首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于近场波动有限元方法并结合黏弹性人工边界条件,针对3D断层场地,通过求解等效二维场地地震响应,从而获得3D场地地震动输入的自由场响应,并将自由场响应转化为3D模型边界面上的等效节点力,从而建立含断层3D场地P波入射的倾斜输入方法。自由场算例验证所提方法具有较好精度,进而基于建立的输入方法,开展了跨断层隧道地震响应的数值模拟研究。数值模拟结果表明:在P波作用下,隧道跨断层部位处于拉、压、剪切的复杂受力状态,且断层处的隧道衬砌地震响应明显大于其他部位的地震响应;围岩的力学性质与断层的力学性质相差越大,断层处衬砌的地震响应放大越明显;断层处衬砌地震响应随断层深度的增加而增加。另外,跨断层隧道的地震响应受P波入射角度的影响较大,随P波入射角度的增加,断层处隧道衬砌的轴力、弯矩先增加后减小,而剪力具有逐渐减小的规律。  相似文献   

2.
隧道地震响应数值模拟研究   总被引:2,自引:1,他引:1  
在进行隧道地震响应的数值模拟研究时, 横向计算范围和人工边界等对计算结果有很大的影响。本文以黄草坪隧道为研究对象, 应用有限差分程序FLAC3D对其进行地震响应的数值模拟研究, 将横向计算范围分别取为隧道洞径的5倍、6倍、7倍、8倍、9倍和10倍, 并分别采用FLAC3D中的截断边界、自由场地边界和粘性边界进行计算。研究结果表明, 当地震波为P波时, 横向计算范围取为洞径的7至8倍, 人工边界采用自由场地边界或粘性边界是比较合理的。   相似文献   

3.
砂土自由场地基水平垂直振动离心模拟试验   总被引:1,自引:0,他引:1  
利用最新研制的R500B振动台在450 g-t离心机上对砂土自由场地基在水平和垂直地震下的动态反应做了离心模拟试验研究。模拟离心重力场为30 g,振动台在水平和垂直方向的控制最大加速度分别为20 g和10 g。模型内布置相应的微型加速度计以测量地震反应。结果表明,在水平和竖向同时激振与单向分别激振砂土两种情况下,砂土地基有不同的动力反应,应在设计中予以考虑水平和竖向同时激振的耦合作用对砂土地基的影响  相似文献   

4.
为研究综合管廊动力边界条件对地震动力响应的影响,以厦门地区的代表性土层为例,建立动力有限元数值模型,土体本构采用小应变硬化模型,分别设定固定边界、黏性边界和自由场3种人工边界条件,进行Rayleigh波和地震底部剪切波作用下的场地响应研究;并根据变形特征及拟绝对加速度反应谱(PSA)评价3种边界的有效性,提出综合管廊地震动力分析的优化动力边界组合方法。研究表明:在地震波(底部水平加速度时程)及Rayleigh波的作用下,由于考虑了黏性边界对外行波的吸收,但未考虑地震动的输入问题及边界外半无限介质的弹性恢复性能,边界会对模型内部土体的水平位移产生限制作用,使得场地内水平位移响应偏小,而采用自由场边界则基本不存在这种限制作用,表现出强烈的振荡;采用激励侧固定边界、远离激励侧黏性边界、其余侧自由场边界的优化组合动力边界,在Rayleigh波和底部加速度时程共同作用下,二者引起的动力响应交叉干扰较少,可按线性叠加处理;同时,黏性边界对地震波引起的动力响应有一定范围的吸收,自由场边界对Rayleigh波引起的动力响应也有一定范围的变形限制影响。研究成果可供地下综合管廊结构地震响应精细化数值模拟及抗震设计参考。  相似文献   

5.
The semi-empirical approach for modeling of strong ground motion given by Midorikawa (Tectonophysics 218:287?C295, 1993) has been modified in the present paper for component wise simulation of strong ground motion. The modified approach uses seismic moment in place of attenuation relation for scaling of acceleration envelope. Various strong motion properties like directivity effect and dependence of peak ground acceleration with respect to surface projection of source model have been studied in detail in the present work. Recently, Sikkim earthquake of magnitude 6.9 (M w ) that occurred on September 18, 2011 has been recorded at various near-field and far-field strong motion stations. The modified semi-empirical technique has been used to confirm the location and parameters of rupture responsible for this earthquake. Strong motion record obtained from the iterative modeling of the rupture plane has been compared with available strong motion records from near as well as far-field stations in terms of root mean square error between observed and simulated records. Several possibilities of nucleation point, rupture velocity, and dip of rupture plane have been considered in the present work and records have been simulated at near-field stations. Final selection of model parameters is based on root mean square error of waveform comparison. Final model confirms southward propagating rupture. Simulations at three near-field and twelve far-field stations have been made using final model. Comparison of simulated and observed record has been made in terms of peak ground acceleration and response spectra at 5?% damping. Comparison of simulated and observed record suggests that the method is capable of simulating record which bears realistic appearance in terms of shape and strong motion parameters. Present work shows that this technique gives records which matches in a wide frequency range for Sikkim earthquake and that too from simple and easily accessible parameters of the rupture plane.  相似文献   

6.
This paper presents the pseudo-dynamic analysis to determine the seismic vertical uplift capacity of a horizontal strip anchor using upper bound limit analysis. However, in the literature, the pseudo-static approach was used by few researchers to compute the seismic vertical pullout resistance, where the real dynamic nature of earthquake accelerations cannot be considered. Under the seismic conditions, the values of the unit weight component of uplift factor fγE are determined for different magnitudes of soil friction angle, soil amplification, embedment ratio and seismic acceleration coefficients both in the horizontal and vertical directions. It is observed that the uplift factor fγE decreases significantly with the increase in seismic accelerations and amplification but increases with the increase in embedment ratio. The results are compared with the existing values in the literature and the significance of the present methodology for designing the horizontal strip anchor is discussed. In presence of vertical earthquake acceleration and amplification of vibration, the present values of fγE compare reasonably well with the existing pseudo-static values obtained by modifying the horizontal acceleration coefficient.  相似文献   

7.
Finite element method (FEM) is effectively used for evaluating roller-compacted concrete (RCC) dams, especially in high seismicity zones. The aim of this study is to investigate the effect of various reservoir lengths on the seismic response of a selected RCC dam under strong ground motion effects. Six different reservoir lengths, the lengths varies from h/2 to 10h (h, the height of dam), are used within finite element models. The hydrodynamic pressure of the reservoir water is modelled with the 2D fluid finite elements based on the Lagrangian approach. The horizontal and vertical components of the 1989 Mw 6.9 Loma Prieta earthquake are utilized in numerical analyses. The non-linear time-history analyses of those six models are investigated by using Drucker-Prager material model. According to the numerical analysis, it is obvious that the seismic behavior of the RCC dams is considerably dependent on the reservoir length. By increasing the length, we have obtained higher displacement values, which exist until the reservoir length reaches the 3h; at increased lengths, the values remain stable. This result proposes that 3h reservoir length is adequate to assess the seismic response of RCC dams. The principal tensile stresses are relatively lower in non-linear analysis compared to linear analyses. However, the principal compression stresses are close to each other in linear and non-linear analyses. The results imply that the non-linear response is influential on the total seismic response of a dam, which cannot be neglected in numerical analysis.  相似文献   

8.
Recent and paleo seismicity indicate that moderate seismic activity is relatively large for Aswan area. This is a warning on the possibility of occurrence of earthquakes in the future too. No strong motion records are available in Aswan area for engineers to rely upon. Consequently, the seismological modeling is an alternative approach till sufficient instrumental records around Aswan become available. In the present study, we have developed new ground motion attenuation relationship for events spanning 4.0?? M w?≤?7.0 and distance to the surface projection of the fault up to 100 km for Aswan based on a statistically simulated seismological model. We generated suites of ground motion time histories using stochastic technique. The ground motion attenuation relation describes the dependence of the strength of the ground motions on the earthquake magnitude and distance from the earthquake. The proposed equation for peak ground acceleration (PGA) for the bed rock is in the form of: $ {\mathbf{log}}{\text{ }}\left( {{\mathbf{PGA}}/{\mathbf{gal}}} \right){\text{ }} = {\mathbf{1}}.{\mathbf{24}} + {\mathbf{0}}.{\mathbf{358}}{M_{\mathbf{w}}} - {\text{ }}{\mathbf{log}}\left( {\mathbf{R}} \right){\text{ }}-{\text{ }}{\mathbf{0}}.{\mathbf{008}}{\text{ }}{\mathbf{R}}{\text{ }} + {\text{ }}{\mathbf{0}}.{\mathbf{22}}{\text{ }}{\mathbf{P}} $ . Where PGA is the peak ground acceleration in gal (cm/s2); Mw, its moment magnitude; R is the closest distance between the rupture projection and the site of interest; and the factor P is a dummy variable. It is observed that attenuation of strong motion in Aswan is correlated with those used before in Egypt.  相似文献   

9.
We perform a strong ground motion simulation using a modified semi-empirical technique (Midorikawa in Tectonophysics 218:287–295, 1993), with frequency-dependent radiation pattern model. Joshi et al. (Nat Hazards 71:587–609, 2014) have modified the semi-empirical technique to incorporate the modeling of strong motion generation areas (SMGAs). A frequency-dependent radiation pattern model is applied to simulate high-frequency ground motion more precisely. Identified SMGAs (Kurahashi and Irikura in Earth Planets Space 63:571–576, 2011) of the 2011 off the Pacific coast of Tohoku earthquake (M w  = 9.0) were modeled using this modified technique. We analyzed the effect of changing seismic moment values of SMGAs on the simulated acceleration time series. Final selection of the moment values of SMGAs is based on the root-mean-square error (RMSE) of waveform comparison. Records are simulated for both frequency-dependent and constant radiation pattern function. Simulated records for both cases are compared with observed records in terms of peak ground acceleration, peak ground velocity and pseudo-acceleration response spectra at different stations. Comparison of simulated and observed records in terms of RMSE suggests that the method is capable of simulating record, which matches in a wide frequency range for this earthquake and bears realistic appearance in terms of shape and strong motion parameters. The results confirm the efficacy and suitability of rupture model defined by five SMGAs for the developed modified technique.  相似文献   

10.
柳国环  练继建  于通顺 《岩土力学》2014,35(9):2651-2658
近海风力发电结构是由无限域地基、基础及上部结构组成的体系,有限域透射人工边界和地震动输入模式直接影响结构体系的动力响应。首先,建立透射人工边界-地基-基础-塔筒结构和固定边界-地基-基础-塔筒结构的有限元模型;然后,简要澄清了透射边界地震动输入之所以采用外力而不采取地震动物理量(加速度、速度和位移)的原因所在;最后,对给出的3种作用模式:(1)固定边界地震动输入,(2)只考虑外源输入波作用,(3)同时考虑外源输入波和内源振动的散射波作用,分别进行计算分析和比较。通过数值计算并结合理论分析,(1)澄清了对透射边界采用外力进行地震激励输入的方法的原因,这种输入方法合理可靠,符合实际情况;(2)在地震波等效荷载的生成中,针对圆形横截面地基提出了一种阻尼力、刚度力的便捷性生成方法,大大减小了工作量;(3)从自身振动特点及阻尼设置角度,解释了地震作用下采用透射边界比采用固定边界时风电结构响应减小的原因;(4)指出了地震作用下透射边界地基模型在结构动力响应与倒塌计算中内源振动反射的不容忽视性。  相似文献   

11.
Li  Lei  Tan  Jingqiang  Zhang  Dazhou  Malkoti  Ajay  Abakumov  Ivan  Xie  Yujiang 《Computational Geosciences》2021,25(5):1565-1578

Seismic modeling plays an important role in geophysics and seismology for estimating the response of seismic sources in a given medium. In this work, we present a MATLAB-based package, FDwave3D, for synthetic wavefield and seismogram modeling in 3D anisotropic media. The seismic simulation is carried out using the finite-difference method over the staggered grid, and it is applicable to both active and passive surveys. The code package allows the incorporation of arbitrary source mechanisms and offers spatial derivative operators of accuracy up to tenth-order along with different types of boundary conditions. First, the methodological aspects of finite-difference method are briefly introduced. Then, the code has been tested and verified against the analytical solutions obtained for the homogeneous model. Further, the numerical examples of layered and overthrust models are presented to demonstrate its reliability.

  相似文献   

12.
为研究近断层脉冲地震动中竖向加速度对砂土场地液化的影响,基于有限元平台OpenSees开发的边界面塑性本构模型,建立了动单剪单元试验模型和饱和砂土三维有限元模型。选取台湾Chi-Chi地震中10条具有速度脉冲特性的地震波,对比分析了水平双向脉冲波与三向脉冲波作用下土柱竖向位移、循环应力比、孔压比及等效循环周数的差异性,继而明确了脉冲地震动中竖向加速度对砂土液化的影响规律。研究表明,三向脉冲地震波中竖向加速度分量对场地永久位移值影响较小,但使永久位移的发展持时明显增大;土柱循环应力比受竖向地震动影响较小,因此分析脉冲地震动对场地剪切特性的影响时,可将三向脉冲地震动简化为水平双向地震动;考虑竖向地震动的三向脉冲地震波引起的孔压比变化幅度较大,孔压消散时间较长;三向脉冲地震波对应的等效循环周数较大,地震动发展持时长,可认为竖向加速度对场地液化有促进作用。  相似文献   

13.
A seismic hazard evaluation for three dams in the Rocky Mountains of northern Colorado is based on a study of the historical seismicity. To model earthquake occurrence as a random process utilizing a maximum likelihood method, the catalog must exhibit random space-time characteristics. This was achieved using a declustering procedure and correction for completeness of recording. On the basis of the resulting a- and b-values, probabilistic epicentral distances for a 2 × 10–5 annual probability were calculated. For a random earthquake of magnitude M L 6.0–6.5, this distance is 15 km. Suggested ground motion parameters were estimated using a probabilistic seismic hazard analysis. Critical peak horizontal accelerations at the dams are 0.22g if median values are assumed and 0.39g if variable attenuation and seismicity rates are taken into account. For structural analysis of the dams, synthetic acceleration time series were calculated to match the empirical response spectra. In addition, existing horizontal strong motion records from two Mammoth Lakes, California earthquakes were selected and scaled to fit the target horizontal acceleration response spectra.  相似文献   

14.
An efficient analytical approach using the finite element (FE) method, is proposed to calculate the bending moment and deflection response of a single pile under the combined influence of lateral and axial compressive loading during an earthquake, in both saturated and dry homogenous soil, and in a typical layered soil. Applying a pseudo-static method, seismic loads are calculated using the maximum horizontal acceleration (MHA) obtained from a seismic ground response analysis and a lateral load coefficient (a) for both liquefying and non-liquefying soils. It is observed that for a pile having l/d ratio 40 and embedded in dry dense sand, the normalized moment and displacement increase when the input motion becomes more severe, as expected. Further increasing of a from 0.1 to 0.3 leads to increase in the normalized moment and displacement from 0.033 to 0.042, and 0.009 to 0.035, respectively. The validity of the proposed FE based solution for estimating seismic response of pile is also assessed through dynamic centrifuge test results.  相似文献   

15.
尤红兵  赵凤新  李方杰 《岩土力学》2009,30(10):3133-3138
利用间接边界元方法,在频域内求解了层状场地中局部不均体对平面P波的散射。利用精确的土层动力刚度矩阵进行自由场反应分析,求得位移和应力响应。通过计算虚拟分布荷载的格林影响函数,求得相应位移和应力;根据边界条件确定虚拟分布荷载,最终得到问题的解答。研究了入射P波时,不均体宽度、埋深、厚度、入射角、入射频率度等参数对地表位移幅值的影响,并与相应自由场的结果进行了比较。不均体对P波散射有重要影响,在工程场地地震安全性评价中,应合理考虑局部不均体对场地设计地震动参数确定的影响。  相似文献   

16.
近断层地震对桥梁的影响日益引起关注.本研究提出了桥梁?土?桩基全局建模方法,强调了更详细的桥墩及土壤非线性的真正好处,它可以比一系列轴载更真实地描述物理现象.协同SHAKE91程序并利用p-y曲线、t-z曲线和q-z曲线建立土?桩基非线性模型,采用双线性模型模拟桥墩及桩基础的滞回特性,建立不良地质发育区铁路桥梁?土?桩基多跨简支梁桥体系模型,计算其弹塑性地震响应,分析Ap/vp等对桥梁的弹塑性地震响应的影响.研究结果表明:桥梁横竖向响应受Ap/vp影响特点不同,相比墩底固结工况,考虑桩基后桥梁横向地震响应减小;对于竖向响应,在Ap/vp > 10时桥梁竖向地震响应降低,说明竖向地震在较高频率影响桥梁地震响应.   相似文献   

17.
格子Boltzmann方法地震波场模拟   总被引:3,自引:0,他引:3  
董桥梁  姚姚 《地球科学》1997,22(6):638-642
格子Boltzmann方法是细胞自动机在某些学科中的具体化和应用。它根据微观运动过程的某些基本特征建立简化的、时间和空间完全离散的动力学模型,这种模型的平行行为符合宏观的微分方程。  相似文献   

18.
The San Ramón Fault is an active west-vergent thrust fault system located along the eastern border of the city of Santiago, at the foot of the main Andes Cordillera. This is a kilometric crustal-scale structure recently recognized that represents a potential source for geological hazards. In this work, we provide new seismological evidences and strong ground-motion modeling from hypothetic kinematic rupture scenarios, to improve seismic hazard assessment in the Metropolitan area of Central Chile. Firstly, we focused on the study of crustal seismicity that we relate to brittle deformation associated with different seismogenic fringes in the main Andes in front of Santiago. We used a classical hypocentral location technique with an improved 1D crustal velocity model, to relocate crustal seismicity recorded between 2000 and 2011 by the National Seismological Service, University of Chile. This analysis includes waveform modeling of seismic events from local broadband stations deployed in the main Andean range, such as San José de Maipo, El Yeso, Las Melosas and Farellones. We selected events located near the stations, whose hypocenters were localized under the recording sites, with angles of incidence at the receiver <5° and S–P travel times <2 s. Our results evidence that seismic activity clustered around 10 km depth under San José de Maipo and Farellones stations. Because of their identical waveforms, such events are interpreted like repeating earthquakes or multiplets and therefore providing first evidence for seismic tectonic activity consistent with the crustal-scale structural model proposed for the San Ramón Fault system in the area (Armijo et al. in Tectonics 29(2):TC2007, 2010). We also analyzed the ground-motion variability generated by an M w 6.9 earthquake rupture scenario by using a kinematic fractal k ?2 composite source model. The main goal was to model broadband strong ground motion in the near-fault region and to analyze the variability of ground-motion parameters computed at various receivers. Several kinematic rupture scenarios were computed by changing physical source parameters. The study focused on statistical analysis of horizontal peak ground acceleration (PGAH) and ground velocity (PGVH). We compared the numerically predicted ground-motion parameters with empirical ground-motion predictive relationships from Kanno et al. (Bull Seismol Soc Am 96:879–897, 2006). In general, the synthetic PGAH and PGVH are in good agreement with the ones empirically predicted at various source distances. However, the mean PGAH at intermediate and large distances attenuates faster than the empirical mean curve. The largest mean values for both, PGAH and PGVH, were observed near the SW corner within the area of the fault plane projected to the surface, which coincides rather well with published hanging-wall effects suggesting that ground motions are amplified there.  相似文献   

19.
In conventional seismic hazard analysis, uniform distribution over area and magnitude range is assumed for the evaluation of source seismicity which is not able to capture peculiar characteristic of near-fault ground motion well. For near-field hazard analysis, two important factors need to be considered: (1) rupture directivity effects and (2) occurrence of scenario characteristic ruptures in the nearby sources. This study proposed a simple framework to consider these two effects by modifying the predictions from the conventional ground motion model based on pulse occurrence probability and adjustment of the magnitude frequency distribution to account for the rupture characteristic of the fault. The results of proposed approach are compared with those of deterministic and probabilistic seismic hazard analyses. The results indicate that characteristic earthquake and directivity consideration both have significant effects on seismic hazard analysis estimates. The implemented approach leads to results close to deterministic seismic hazard analysis in the short period ranges (T < 1.0 s) and follows probabilistic seismic hazard analysis results in the long period ranges (T > 1.0 s). Finally, seismic hazard maps based on the proposed method could be developed and compared with other methods.  相似文献   

20.
三维地震物理模拟技术作为一种重要的地震波传播特征的研究手段,与数值模拟相比具有结果更逼真、不受计算方法和边界条件限制等优点,是认识复杂构造地震波传播规律及其响应特征的有效方法之一,并在地震波传播基本规律研究、野外地震勘探方法验证、观测系统设计优化等方面具有重要的应用价值。为此研发一套大型双三轴气浮定位多通道三维地震物理模拟实验系统。该系统包括导轨和传动系统、运动控制系统、定位测量系统、物理模拟数据采集系统及安全系统等5部分,可实现大尺度物理模型高精度定位,多通道、高效率、高信噪比、高分辨率模型超声波信号采集等功能。利用该系统对模拟含断层、陷落柱、煤层变薄带多种构造的含煤地层三维地震物理模型进行数据采集试验,获得的整体成像效果与地震物理模型吻合,验证了该系统的可靠性和准确性。该系统的研制成功为煤炭地震勘探方法理论研究及实际生产应用提供了新的实验技术手段。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号