首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
地球物理   4篇
海洋学   7篇
天文学   30篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
The three-dimensional geometry of the heliospheric current sheet seen from fixed points in interplanetary space is constructed for idealized (sinusoidal) magnetic neutral lines (equators) and for an observed magnetic equator on the basis of the “kinematic method” developed by Hakamada and Akasofu (1982). The cross-sections of the wavy current sheet at distances 1, 2 and 5 a.u. are also constructed for the idealized magnetic neutral lines.  相似文献   
2.
This study has compared the environmental characteristics of the basins and saline lower reaches of the tributaries of eight estuaries on the south coast of Western Australia, which differ in their degree of connectivity with the ocean. Although four estuaries between 115.1° and 121.8° E along that coast remain permanently open to the ocean, the others only become open when the volume of river discharge is sufficient to breach the prominent sand bars at their mouths, which occurs annually following heavy winter and early spring rainfall in some estuaries (seasonally open) and infrequently in others (normally closed). Estuaries to the west of 118.5° E are predominantly permanently open, e.g. Oyster Harbour, or seasonally open, e.g. Broke, Irwin and Wilson inlets, whereas those further east, e.g. Wellstead Estuary and Hamersley, Culham and Stokes inlets, where annual rainfall and thus discharge are much lower, only become open after exceptionally heavy discharge. In permanently and seasonally-open estuaries, pronounced haloclines and oxyclines are present in the narrow rivers but not the wide basins where the waters are subjected to wind-driven mixing. The extent of cyclical seasonal fluctuations in environmental conditions differed markedly among the three seasonally-open estuaries and between years in one of those systems. These differences reflected variations in the relationship between the volume of fluvial discharge, which is determined by a combination of the amount of local rainfall, catchment size and extent of clearing of native vegetation, and the amount of intrusion by marine waters, which is largely controlled by the size and duration of the opening of the estuary mouth. The mean seasonal salinities in the basins of the three normally-closed estuaries increased over three years of very low rainfall to 64 in the deepest of these estuaries (Stokes Inlet) to 145 in Hamersley Inlet and to 296 in the shallowest estuary (Culham Inlet). These results demonstrate that the environmental characteristics of estuaries on the south coast of Western Australia differ markedly, even among those of the same type, e.g. seasonally-open estuaries or normally-closed estuaries.  相似文献   
3.
The Wilcox Solar Observatory at Stanford University houses one of the International Research on the Interior of the Sun (IRIS) network observing stations. The instrument has observed the global oscillations of the Sun continually since it was installed in August 1987. Each site and instrument are different; here we report the details unique to the Stanford site.  相似文献   
4.
The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180° azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne–Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.  相似文献   
5.
The observed photospheric magnetic field is a crucial parameter for understanding a range of fundamental solar and heliospheric phenomena. Synoptic maps, in particular, which are derived from the observed line-of-sight photospheric magnetic field and built up over a period of 27 days, are the main driver for global numerical models of the solar corona and inner heliosphere. Yet, in spite of 60 years of measurements, quantitative estimates remain elusive. In this study, we compare maps from seven solar observatories (Stanford/WSO, NSO/KPVT, NSO/SOLIS, NSO/GONG, SOHO/MDI, UCLA/MWO, and SDO /HMI) to identify consistencies and differences among them. We find that while there is a general qualitative consensus, there are also some significant differences. We compute conversion factors that relate measurements made by one observatory to another using both synoptic map pixel-by-pixel and histogram-equating techniques, and we also estimate the correlation between datasets. For example, Wilcox Solar Observatory (WSO) synoptic maps must be multiplied by a factor of 3?–?4 to match Mount Wilson Observatory (MWO) estimates. Additionally, we find no evidence that the MWO saturation correction factor should be applied to WSO data, as has been done in previous studies. Finally, we explore the relationship between these datasets over more than a solar cycle, demonstrating that, with a few notable exceptions, the conversion factors remain relatively constant. While our study was able to quantitatively describe the relationship between the datasets, it did not uncover any obvious “ground truth.” We offer several suggestions for how this may be addressed in the future.  相似文献   
6.
We show that the non-radial field-boundary condition (or the line-of-sight boundary condition) for the Laplacian-like equation developed by Bogdan and Low (1986) is sufficient to uniquely determine the model coronal magnetic field provided the electric currents are horizontal (or zero, the current-free case) at the solar surface as well as in the solar atmosphere between the photosphere and the source surface. The derived recursion formulae for the spherical harmonic coefficients can be used to determine the spherical harmonic coefficients in the solutions of the horizontal current models very efficiently.  相似文献   
7.
We compare line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). The line-of-sight magnetic signal inferred from the calibrated MDI data is greater than that derived from the HMI data by a factor of 1.40. This factor varies somewhat with center-to-limb distance. An upper bound to the random noise for the 1′′ resolution HMI 720-second magnetograms is 6.3 Mx?cm?2, and 10.2 Mx?cm?2 for the 45-second magnetograms. Virtually no p-mode leakage is seen in the HMI magnetograms, but it is significant in the MDI magnetograms. 12-hour and 24-hour periodicities are detected in strong fields in the HMI magnetograms. The newly calibrated MDI full-disk magnetograms have been corrected for the zero-point offset and underestimation of the flux density. The noise is 26.4 Mx?cm?2 for the MDI one-minute full-disk magnetograms and 16.2 Mx?cm?2 for the five-minute full-disk magnetograms observed with four-arcsecond resolution. The variation of the noise over the Sun’s disk found in MDI magnetograms is likely due to the different optical distortions in the left- and right-circular analyzers, which allows the granulation and p-mode to leak in as noise. Saturation sometimes seen in sunspot umbrae in MDI magnetograms is caused by the low intensity and the limitation of the onboard computation. The noise in the HMI and MDI line-of-sight magnetic-field synoptic charts appears to be fairly uniform over the entire map. The noise is 2.3 Mx?cm?2 for HMI charts and 5.0 Mx?cm?2 for MDI charts. No evident periodicity is found in the HMI synoptic charts.  相似文献   
8.
9.
A review of published literature on the sensitivity of corals to turbidity and sedimentation is presented, with an emphasis on the effects of dredging. The risks and severity of impact from dredging (and other sediment disturbances) on corals are primarily related to the intensity, duration and frequency of exposure to increased turbidity and sedimentation. The sensitivity of a coral reef to dredging impacts and its ability to recover depend on the antecedent ecological conditions of the reef, its resilience and the ambient conditions normally experienced. Effects of sediment stress have so far been investigated in 89 coral species (~10% of all known reef-building corals). Results of these investigations have provided a generic understanding of tolerance levels, response mechanisms, adaptations and threshold levels of corals to the effects of natural and anthropogenic sediment disturbances. Coral polyps undergo stress from high suspended-sediment concentrations and the subsequent effects on light attenuation which affect their algal symbionts. Minimum light requirements of corals range from <1% to as much as 60% of surface irradiance. Reported tolerance limits of coral reef systems for chronic suspended-sediment concentrations range from <10mgL(-1) in pristine offshore reef areas to >100mgL(-1) in marginal nearshore reefs. Some individual coral species can tolerate short-term exposure (days) to suspended-sediment concentrations as high as 1000mgL(-1) while others show mortality after exposure (weeks) to concentrations as low as 30mgL(-1). The duration that corals can survive high turbidities ranges from several days (sensitive species) to at least 5-6weeks (tolerant species). Increased sedimentation can cause smothering and burial of coral polyps, shading, tissue necrosis and population explosions of bacteria in coral mucus. Fine sediments tend to have greater effects on corals than coarse sediments. Turbidity and sedimentation also reduce the recruitment, survival and settlement of coral larvae. Maximum sedimentation rates that can be tolerated by different corals range from <10mgcm(-2)d(-1) to >400mgcm(-2)d(-1). The durations that corals can survive high sedimentation rates range from <24h for sensitive species to a few weeks (>4weeks of high sedimentation or >14days complete burial) for very tolerant species. Hypotheses to explain substantial differences in sensitivity between different coral species include the growth form of coral colonies and the size of the coral polyp or calyx. The validity of these hypotheses was tested on the basis of 77 published studies on the effects of turbidity and sedimentation on 89 coral species. The results of this analysis reveal a significant relationship of coral sensitivity to turbidity and sedimentation with growth form, but not with calyx size. Some of the variation in sensitivities reported in the literature may have been caused by differences in the type and particle size of sediments applied in experiments. The ability of many corals (in varying degrees) to actively reject sediment through polyp inflation, mucus production, ciliary and tentacular action (at considerable energetic cost), as well as intraspecific morphological variation and the mobility of free-living mushroom corals, further contribute to the observed differences. Given the wide range of sensitivity levels among coral species and in baseline water quality conditions among reefs, meaningful criteria to limit the extent and turbidity of dredging plumes and their effects on corals will always require site-specific evaluations, taking into account the species assemblage present at the site and the natural variability of local background turbidity and sedimentation.  相似文献   
10.
This paper describes the scientific rationale for an L5 mission and a partial list of key scientific instruments the mission should carry. The L5 vantage point provides an unprecedented view of the solar disturbances and their solar sources that can greatly advance the science behind space weather. A coronagraph and a heliospheric imager at L5 will be able to view CMEs broadsided, so space speed of the Earth-directed CMEs can be measured accurately and their radial structure discerned. In addition, an inner coronal imager and a magnetograph from L5 can give advance information on active regions and coronal holes that will soon rotate on to the solar disk. Radio remote sensing at low frequencies can provide information on shock-driving CMEs, the most dangerous of all CMEs. Coordinated helioseismic measurements from the Sun–Earth line and L5 provide information on the physical conditions at the base of the convection zone, where solar magnetism originates. Finally, in situ measurements at L5 can provide information on the large-scale solar wind structures (corotating interaction regions (CIRs)) heading towards Earth that potentially result in adverse space weather.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号