首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Coastal and inshore areas of the Great Barrier Reef lagoon receive substantial amounts of material from adjacent developed catchments, which can affect the ecological integrity of coral reefs and other inshore ecosystems. A 5-year water quality monitoring dataset provides a 'base range' of water quality conditions for the inshore GBR lagoon and illustrates the considerable temporal and spatial variability in this system. Typical at many sites were high turbidity levels and elevated chlorophyll a and phosphorus concentrations, especially close to river mouths. Water quality variability was mainly driven by seasonal processes such as river floods and sporadic wind-driven resuspension as well as by regional differences such as land use. Extreme events, such as floods, caused large and sustained increases in water quality variables. Given the highly variable climate in the GBR region, long-term monitoring of marine water quality will be essential to detect future changes due to improved catchment management.  相似文献   

2.
The world’s largest coral reef ecosystem, the Great Barrier Reef (GBR), continues to be degraded from land-based pollution. Information about the source of pollutants is critical for catchment management to improve GBR water quality. We report here on an 11-year source to sea study of pollutant delivery in runoff from the Fitzroy River Basin (FRB), the largest GBR catchment. An innovative technique that relates land use to pollutant generation is presented. Study results indicate that maximum pollutant concentrations at basin and sub-catchment scales are closely related to the percentage area of croplands receiving heavy rain. However, grazing lands contribute the majority of the long-term average annual load of most common pollutants. Findings suggest improved land management targets, rather than water quality targets should be implemented to reduce GBR pollution. This study provides a substantial contribution to the knowledge base for the targeted management of pollution ‘hot-spots’ to improve GBR water quality.  相似文献   

3.
Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types.  相似文献   

4.
Our view of how water quality effects ecosystems of the Great Barrier Reef (GBR) is largely framed by observed or expected responses of large benthic organisms (corals, algae, seagrasses) to enhanced levels of dissolved nutrients, sediments and other pollutants in reef waters. In the case of nutrients, however, benthic organisms and communities are largely responding to materials which have cycled through and been transformed by pelagic communities dominated by micro-algae (phytoplankton), protozoa, flagellates and bacteria. Because GBR waters are characterised by high ambient light intensities and water temperatures, inputs of nutrients from both internal and external sources are rapidly taken up and converted to organic matter in inter-reefal waters. Phytoplankton growth, pelagic grazing and remineralisation rates are very rapid. Dominant phytoplankton species in GBR waters have in situ growth rates which range from approximately 1 to several doublings per day. To a first approximation, phytoplankton communities and their constituent nutrient content turn over on a daily basis. Relative abundances of dissolved nutrient species strongly indicate N limitation of new biomass formation. Direct ((15)N) and indirect ((14)C) estimates of N demand by phytoplankton indicate dissolved inorganic N pools have turnover times on the order of hours to days. Turnover times for inorganic phosphorus in the water column range from hours to weeks. Because of the rapid assimilation of nutrients by plankton communities, biological responses in benthic communities to changed water quality are more likely driven (at several ecological levels) by organic matter derived from pelagic primary production than by dissolved nutrient stocks alone.  相似文献   

5.
Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.  相似文献   

6.
The effect of offshore coral reefs on the impact from a tsunami remains controversial. For example, field surveys after the 2004 Indian Ocean tsunami indicate that the energy of the tsunami was reduced by natural coral reef barriers in Sri Lanka, but there was no indication that coral reefs off Banda Aceh, Indonesia had any effect on the tsunami. In this paper, we investigate whether the Great Barrier Reef (GBR) offshore Queensland, Australia, may have weakened the tsunami impact from the 2007 Solomon Islands earthquake. The fault slip distribution of the 2007 Solomon Islands earthquake was firstly obtained by teleseismic inversion. The tsunami was then propagated to shallow water just offshore the coast by solving the linear shallow water equations using a staggered grid finite-difference method. We used a relatively high resolution (approximately 250 m) bathymetric grid for the region just off the coast containing the reef. The tsunami waveforms recorded at tide gauge stations along the Australian coast were then compared to the results from the tsunami simulation when using both the realistic 250 m resolution bathymetry and with two grids having fictitious bathymetry: One in which the the GBR has been replaced by a smooth interpolation from depths outside the GBR to the coast (the “No GBR” grid), and one in which the GBR has been replaced by a flat plane at a depth equal to the mean water depth of the GBR (the “Average GBR” grid). From the comparison between the synthetic waveforms both with and without the Great Barrier Reef, we found that the Great Barrier Reef significantly weakened the tsunami impact. According to our model, the coral reefs delayed the tsunami arrival time by 5–10 minutes, decreased the amplitude of the first tsunami pulse to half or less, and lengthened the period of the tsunami.  相似文献   

7.
Cover of the main reef benthic groups, and abundances and taxonomic richness of octocorals were surveyed in the reefs of Hong Kong, and related to spatial and water quality gradients. Nutrient and particle concentrations are high throughout the area, with concentrations declining from the south towards the north-eastern region. Regression tree analyses showed that hard coral cover was most strongly related to water clarity, that macroalgal cover was highest in areas with high wave action and high water clarity, and that crustose coralline algae were negatively related to sedimentation. Octocoral communities (42 species in 23 genera) were dominated by zooxanthellae-free taxa; those few species with zooxanthellae were restricted to reefs with low wave action and high water clarity in the north-eastern region. The water quality gradient spans from conditions that are marginal for zooxanthellate octocorals while still supporting diverse scleractinian communities, towards an estuarine endpoint where zooxanthellate octocorals cease to exist and hard coral communities are reduced to a few resilient colonies. The data suggest that the types, abundances and richness of zooxanthellate octocorals, and the shift from zooxanthellate to azooxanthellate octocoral communities, may act as useful indicators of water clarity in regions where long-term water quality data are unavailable.  相似文献   

8.
Photosystem II (PSII) herbicides are used in large quantities on agricultural lands adjoining the Great Barrier Reef (GBR). Routine monitoring at 14 sites in inshore waters of the GBR using passive sampling techniques detected diuron (32-94% of sampling periods) at maximum concentrations of 1.7-430ng L(-1) in the relatively pristine Cape York Region to the Mackay Whitsunday Region, respectively. A PSII herbicide equivalent (PSII-HEq) index developed as an indicator for reporting was dominated by diuron (average contribution 89%) and typically increased during the wet season. The maximum PSII-HEq indicates the potential for photosynthetic inhibition of diatoms, seagrass and coral-symbionts. PSII herbicides were significantly positively correlated with remotely sensed coloured dissolved organic matter, a proxy for freshwater extent. Combining these methods provides for the first time the potential to cost-effectively monitor improvements in water quality entering the GBR with respect to exposure to PSII herbicides.  相似文献   

9.
A recent comprehensive survey covering 125 sites in Hong Kong waters recorded 29 soft coral species in 14 genera, 38 species of gorgonians in 19 genera and six species of black corals in two genera. Environmental variabilities based on water quality data collected by Hong Kong Environmental Protection Department were analyzed using multivariate statistics to find variables that are significantly correlated with coral distribution patterns. Eleven water quality zones with similar environmental variabilities were recognized, which could further be classified into five groups, namely Inner Bay, Outer Bay, Eastern, Western and Southern waters. LINKTREE analysis provided an overall trend indicating the importance of salinity, sediment and nutrient loadings in affecting octocoral and black coral distribution from west to east of Hong Kong waters, and from inner to outer bays. Furthermore, water turbidity and wave exposure could also affect the coral distribution patterns from north, northeast to southern waters.  相似文献   

10.
Photo-acclimatisation by the algal endosymbionts of scleractinian corals to changes in environmental conditions may influence their density and/or the concentration of photosynthetic pigments, and hence coral brightness, on short time-scales. To examine coral pigmentation as a bioindicator of water quality, the brightness of massive corals was quantified using colour charts, concentrations of the pigment chlorophyll a and reflectance spectrometry in the field and with manipulative experiments. Along a water quality gradient, massive Porites became progressively lighter as nutrients decreased and irradiance increased. A laboratory experiment showed that Porites nubbins darkened within 25 days following exposure to reduced water quality. The results of a transplantation experiment of Porites nubbins in a manipulation incorporating multiple depths and zones of water quality confirmed colony brightness as a simple tool to monitor changes in marine water quality, provided effects due to other influences on pigmentation, e.g. seawater temperatures, are taken into consideration.  相似文献   

11.
Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols.  相似文献   

12.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL(-1) in pristine offshore reef areas to >100mgL(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL(-1) while others show mortality after exposure (weeks) to concentrations as low as 30mgL(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm(-2)d(-1) to >400mgcm(-2)d(-1). The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.  相似文献   

13.
This paper reviews and evaluates the current state of knowledge on the direct effects of terrestrial runoff on (1) the growth and survival of hard coral colonies, (2) coral reproduction and recruitment, and (3) organisms that interact with coral populations (coralline algae, bioeroders, macroalgae and heterotrophic filter feeders as space competitors, pathogens, and coral predators). The responses of each of these groups are evaluated separately against the four main water quality parameters: (1) increased dissolved inorganic nutrients, (2) enrichment with particulate organic matter, (3) light reduction from turbidity and (4) increased sedimentation. This separation facilitates disentangling and understanding the mechanisms leading to changes in the field, where many contaminants and many responses co-occur. The review also summarises geographic and biological factors that determine local and regional levels of resistance and resilience to degradation. It provides a conceptual aid to assess the kind of change(s) likely to occur in response to changing coastal water quality.  相似文献   

14.
Against a backdrop of rising sea temperatures and ocean acidification which pose global threats to coral reefs, excess nutrients and turbidity continue to be significant stressors at regional and local scales. Because interventions usually require local data on pollution impacts, we measured ecological responses to sewage discharges in Surin Marine Park, Thailand. Wastewater disposal significantly increased inorganic nutrients and turbidity levels, and this degradation in water quality resulted in substantial ecological shifts in the form of (i) increased macroalgal density and species richness, (ii) lower cover of hard corals, and (iii) significant declines in fish abundance. Thus, the effects of nutrient pollution and turbidity can cascade across several levels of ecological organization to change key properties of the benthos and fish on coral reefs. Maintenance or restoration of ecological reef health requires improved wastewater management and run-off control for reefs to deliver their valuable ecosystems services.  相似文献   

15.
浙江金华江支流白沙溪水质硅藻生物监测方法   总被引:4,自引:1,他引:3  
李钟群  袁刚  郝晓伟  刘威 《湖泊科学》2012,24(3):436-442
以白沙溪为示范区,比较了硅藻生物指数评价与我国现阶段河流水质理化评价结果的异同性,同时对白沙溪进行水生态评估.水质理化评价显示白沙溪水质从Ⅰ类到劣Ⅴ类均有出现,而硅藻特定污染敏感指数和硅藻生物指数评价白沙溪水质为"优"到"差"均有出现.二者评价结果总体上相吻合,同时亦存在一定差异.硅藻生态类群组成显示前三个断面以耐低污染硅藻、自养硅藻和喜好很高氧饱和度硅藻为主,4#断面(除2010年11月)以耐中污染和强污染硅藻、异养硅藻、喜好低氧硅藻类群占优势.全年水体各断面均以喜中性和碱性的硅藻类群为主.特定污染敏感指数和硅藻生物指数均与电导率、总磷、氨氮、氯化物之间呈显著负相关,此外硅藻生物指数还与高锰酸盐指数、总氮、亚硝酸盐氮和可溶性磷酸盐之间呈显著负相关.本研究结果对开展我国河流水质生物监测具有一定的借鉴意义,但其在我国的适用性还需要开展进一步的研究.  相似文献   

16.
The present study attempted to test the applicability of the trophic index (TRIX) for assessing trophic status along the Iranian coast of the Caspian Sea (CS). In order to increase the sensitivity of the TRIX for this area, we defined the range (lower and upper limits) from data collected between 1994 and 2005 which have been used as a reference. Several biological and chemical water quality parameters were determined and compared with the TRIX in order to describe the water quality status of the area. Comparisons were also made on two temporarily and spatially varied trophic status at the study site. Sampling was carried out at 36 stations during Phase I (1996–1997: before the introduction of an alien species Mnemiopsis leidyi, as a background data) while 24 stations were sampled during Phase II in 2005 (after the introduction of the alien species). A Parallel Study (as supplementary data) from 16 smaller scale sampling at shallower sites was also included in the discussion (1994–2005 on 18 transects). The results show that nutrient concentration (DIN, DIP compounds), oxygen (as absolute %) deviation from saturation (aD%O), chlorophyll a and also the Caspian Sea Trophic Index (TRIXCS) increase significantly after the introduction of an alien species (p<0.01). During Phase I and the Parallel Study, the phytoplankton community was dominated (based on important species index) by Thalassionema nitzschioides, Skeletonema costatum (Chrysophyta) year round but during Phase II, Spirulina laxissma (Cyanophyta) dominated annually and in autumn, coinciding with the minimum Shannon–Weaver diversity and Evenness indices recorded. Several trophic status indices and indicators were applied and an overall analysis suggested that the area has low trophic level during Phase I and high trophic level during Phase II. During the Parallel Study, low trophic level was recorded during the pre-invasion period and high trophic level for the post-invasion period.  相似文献   

17.
The assessment of the ecological status, as required by the Water Framework Directive (WFD), plays an important role in coastal zone management, but only a small number of ecological indices are applicable on rocky bottoms. In this study, we apply a previously defined ecological quality index based on the cartography of littoral and upper-sublittoral rocky-shore communities (CARLIT), based on the sensitivity of algae dominated communities to anthropogenic impacts along a moderate urban gradient. We also apply this index in four Marine Protected Areas (MPAs), proposed as reference sites at a regional scale. After comparing the outputs with water variables and other quality indices, we can affirm that (1) the CARLIT index is suitable to detect different kinds of anthropogenic pressures, that (2) the choice of proper reference sites is a focal point in the fulfilment of the WFD (Water Framework Directive) and that (3) historical data are important to define reference conditions and the degradation of ecological status.  相似文献   

18.
Understanding the interplay between hydrological flushing and biogeochemical cycling in streams is now possible owing to advances in high-frequency water quality measurements with in situ sensors. It is often assumed that storm events are periods when biogeochemical processes become suppressed and longitudinal transport of solutes and particulates dominates. However, high-frequency data show that diel cycles are a common feature of water quality time series and can be preserved during storm events, especially those of low-magnitude. In this study, we mine a high-frequency dataset and use two key hydrochemical indices, hysteresis and flushing index to evaluate the diversity of concentration-discharge relationships in third order agricultural stream. We show that mobilization patterns, inferred from the hysteresis index, change on a seasonal basis, with a predominance of rapid mobilization from surface and near stream sources during winter high-magnitude storm events and of delayed mobilization from subsurface sources during summer low-magnitude storm events. Using dynamic harmonic regression, we were able to separate concentration signals during storm events into hydrological flushing (using trend as a proxy) and biogeochemical cycling (using amplitude of a diel cycle as a proxy). We identified three groups of water quality parameters depending on their typical c-q response: flushing dominated parameters (phosphorus and sediments), mixed flushing and cycling parameters (nitrate nitrogen, specific conductivity and pH) and cycling dominated parameters (dissolved oxygen, redox potential and water temperature). Our results show that despite large storm to storm diversity in hydrochemical responses, storm event magnitude and timing have a critical role in controlling the type of mobilization, flushing and cycling behaviour of each water quality constituent. Hydrochemical indices can be used to fingerprint the effect of hydrological disturbance on freshwater quality and can be useful in determining the impacts of global change on stream ecology.  相似文献   

19.
A spatial risk assessment model is developed for the Great Barrier Reef (GBR, Australia) that helps identify reef locations at higher or lower risk of coral bleaching in summer heat-wave conditions. The model confirms the considerable benefit of discriminating nutrient-enriched areas that contain corals with enlarged (suboptimal) symbiont densities for the purpose of identifying bleaching-sensitive reef locations. The benefit of the new system-level understanding is showcased in terms of: (i) improving early-warning forecasts of summer bleaching risk, (ii) explaining historical bleaching patterns, (iii) testing the bleaching-resistant quality of the current marine protected area (MPA) network (iv) identifying routinely monitored coral health attributes, such as the tissue energy reserves and skeletal growth characteristics (viz. density and extension rates) that correlate with bleaching resistant reef locations, and (v) targeting region-specific water quality improvement strategies that may increase reef-scale coral health and bleaching resistance.  相似文献   

20.
The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with “white pox” and “white plague type II” coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号