the efficiency of the proposed modeling is demonstrated using simple wavelets and historical ground motion records.  相似文献   

11.
The paper demonstrates that whereas often in seismic geotechnical design it is not realistically feasible to design with ample factor of safety against failure as is done in static design, an “engineering” apparent seismic factor of safety less than 1 does not imply failure. Examples from slope stability and foundation rocking illustrate the concept. It is also shown that in many cases it may be beneficial to under-design the foundation by accepting substantial uplifting and/or full mobilization of bearing capacity failure mechanisms.  相似文献   

12.
In a typical seismic dam safety evaluation, standard penetration, cone penetration, Becker penetration, or shear wave velocity (Vs) tests are often first conducted near the toe of an earth dam to infer if any liquefiable soil exists in the foundation of the dam footprint. In current practice, a level-ground condition is commonly assumed when normalizing penetration resistance and Vs, and may be assumed (particularly in preliminary assessments) in applying the cyclic stress method (with or without the Kα correction) to evaluate liquefaction. However, the presence of an earth dam, or any other large embankment or structure, significantly alters the normal and shear stresses in the foundation. This paper identifies and quantifies potential errors in ignoring altered stresses near heavy structures, and presents a methodology to incorporate these effects within the framework of the simplified procedure. Specifically, the effects of these altered stresses (in comparison to the level-ground assumption with and without Kα correction) on the: (1) normalization of field measurements such as penetration resistance and Vs; (2) cyclic stress ratio (CSR); (3) cyclic resistance ratio (CRR); and (4) factor of safety against liquefaction triggering (FSliq), are evaluated by considering static and dynamic analyses of a generic earthen embankment (60 m high) resting on a saturated, cohesionless foundation (30 m deep). Our analyses indicated that ignoring the presence of induced static shear stresses can result in potentially unconservative errors in overburden correction factors of 30% to 60% at shallow depth (although this error is greatly muted at depths exceeding about 15 m), while errors in CSR potentially can range from about 20% too conservative to 40% unconservative. Potential errors in CRR can approach 50% unconservative at shallow depths, but again, this error is muted at depths exceeding about 15 m. Combining these factors, potentially unconservative errors in computing FSliq could exceed 100% at shallow depths (less than 15 m to 20 m) while at greater depth (exceeding 20 m) errors approach 20% on the conservative side.  相似文献   

13.
本文设计实现了分层土-基础-高层框架结构相互作用体系的振动台模型试验,再现了地震动激励下上部结构和基础的震害现象和砂质粉土的液化现象。通过试验,研究了相互作用体系地震动反应的主要规律:由于动力相互作用的影响,软土地基中相互作用体系的频率小于不考虑结构-地基相互作用的结构频率,而阻尼比则大于结构材料阻尼比;体系的振型曲线与刚性地基上结构的振型曲线明显不同,基础处存在平动和转动。土层传递振动的放大或减振作用与土层性质、激励大小等因素有关,砂土层一般起放大作用,砂质粉土层一般起减振隔振作用;由于土体的隔震作用,上部结构接受的振动能量较小,各层反应均较小。上部结构顶层加速度反应组成取决于基础转动刚度、平动刚度和上部结构刚度的相对大小。  相似文献   

14.
This paper aims at clarifying the role of dynamic soil–structure interaction in the seismic assessment of structure and foundation, when the non‐linear coupling of both subsystems is accounted for. For this purpose, the seismic assessment of an ideal set of bridge piers on shallow foundations is considered. After an initial standard assessment, based on capacity design principles, the evaluation of the seismic response of the piers is carried out by dynamic simulations, where both the non‐linear responses of the superstructure and of the foundation are accounted for, in the latter case through the macro‐element modeling of the soil–foundation system. The results of the dynamic simulations point out the beneficial effects of the non‐linear response of the foundation, which provides a substantial contribution to the overall energy dissipation during seismic excitation, thus allowing the structural ductility demand to decrease significantly with respect to a standard fixed‐base or linear‐elastic base assessment. Permanent deformations at the foundation level, such as rotation and settlement, turn out to be of limited amount. Therefore, an advanced assessment approach of the integrated non‐linear system, consisting of the interacting foundation and superstructure, is expected to provide more rationale and economic results than the standard uncoupled approach, which, neglecting any energy dissipation at the foundation level, generally overestimates the ductility demand on the superstructure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Allowing structures to uplift modifies their seismic response; uplifting works as a mechanical fuse and limits the forces transmitted to the superstructure. However, engineers are generally reluctant to construct an unanchored structure because the system could overturn due to lacking redundancy. Using a safety factor for the design of a flat rocking foundation, ie, designing it wider, goes against the main idea of this seismic modification method as the force demand for the structure increases. We propose to extend the flat base of a rocking block with curved extensions to better protect the block from overturning, yet not prevent its uplifting. After investigating the seismic response of such rocking blocks, we extend the study to investigate the seismic response of rolling and rocking frames comprising columns with curved base extensions. The equations of motion are derived, time history analyses are performed, and rocking spectra are constructed. We draw two important conclusions: (a) the response of a class of rocking oscillators with curved base extensions is equivalent to the response of a flat-base rocking oscillators of the same slenderness, yet larger size; (b) the rotation demand on two negative stiffness rocking and rolling oscillators with the same uplifting acceleration and the same size is roughly the same as long as the rocking oscillators are not close to overturning. The above findings can serve as a basis for the rational seismic design of structures supported on rocking columns with curved bases, a system that has been used since the 1960s.  相似文献   

16.
Investigation and understanding of the present-day geodynamic situation are of key importance for the elucidation of the laws and evolution of the seismic process in a seismically active region. In this work, seismic moments of nearly 26000 earthquakes with K p ≥ 7 (M LH ≥ 2) that occurred in the southern Baikal region and northern Mongolia (SBNM) (48°–54°N, 96°–108°E) from 1968 through 1994 are determined from amplitudes and periods of maximum displacements in transverse body waves. The resulting set of seismic moments is used for spatial-temporal analysis of the stress-strain state of the SBNM lithosphere. The stress fields of the Baikal rift and the India-Asia collision zone are supposed to interact in the region studied. Since the seismic moment of a tectonic earthquake depends on the type of motion in the source, seismic moments and focal mechanisms of earthquakes belonging to four long-term aftershock and swarm clusters of shocks in the Baikal region were used to “calibrate” average seismic moments in accordance with the source faulting type. The study showed that the stress-strain state of the SBNM lithosphere is spatially inhomogeneous and nonstationary. A space-time discrepancy is observed in the formation of faulting types in sources of weak (K p = 7 and 8) and stronger (K p ≥ 9) earthquakes. This discrepancy is interpreted in terms of rock fracture at various hierarchical levels of ruptures on differently oriented general, regional, and local faults. A gradual increase and an abrupt, nearly pulsed, decrease in the vertical component of the stress field S v is a characteristic feature of time variations. The zones where the stress S v prevails are localized at “singular points” of the lithosphere. Shocks of various energy classes in these zones are dominated by the normal-fault slip mechanism. For earthquakes with K p = 9, the source faulting changes with depth from the strike-slip type to the normal-strike-slip and normal types, suggesting an increase in S v . On the whole, the results of this study are well consistent with the synergism of open unstable dissipative systems and are usable for interpreting the main observable variations in the stress-strain state of the lithosphere in terms of spatiotemporal variations in the vertical component of the stress field S v . This suggests the influence of rifting on the present-day geodynamic processes in the SBNM lithosphere.  相似文献   

17.
Rocking motion, established in either the superstructure in the form of a 2‐point stepping mechanism (structural rocking) or resulting from rotational motion of the foundation on the soil (foundation rocking), is considered an effective, low‐cost base isolation technique. This paper unifies for the first time the 2 types of rocking motion under a common experimental campaign, so that on the one hand, structural rocking can be examined under the influence of soil and on the other, foundation rocking can be examined under the influence of a linear elastic superstructure. Two building models, designed to rock above or below their foundation level so that they can reproduce structural and foundation rocking respectively, were tested side by side in a centrifuge. The models were placed on a dry sandbed and subjected to a sequence of earthquake motions. The range of rocking amplitude that is required for base isolation was quantified. Overall, it is shown that the relative density of sand does not influence structural rocking, while for foundation rocking, the change from dense to loose sand can affect the time‐frequency response significantly and lead to a more predictable behaviour.  相似文献   

18.
—?Seismic precursors to space shuttle re-entry shock fronts are detected at TXAR in Southwest Texas when the ground track of the orbiter vehicle passes within ~150–200?km of the observatory. These precursors have been termed “shuttle-quakes” because their seismograms superficially mimic the seismograms of small earthquakes from shallow sources. Analysis of the “shuttle-quake” seismograms, however, reveals one important difference. Unlike ordinary earthquakes, the propagation azimuths and horizontal phase velocities of the individual phases of the “shuttle-quakes” are functionally related. From a theoretical model developed to account for the origin of these precursors it is found that the seismic phases of “shuttle-quakes” are “bow” waves. A “bow” wave originates at the advancing tip of the shock front trace (i.e., intersection of the re-entry shock front with the surface of the earth) when the ground speed of the orbiter vehicle exceeds the horizontal phase velocity of a particular seismic phase. “Bow” waves are shown to differ in two important respects from the ordinary seismic phases. They vanish ahead of the advancing tip of the shock front trace and their propagation azimuths and horizontal phase velocities are functionally related. The ground speed of the orbiter vehicle exceeds the horizontal phase velocities of crustal seismic phase over much of the re-entry flight profile. As a result, P,S, and R g “bow” waves will be seen as precursors to the re-entry shock front at stations located within a few hundred km of its ground track.  相似文献   

19.
Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one-to-one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.  相似文献   

20.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号