首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We perform 3D modeling of earthquake generation of the Xianshuihe fault, southwestern China, which is a highly active strike-slip fault with a length of about 350 km, in order to understand earthquake cycles and segmentations for a long-term forecasting and earthquake nucleation process for a short-term forecasting. Historical earthquake data over the last 300 years indicates repeated periods of seismic activity, and migration of large earthquake along the fault during active seismic periods. To develop the 3D model of earthquake cycles along the Xianshuihe fault, we use a rate- and state-dependent friction law. After analyzing the result, we find that the earthquakes occur in the reoccurrence intervals of 400–500 years. Simulation result of slip velocity distribution along the fault at the depth of 10 km during 2694 years along the Xianshuihe fault indicates that since the third earthquake cycle, the fault has been divided into 3 parts. Some earthquake ruptures terminate at the bending part of the fault line, which may means the shape of the fault line controls how earthquake ruptures. The change of slip velocity and displacement at 10 km depth is more tremendous than the change of the shallow and deep part of the fault and the largest slip velocity occurs at the depth of 10 km which is the exact depth of the seismic zone where fast rupture occurs.  相似文献   

2.
The Mw 9.0 Tohoku-Oki earthquake that occurred off the Pacific coast of Japan on March 11, 2011, was followed by thousands of aftershocks, both near the plate interface and in the crust of inland eastern Japan. In this paper, we report on two large, shallow crustal earthquakes that occurred near the Ibaraki-Fukushima prefecture border, where the background seismicity was low prior to the 2011 Tohoku-Oki earthquake. Using densely spaced geodetic observations (GPS and InSAR datasets), we found that two large aftershocks in the Iwaki and Kita-Ibarake regions (hereafter referred to as the Iwaki earthquake and the Kita-Ibarake earthquake) produced 2.1 m and 0.44 m of motion in the line-of-sight (LOS), respectively. The azimuth-offset method was used to obtain the preliminary location of the fault traces. The InSAR-based maximum offset and trace of the faults that produced the Iwaki earthquake are consistent with field observations. The fault location and geometry of these two earthquakes are constrained by a rectangular dislocation model in a multilayered elastic half-space, which indicates that the maximum slips for the two earthquakes are 3.28 m and 0.98 m, respectively. The Coulomb stress changes were calculated for the faults following the 2011 Mw 9.0 Tohoku-Oki earthquake based on the modeled slip along the fault planes. The resulting Coulomb stress changes indicate that the stresses on the faults increased by up to 1.1 MPa and 0.7 MPa in the Iwaki and Kita-Ibarake regions, respectively, suggesting that the Tohoku-Oki earthquake triggered the two aftershocks, supporting the results of seismic tomography.  相似文献   

3.
Northeast China, a densely populated area, is affected by intense seismic activity, which includes large events that caused extensive disaster and tremendous loss of life. For contributing to the continuous efforts for seismic hazard assessment, the earthquake potential from the active faults near the cities of Zhangjiakou and Langfang in Hebei Province is examined. We estimate the effect of the coseismic stress changes of strong (M  5.0) earthquakes on the major regional active faults, and mapped Coulomb stress change onto these target faults. More importantly our calculations reveal that positive stress changes caused by the largest events of the 1976 Tangshan sequence make the Xiadian and part of Daxing fault, thus considered the most likely sites of the next strong earthquake in the study area. The accumulated static stress changes that reached a value of up to 0.4 bar onto these faults, were subsequently incorporated in earthquake probability estimates for the next 30 years.  相似文献   

4.
The convergence of the Nazca and South American plates along the subduction margin of the central Andes results in large subduction earthquakes and tectonic activity along major fault systems. Despite its relevance, the paleoseismic record of this region is scarce, hampering our understanding about the relationship between the Andes building and earthquake occurrence. In this study, we used the U-series disequilibrium method to obtain absolute ages of paleoearthquake events associated with normal displacements along the active Mejillones and Salar del Carmen faults in the Coastal Range of the Atacama Desert of northern Chile. The 230Th–234U disequilibrium ages in co-seismic gypsum salts sampled along the fault traces together with marine evidences indicate that earthquakes occurred at ca. 29.7 ± 1.7 ka, 11 ± 4 ka and 2.4 ± 0.8 ka. When coupled with paleoseismic marine and radiocarbon (14C) records in the nearby Mejillones Bay evidencing large dislocations along the Mejillones Fault, the geochronological dataset presented here is consistent with the notion that gypsum salts formed during large earthquakes as a result of co-seismic dilatancy pumping of saline waters along the major faults. Based on maximum observed cumulative vertical offsets in the studied faults, this phenomena could have occurred episodically at a rate in the order of 1:40 to 1:50 with respect to the very large subduction earthquakes during the latest Pleistocene–Holocene period. The results presented here reveal that the U-series disequilibrium method can be successfully applied to date the gypsum salts deposited along faults during seismic events, and therefore directly constrain the age of large paleoearthquakes in hyperarid and seismically active zones.  相似文献   

5.
The Longquan–Shan fault and the Huya fault are two major neighboring faults of the Longmen–Shan fault zone where the 12 May 2008 Wenchuan earthquake (Mw 7.9) occurred. To study the influence of the Wenchuan event on these two active faults, we calculate changes of Coulomb stress on the Longquan–Shan fault and the Huya fault caused by the Wenchuan mainshock. Our results indicate that the Coulomb stress in the northern section (Zone A) of the Longquan–Shan fault is increased by 0.07–0.10 bars, that in the middle section (Zone B) by 0.04–0.11 bars, and that in the southern section (Zone C) shows almost no change. For the Huya fault, the Coulomb stress is decreased by 0.01–0.03 bars in the northern section (Zone A), 0.10–0.35 bars in the middle section (Zone B), and nearly 0.5 bars in the southern section (Zone C). The epicenter distribution of small earthquakes (ML  1.5) on the Longquan–Shan fault and the Huya fault after the Wenchuan earthquake is consistent with the distribution of the Coulomb stress change. This implies that the Wenchuan earthquake may have triggered small events on the Longquan–Shan fault, but inhibited those on the Huya fault. We then use the rate/state friction law to calculate the occurrence probability of future earthquakes in the study region for the next decade. They include the distribution of b-values, magnitude of completeness (Mc), the background seismicity rate, a value of n and the duration for the transient effect (ta) in the study region. We also estimate the earthquake occurrence probabilities on the neighboring faults after the Wenchuan earthquake. Our results show that, the occurrence probability of future earthquakes in the Longquan–Shan has a slight increase, being 7% for M  5.0 shocks during the next decade, but the earthquake probability in the Huya region is reduced obviously, being 5–20%, 7–26% and 3–9% for M  5.0 shocks during the next decade in sections A, B and C of the Huya fault, respectively.  相似文献   

6.
On 21 March 2008, an Ms7.3 earthquake occurred at Yutian County, Xinjiang Uygur Autonomous Region, which is in the same year as 2008 Mw 7.9 Wenchuan earthquake. These two earthquakes both took place in the Bayar Har block, while Yutian earthquake is located in the west edge and Wenchuan earthquake is in the east. The research on source characteristics of Yutian earthquake can serve to better understand Wenchuan earthquake mechanism. We attempt to reveal the features of the causative fault of Yutian shock and its co-seismic deformation field by a sensitivity-based iterative fitting (SBIF) method. Our work is based on analysis and interpretation to high-resolution satellite (Quickbird) images as well as D-InSAR data from the satellite Envisat ASAR, in conjunction with the analysis of seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 22 km long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in the Qira County. It is characterized by distinct linear traces and a simple structure with 1–3 m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone are seen many secondary fractures and fault-bounded blocks by collapse, exhibiting remarkable extension. The co-seismic deformation affected a big range 100 km × 40 km. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. The maximum subsidence displacement is ~2.6 m in the LOS, and the maximum uplift is 1.2 m. The maximum relative vertical dislocation reaches 4.1 m, which is 10 km distant from the starting rupture point to south. The 42 km-long seismogenic fault in the subsurface extends in NS direction as an arc, and it dipping angle changes from 70° near the surface to 52° at depth ~10 km. The slip on the fault plane is concentrated in the depth range 0–8 km, forming a belt of length 30 km along strike on the fault plane. There are three areas of concentrating slip, in which the largest slip is 10.5 m located at the area 10 km distant from the initial point of the rupture.  相似文献   

7.
This study analyzed the rupture directivity of the 2011 Tohoku earthquake by using 100-s Rayleigh-wave travel-times, influenced by the finite source, to derive the fault parameters of the earthquake. The results demonstrated that the earthquake exhibited a slow rupture propagation with a rupture velocity of approximately 1.5–2.0 km/s and asymmetric bilateral faulting. The two rupture directions were N60°E and N127°E, with rupture lengths of approximately 276 km and 231 km, respectively. The rupture toward N60°E had a source duration of approximately 183 s, longer than that toward N127°E (approximately 156 s). Overall, the entire source duration of the earthquake faulting lasted approximately 183 s. Regarding historical seismicity in eastern Japan, the 2011 Tohoku earthquake not only ruptured a locked area in which large earthquakes have rarely occurred, but also ruptured the source regions of several historical earthquakes. With the exception of its slow rupture velocity and generation of a tsunami, the rupture features of the 2011 Tohoku earthquake were inconsistent with those of typical tsunami earthquakes.  相似文献   

8.
The Longmen Shan (LMS), which constitutes the eastern border of the Tibetan Plateau, is about 400 km in length and characterized by a steep topographic transition from the Sichuan Basin to the plateau. The 2008 Mw7.9 Wenchuan earthquake and 2013 Mw6.6 Lushan earthquake were associated with the central to northern segments and southern segment of the LMS fault belt, respectively. In this paper, zircon and apatite fission track (ZFT and AFT, respectively) dating in combination with previously published low temperature thermochronology studies are used to constrain both the exhumation history and fault activity along the LMS, with a special focus on the southern segment. In the southern segment of the LMS, the ZFT ages in the hanging wall of the Wulong-Yanjing fault 10–14 Ma, increasing to ca. 30 Ma to the northwest of the faults and to 100–200 Ma in the plateau region. The AFT ages are 3–5 Ma at the mountain front and increase to 8–26 Ma in the plateau. We show that these age distributions are controlled by fault geometry. Two stages of rapid exhumation were identified using apatite fission track length modeling and the age distributions in the southern segment of the LMS. The first stage is from ca. 30 Ma and the second stage is from 3–5 Ma to present. In contrast with the middle segment of the LMS, the Cenozoic exhumation rate is higher in the southern segment of the LMS, which may be due to the influence of the collision between the India and Eurasia plates and/or different faulting mechanisms in the different segments.  相似文献   

9.
Post-rift fault activities were often observed in deepwater basins, which have great contributions to oil and gas migration and accumulation. The main causes for post-rift fault activities include tectonic events, mud or salt diapirs, and gravitational collapse. In the South China Sea continental margin, post-rift fault activities are widely distributed, especially in Baiyun sag, one of the largest deepwater sag with its main body located beneath present continental slope. During the post-rift stage, large population of faults kept active for a long time from 32 Ma (T70) till 5.5 Ma (T10). Seismic interpretation, fault analysis and analogue modeling experiments indicate that the post-rift fault activities in Baiyun sag between 32 Ma (T70) and 13.8 Ma (T30) was mainly controlled by gravity pointing to the Main Baiyun sag, which caused the faults extensive on the side facing Main Baiyun sag and the back side compressive. Around 32 Ma (T70), the breakup of the continental margin and the spreading of the South China Sea shed a combined effect of weak compression toward Baiyun sag. The gravity during post-rift stage might be caused by discrepant subsidence and sedimentation between strongly thinned sag center and wing areas. This is supported by positive relationship between sedimentation rate and fault growth index. After 13.8 Ma (T30), fault activity shows negative relationship with sedimentation rate. Compressive uplift and erosion in seismic profiles as well as negative tectonic subsiding rates suggest that the fault activity from 13.8 Ma (T30) to 5.5 Ma (T10) might be controlled by the subductive compression from the Philippine plate in the east.  相似文献   

10.
High-precision 40Ar/39Ar dating of lamprophyre dike swarms in the Western Province of New Zealand reveals that these dikes were emplaced into continental crust prior to, during and after opening of the Tasman Sea between Australia and New Zealand. Dike ages form distinct clusters concentrated in different areas. The oldest magmatism, 102–100 Ma, is concentrated in the South Westland region that represents the furthest inboard portion of New Zealand in a Gondwana setting. A later pulse of magmatism from ~ 92 Ma to ~ 84 Ma, concentrated in North Westland, ended when the first oceanic crust formed at the inception of opening of the Tasman Sea. Magmatic quiescence followed until ~ 72–68 Ma, when another swarm of dikes was emplaced. The composition of the dikes reveals a dramatic change in primary melt sources while continental extension and lithospheric thinning were ongoing. The 102–100 Ma South Westland dikes represent the last mafic calc-alkaline magmatism associated with a long-lived history of the area as Gondwana's active margin. The 92–84 Ma North and 72–68 Ma Central Westland dike swarms on the other hand have strongly alkaline compositions interpreted as melts from an intraplate source. These dikes represent the oldest Western Province representatives of alkaline magmatism in the greater New Zealand region that peaked in activity during the Cenozoic and has remained active up to the present day. Cretaceous alkaline dikes were emplaced parallel to predicted normal faults associated with dextral shear along the Alpine Fault. Furthermore, they temporally correspond to polyphase Cretaceous metamorphism of the once distal Alpine Schist. Dike emplacement and distal metamorphism could have been linked by a precursor to the Alpine Fault. Dike emplacement in the Western Province coupled to metamorphism of the Alpine Schist at 72–68 Ma indicates a period of possible reactivation of this proto Alpine Fault before it served as a zone of weakness during the opening of the oceanic Emerald Basin (at ~ 45 Ma) and eventually the formation of the present-day plate boundary (~ 25 Ma–recent).  相似文献   

11.
The forms and location patterns of geologic hazards induced by earthquakes in southern Siberia, Mongolia, and northern Kazakhstan in1950 through 2008 have been investigated statistically, using a database of coseismic effects created as a GIS MapInfo application, with a handy input box for large data arrays. The database includes 689 cases of macroseismic effects from MS = 4.1–8.1 events at 398 sites. Statistical analysis of the data has revealed regional relationships between the magnitude of an earthquake and the maximum distance of its environmental effects (soil liquefaction and subsidence, secondary surface rupturing, and slope instability) to the epicenter and to the causative fault. Thus estimated limit distances to the fault for the MS = 8.1 largest event are 40 km for soil subsidence (sinkholes), 80 km for surface rupture, 100 km for slope instability (landslides etc.), and 130 km for soil liquefaction. These distances are 3.5–5.6 times as short as those to the epicenter, which are 150, 450, 350, and 450 km, respectively. Analysis of geohazard locations relative to nearest faults in southern East Siberia shows the distances to be within 2 km for sinkholes (60% within 1.5 km), 4.5 km for landslides (90% within 1.5 km), 8 km for liquefaction (69% within 1 km), and 35.5 km for surface rupture (86% within 2 km). The frequency of hazardous effects decreases exponentially away from both seismogenic and nearest faults. Cases of soil liquefaction and subsidence are analyzed in more detail in relation to rupture patterns. Equations have been suggested to relate the maximum sizes of secondary structures (sinkholes, dikes, etc.) with the earthquake magnitude and shaking intensity at the site. As a result, a predictive model has been created for locations of geohazard associated with reactivation of seismogenic faults, assuming an arbitrary fault pattern. The obtained results make basis for modeling the distribution of geohazards for the purposes of prediction and estimation of earthquake parameters from secondary deformation.  相似文献   

12.
In the paper we report the state-of-the-art of seismicity study in the Baikal rift system and the general results obtained. At present, the regional earthquake catalog for fifty years of the permanent instrumental observations consists of over 185,000 events. The spatial distribution of the epicenters, which either gather along well-delineated belts or in discrete swarms is considered in detail for different areas of the rift system. At the same time, the hypocenters are poorly constrained making it difficult to identify the fault geometry. Clustered events like aftershock sequences or earthquake swarms are typical patterns in the region; moreover, aftershocks of M  4.7 earthquakes make up a quarter of the whole catalog. The maximum magnitude of earthquakes recorded instrumentally is MLH7.6 for a strike-slip event in the NE part of the Baikal rift system and MLH6.8 for a normal fault earthquake in the central part of the rift system (Lake Baikal basin). Predominant movement type is normal faulting on NE striking faults with a left lateral strike-slip component on W–E planes. In conclusion, some shortcomings of the seismic network and data processing are pointed out.  相似文献   

13.
Within the Namche Barwa area, SE Tibet, the Indus–Yarlung suture zone separates the Lhasa terrain in the north from the Himalayan unit including the Tethyan (sedimentary and volcanic rocks), Dongjiu (greenschist to lower amphibolite facies), Namche Barwa (granulite facies), Pei (amphibolite facies) and Laiguo (greenschist facies) sequences in the south. Two fault systems were distinguished in the Namche Barwa area. The former includes a top-down-to-the-north normal fault in the north and two top-to-the-south thrust zones in the south named as Upper and Lower Thrusts, respectively. The Namche Barwa and Pei sequences were exhumed southwards from beneath the Dongjiu sequence by these faults. Thus, the fault system is regarded as a southward extrusion structure. Subsequently, the exposed Dongjiu, Namche Barwa, Pei and Laiguo sequences were displaced northwards onto the Lhasa terrain by the top-to-the-north fault system, thus, marking it as northward indentation structure. Monazite TIMS U–Pb dating demonstrates that the normal fault and the Lower Thrust from the southward extrusion system were probably active at ~ 6 Ma and ~ 10 Ma, respectively. Zircon U–Pb SHRIMP and phlogopite K–Ar ages further suggest that the Upper Thrust was active between 6.2 ± 0.2 Ma and 5.5 ± 0.2 Ma. The northward indentation structures within the core portion of the eastern Himalayan syntaxis were perhaps active between 3.0 Ma and 1.5 Ma, as inferred by published zircon U–Pb SHRIMP and hornblende Ar–Ar ages. The monazite from upper portions of the Pei sequence dated by U–Pb TIMS indicates that the precursor sediments of this sequence were derived from Proterozoic source regions. Nd isotopic data further suggest that all the metamorphic rocks within eastern Himalaya (εNd = ? 13 to ? 19) correlate closely with those from the Greater Himalayan Sequences, whereas the western Himalayan syntaxis is mainly comprised of Lesser Himalayan Sequences. The two indented corners of the Himalaya are, thus, different.  相似文献   

14.
The May 12, 2008, Mw 7.9 Wenchuan earthquake was induced by failure of two of the major faults of the Longmen Shan thrust fault zone along the eastern margin of Tibet Plateau. Our study focused on trenches across the Yingxiu–Bichuan fault, the central fault in the Longmen Shan belt that has a coseismic surface break of more than 200 km long. Trenching excavation across the 2008 earthquake rupture on three representative sites reveals the styles and amounts of the deformation and paleoseismicity along the Longmen Shan fault. Styles of coseismic deformation along the 2008 earthquake rupture at these three sites represent three models of deformation along a thrust fault. Two of the three trench exposures reveal one pre-2008 earthquake event, which is coincident with the pre-existing scarps. Based on the observation of exposed stratigraphy and structures in the trenches and the geomorphic expressions on ground surface, we interpret the 2008 earthquake as a characteristic earthquake along this fault. The interval of reoccurrence of large earthquake events on the Central Longmen Shan fault (the Yingxiu–Beichuan fault) can be inferred to be about 11,000 years according to 14C and OSL dating. The amounts of the vertical displacement and shortening across the surface rupture during the 2008 earthquake are determined to be 1.0–2.8 m and 0.15–1.32 m, respectively. The shortening rate and uplift rate are then estimated to be 0.09–0.12 mm/yr and 0.18–0.2 mm/yr, respectively. It is indicated that the deformation is absorbed mainly not by shortening, but by uplift along the rupture during the 2008 earthquake.  相似文献   

15.
The Longmu–Gozha Co left-lateral strike-slip fault system (LGCF) is located in remote western Tibet, forming a triple junction with both the Altyn Tagh fault (ATF) and the Karakorum fault (KF), the two major strike-slip faults in the region. The Ashikule, Gozha Co and Longmu Co faults are clear and distinct left-stepping en-echelon faults, together forming the LGCF system. Although poorly documented, quantifying its activity remains a key problem to understand the kinematics and the tectonic history of the westernmost Tibetan Plateau. Indeed, the Karakax fault (NW segment of the ATF), LGCF and KF together control the tectonics of western Tibet which itself controls the extrusion of Tibet towards the east, with the LGCF acting as a natural boundary for eastward motion of the Tibetan Plateau due to India's northward impingement. The LGCF system shows clear and impressive morphological indications of left-lateral active shear, that we quantify using field measurements (terrestrial LIDAR) along with 10Be surface-exposure dating. Our data suggest a slip-rate < 3 mm/yr, consistent with geodetic and block model studies. While it is on the order of the Karakax fault slip-rate (~ 2 mm/yr), it is smaller than those along the ATF and KF (> 9 and > 8 mm/yr, respectively), yielding a few mm/yr of extension accommodated most likely in the Ashikule graben and surroundings, located between the ATF and Karakax faults. Numerous evidences of recent tectonic-related events are present in the vicinity, such as the 1951 volcanic eruption as well as the 2008 and 2014 Ms 7.3 Yutian earthquakes, attesting of its high activity. In addition, the LGCF's en-echelon geometry and identical direction with the ATF, as well as smaller geological offsets and lower slip-rate compared to those on the surrounding faults, suggest that this segment of the ATF may be the most recent.  相似文献   

16.
NE Iran, including the Kopeh Dagh and Allah Dagh-Binalud deformation domains, comprises the northeastern boundary of the Arabia–Eurasia collision zone. This study focuses on the evolution of the Plio-Quaternary tectonic regimes of northeast Iran. We present evidence for drastic temporal changes in the stress state by inversion of both geologically and seismically determined fault slip vectors. The inversions of fault kinematics data reveal distinct temporal changes in states of stress during the Plio-Quaternary (since ~ 5 Ma). The paleostress state is characterized by a regional transpressional tectonic regime with a mean N140 ± 10°E trending horizontal maximum stress axis (σ1). The youngest (modern) state of stress shows two distinct strike-slip and compressional tectonic regimes with a regional mean of N030 ± 15°E trending horizontal σ1. The change from the paleostress to modern stress states has occurred through an intermediate stress field characterized by a mean regional N trending σ1. The inversion analysis of earthquake focal mechanisms reveals a homogeneous, transpressional tectonic regime with a regional N023 ± 5°E trending σ1. The modern stress state, deduced from the youngest fault kinematics data, is in close agreement with the present-day stress state given by the inversions of earthquake focal mechanisms. According to our data and the deduced results, in northeast Iran, the Arabia–Eurasia convergence is taken up by strike-slip faulting along NE trending left-lateral and NNW trending right-lateral faults, as well as reverse to oblique-slip reverse faulting along NW trending faults. Such a structural assemblage is involved in a mechanically compatible and homogeneous modern stress field. This implies that no strain and/or stress partitioning or systematic block rotations have occurred in the Kopeh Dagh and Allah Dagh-Binalud deformation domains. The Plio-Quaternary stress changes documented in this paper call into question the extrapolation of the present-day seismic and GPS-derived deformation rates over geological time intervals encompassing tens of millions of years.  相似文献   

17.
The 12 May 2008 Ms 8.0 Wenchuan earthquake, China, was one of largest continental thrusting events worldwide. Based on interpretations of post-earthquake high-resolution remote sensing images and field surveys, we investigated the geometry, geomorphology, and kinematics of co-seismic surface ruptures, as well as seismic and geologic hazards along the Longmen Shan fold-and-thrust belt. Our results indicate that the Wenchuan earthquake occurred along the NE–SW-trending Yingxiu–Beichuan and Guanxian–Anxian faults in the Longmen Shan fold-and-thrust belt. The main surface rupture zones along the Yingxiu–Beichuan and Guanxian–Anxian fault zones are approximately 235 and 72 km in length, respectively. These sub-parallel ruptures may merge at depth. The Yingxiu–Donghekou surface rupture zone can be divided into four segments separated by discontinuities that appear as step-overs or bends in map view. Surface deformation is characterized by oblique reverse faulting with a maximum vertical displacement of approximately 10 m in areas around Beichuan County. Earthquake-related disasters (e.g., landslides) are linearly distributed along the surface rupture zones and associated river valleys.The Wenchuan earthquake provides new insights into the nature of mountain building within the Longmen Shan, eastern Tibetan Plateau. The total crustal shortening accommodated by this great earthquake was as much as 8.5 m, with a maximum vertical uplift of approximately 10 m. The present results suggest that ongoing mountain building of the Longmen Shan is driven mainly by crustal shortening and uplift related to repeated large seismic events such as the 2008 Wenchuan earthquake. Furthermore, rapid erosion within the Longmen Shan fold-and-thrust belt occurs along deep valleys and rupture zones following the occurrence of large-scale landslides triggered by earthquakes. Consequently, we suggest that crustal shortening related to repeated great seismic events, together with isostatic rebound induced by rapid erosion-related unloading, is a key component of the geodynamics that drive ongoing mountain building on the eastern Tibetan Plateau.  相似文献   

18.
《Quaternary Science Reviews》2007,26(7-8):1129-1147
Paleoenvironmental reconstructions of three coastal waterbodies in Wellington, New Zealand, reveal that sites were isolated from the sea within the last 7500 years through coseismic uplift and barrier growth. Evidence for coseismic uplift consists of distinct transitions in diatom assemblages representing large changes in relative sea-level or water-table level, commonly in association with sedimentological evidence for catchment disturbance or marine influx. Transitions are abrupt, laterally extensive and synchronous within each waterbody. Amount of change across transition horizons is assessed using quantitative estimates of paleosalinity and waterbody type as proxies for relative sea-level change. Seven transitions involve large paleoenvironmental changes and provide evidence for earthquakes occurring at approximately 5100, 3200 (recorded at two sites), 2300 (recorded at two sites), 1000 cal years BP and 1855 AD. Five other transitions involve smaller paleoenvironmental changes and are considered to be consistent with effects of earthquakes but do not provide independent evidence for earthquake occurrence. These smaller transitions occur at approximately 6800, 3600, 2200, 1000 (coincident with a large transition) and 500 cal years BP. The data refine ages and provide information about the extent and effects of past large earthquakes in the region. These are the first paleoecologically derived earthquake signatures for Wellington and they contribute to the sparse collection worldwide of off-fault sedimentary earthquake records for predominantly strike-slip faults.  相似文献   

19.
18th June, 2010 5.9 Mw earthquake at North Andaman triggered along NW–SE pre-existing fault with reverse fault mechanism. Macroseismic survey and GPS geodesy reveal maximum damages following NE–SW trend due to normal fault mechanism. Coulomb stress modeling for post- and inter-seismic earthquakes after the 2004 mega-earthquake show different stages of fault segment linkage at North Andaman. The present earthquake has been explained as co-shock due to asiesmic soft linkage of fault propagation.  相似文献   

20.
Palaeoseismological and morphotectonic analyses enable us to define a 400-m-wide actively deformed zone associated with the active Eliki normal fault, central Greece, bounded on the south by a second-order fault and on the north by a composite and prominent fault scarp. This scarp is further analysed by trenching. Based on colluvium stratigraphy, displacement of distinct horizons and deposition of sedimentary layers, three faulting events have been identified along four fault strands affecting unconsolidated sediments in the trench. The two younger events, with throws of 0.93 and 1.37 m, respectively, the third event, with a throw of 0.44 m, and the penultimate 373 BC event suggest a variable seismic history.The entire alluvial plain of the Kerynitis and Vouraikos rivers, which cross the Eliki fault, has subsided at a rate of 1.4 mm/year, resulting in the burial of the Late Hellenistic–Roman occupation horizons under 3 m of fluvial and colluvial sediments in places.Extension in the broader area is accommodated by the seismically active Eliki and Egion faults. Structural and palaeoseismological analysis of those two faults indicates that they accommodate 1.5 mm/year, or about 10% of the geodetically estimated extension of up to 13 mm/year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号