首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
The analysis of the positive feedback between landslides and erosion requires determination of the precise temporal and spatial relations between events of colluvium delivery and fluvial erosion. In our study we use decennial datasets on the occurrence of landsliding and erosion achieved through dendrochronological methods. Four sites covering areas of landslide slopes and adjacent valley floors with stream channels were studied. Landsliding on slopes was dated from the tree‐ring eccentricity developed in stems tilted due to bedrock instability. Erosion in channels was dated using the wood anatomy of roots exposed by erosion of the soil cover. Analysis of the temporal relations between dated landsliding, erosion and precipitation record has revealed that two types of repeating sequences can be observed: (1) rainfall → landsliding → erosion; (2) rainfall → erosion → landsliding. These sequences are an indication of the occurrence of slope‐channel positive feedback in the sites studied. In the first type, landsliding triggered by rainfall delivers colluvia into the valley floor and causes its narrowing, which in turn causes increased erosion. In the second type erosion triggered by rainfall disturbs the slope equilibrium and causes landsliding. Landsliding and erosion, once triggered by precipitation, can occur alternately in years with average precipitation and reinforce one another. Bidirectional coupling between landsliding and channel erosion was shown notably through the effects of channel shifting and forced sinuosity and by increased erosion of the slopes opposite the active landslides. Observations also suggest that the repetition of sequences described over longer periods of time can lead to a general widening of the valley floor at the expense of slopes and to a gradual change of the valley cross‐profile from narrow, V‐shaped into a wide flat‐bottomed. Thus landsliding–erosion coupling/positive feedback was recognized as an important factor shaping hillslope–valley topography of the mid‐mountain areas studied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The morphological consequences of paraglacial modification of valley-side drift slopes are investigated at six sites in Norway. Here, paraglacial slope adjustment operates primarily through the development of gully systems, whereby glacigenic sediment is stripped from the upper drift slope and redeposited in debris cones downslope. This results in an overall lowering of average gradient by up to 4·5° along gully axes. In general, slope profile adjustment appears to be characterized by a convergence of slope profiles towards an ‘equilibrium form’ with an upper rectilinear slope gradient at 29°± 4° and a range of concavities of approximately 0·0 to 0·4. After initial rapid incision, further gully deepening is limited, but gullies become progressively wider as sidewall gradients decline to c. 25°, after which parallel retreat appears to predominate. The final form of mature paraglacial gully systems consists of an upper bedrock-floored source area, a mid-slope area of broad gullies whose sidewalls rest at stable, moderate gradients, and a lower slope zone where gullies discharge onto the surfaces of debris cones and fans. Some gullies appear to have attained this final form and have stabilized following exhaustion of readily entrainable sediment within decades of gully initiation. At most sites, paraglacial activity has transformed steep drift-mantled valley sides into gullied slopes where an average of c. 2–3 m of surface lowering has taken place. At the most active sites, these average amounts imply minimum erosion rates averaging c. 90 mm a−1 since gully initiation, which highlights the extreme rapidity of paraglacial erosion of deglaciated drift-mantled slopes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
— The epicentral area of the 1998 Papua New Guinea Earthquake and Tsunami off Sissano Lagoon, northern coast of Papua New Guinea (M=7.1; 17 July, 1998) was surveyed by the Research Vessel Kairei in January 1999. Precise bathymetric survey by use of SEABEAM-2112 and other geophysical surveys (bottom reflectivity, sub-bottom profiling, surface ship gravity and geomagnetic surveys) were carried out and four piston core samples were collected during the nine days' survey. The area was also surveyed by use of the Japanese deep sea research ROV Dolphin-3K and research submersible Shinkai-2000 after the regional geophysical survey, in order to locate the possible seismic faults and/or underwater landslides as the source of tsunami and to study the process which took place off Sissano Lagoon and the driving force of the event. The study area is characterised by substantial fan sediment supply from Sissano Lagoon. Straight small-scale submarine canyons and valleys are eroding the shelf slope constructed by the fan sediment. Topographic features of arcuate slumps caused by landslides are recognised at numerous sites of the study area. Most of them are old and the most recent is located 25 km northeast off the Sissano Lagoon. Two major topographic depressions on the shelf were located off Sissano Lagoon. The western is a depression of about 10-km width and the eastern is a meandering deep-sea canyon. Amphitheatre topographic features with slumps caused by landslides that were discovered by Kairei's cruise were extensively surveyed in the study area. Six dives by Dolphin-3K and seven dives by Shinkai-2000 revealed that a fresh crack of about 15 km in total length is located along the slope of the amphitheatre. The crack is apparently the upper slope of a large-scale slumping on the amphitheatre, characterised by tensional stress on it. The easternmost part of the fresh crack is accompanied by living chemosynthetic organisms such as mussels and tube worms. The chemosynthetic community is apparently associated with cold seepage along the crack suggesting that the crack was constructed very recently. The areas other than the crack were rather old with bioturbation.  相似文献   

4.
Knowledge of the mechanisms of rain‐induced shallow landslides can improve the prediction of their occurrence and mitigate subsequent sediment disasters. Here, we examine an artificial slope's subsurface hydrology and propose a new slope stability analysis that includes seepage force and the down‐slope transfer of excess shear forces. We measured pore water pressure and volumetric water content immediately prior to a shallow landslide on an artificial sandy slope of 32°: The direction of the subsurface flow shifted from downward to parallel to the slope in the deepest part of the landslide mass, and this shift coincided with the start of soil displacement. A slope stability analysis that was restricted to individual segments of the landslide mass could not explain the initiation of the landslide; however, inclusion of the transfer of excess shear forces from up‐slope to down‐slope segments improved drastically the predictability. The improved stability analysis revealed that an unstable zone expanded down‐slope with an increase in soil water content, showing that the down‐slope soil initially supported the unstable up‐slope soil; destabilization of this down‐slope soil was the eventual trigger of total slope collapse. Initially, the effect of apparent soil cohesion was the most important factor promoting slope stability, but seepage force became the most important factor promoting slope instability closer to the landslide occurrence. These findings indicate that seepage forces, controlled by changes in direction and magnitude of saturated and unsaturated subsurface flows, may be the main cause of shallow landslides in sandy slopes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Geomorphologic analysis of submarine and subaerial surface features using a combined topographic/bathymetric digital elevation model coupled with onshore geological and geophysical data constrain the age and geometry of giant landslides affecting the north flank of Tenerife. Shaded relief and contour maps, and topographic profiles of the submarine north flank, permit the identification of two generations of post-shield landslides. Older landslide materials accumulated near the shore (<40-km) and comprise 700 km3 of debris. Thickening towards a prominent axis suggests one major landslide deposit. Younger landslide materials accumulated 40–70 km offshore and comprise the products of three major landslides: the La Orotava landslide complex, the Icod landslide and the East Dorsal landslide complex, each with an onshore scar, a proximal submarine trough, and a distal deposit lobe. Estimated lobe volumes are 80, 80 and 100 km3, respectively. The old post-shield landslide scar is an amphitheatre, 20–25 km wide, partly submarine, now completely filled with younger materials. Age–width relationships for Tenerife's coastal platform plus onshore geological constraints suggest an age of ca. 3 Ma for the old collapse. Young landslides are all less than 560 ka old. The La Orotava and Icod slides involved failures of slabs of subaerial flank to form the subaerial La Orotava and Icod valleys. Offshore, they excavated troughs by sudden loading and basal erosion of older slide debris. The onshore East Dorsal slide also triggered secondary failure of older debris offshore. The slab-like geometry of young failures was controlled by weak layers, deep drainage channels and flank truncation by marine erosion. The (partly) submarine geometry of the older amphitheatre reflects the absence of these features. Relatively low H/L ratios for the young slides are attributed to filling of the slope break at the base of the submarine edifice by old landslide materials, low aspect ratios of the failed slabs and channelling within troughs. Post-shield landslides on Tenerife correlate with major falls in sea level, reflecting increased rates of volcanism and coastal erosion, and reduced support for the flank. Landslide head zones have strongly influenced the pattern of volcanism on Tenerife, providing sites for major volcanic centres.  相似文献   

6.
On 19 September 2003, 40 landslides of 140–18 000 m3 volume occurred within 2·5 km2 on the slopes of Dooncarton Mountain (Republic of Ireland) during a storm that may have exceeded 90 mm within 90 minutes. The landslides were investigated to determine the reasons for such a high density of slope failures. All of the landslides were surveyed within four months, and nine of them were investigated in detail. The six largest landslides, all peat failures, accounted for 57% of the more than 100 000 m3 of material displaced during the event. A consistent sequence of superficial materials was found on the failed hillslopes, including an extensive iron pan at the base of a buried soil horizon 0·3 m below the base of the peat. Morphologically, almost all of the landslides occurred on steep planar slopes or around sharp convexities, with the latter failures developing retrogressively upslope. The only significant relationship found from analysis of 371 subsurface pipes and 142 seepage cracks (defined here as contiguous fissures conducting concentrated subsurface flow) across all the failures was that the thinner the peat cover, the deeper the pipes and seepage cracks occurred below the base of peat. It is concluded that most of the landslides were probably caused by a combination of excess water pressures in the buried soil horizon and the thinner overburden of peat or peaty soil associated with the steeper slope segments. Pipes and seepage cracks formed on the iron pan probably existed prior to the failure event and may have contributed to the high water pressures as rainwater inputs exceeded their discharge capacities. One large peat slide was probably triggered by excess water pressures developed within and between artificial tine cuts. The properties of the blanket peat were generally of little consequence in the occurrence of the landslides, but relict desiccation cracks and other structural weaknesses through the peat mass were probably highly significant. Although several aspects of the peat failures correspond to previously published examples, the context of these failures in terms of the topography and upland catena is distinctive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A comparison was made between the distal ends of twenty-two avalanche and fifteen non-avalanche slopes in the San Juan Mountains of Colorado, U.S.A. All slopes occurred in the subalpine zone. Six characteristics were used for analysis: type of slope, surface material, longitudinal profile, perched debris or debris tails, avalanche impact on opposite valley wall, and transverse profile. Both fan and roadbank avalanche slope types were found along with the non-avalanche slopes. Almost all slopes were turf covered rather than talus since the work was done below treeline. Twenty avalanche slopes had a distinctive concave longitudinal profile. Little debris of any kind was found since the slopes were in an area of insignificant amounts of detritus. Many of the larger and two of the smaller avalanche slopes showed evidence of impact upon the opposite slope. Eighteen of the avalanche slopes had convex transverse profiles.  相似文献   

8.
This paper presents a landslide incidence zonation map showing the percentage of underlying material involved in mass‐movement processes in the Rio Mendoza valley, Argentina. The landslide incidence zonation map was derived from an inventory map of landslides and reveals that many areas of the Rio Mendoza valley are implicated in this kind of process. A correlation has been found between the occurrence of landslides, earthquakes, and rainfall. The relation between lithology and landslides is clear: areas covered by friable sedimentary and volcanic rocks of the Choiyoi Group are prone to debris ?ows and complex landslides. The slope map has been ranked and a general relation between slope and type of event is shown. Falls commonly develop in high‐angle slopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
In August 2009, the typhoon Morakot, characterized by a cumulative rainfall up to 2884 mm in about three days, triggered thousands of landslides in Taiwan. The availability of LiDAR surveys before (2005) and after (2010) this event offers a unique opportunity to investigate the topographic signatures of a major typhoon. The analysis considers the comparison of slope–area relationships derived by LiDAR digital terrain models (DTMs). This approach has been successfully used to distinguish hillslope from channelized processes, as a basis to develop landscape evolution models and theories, and understand the linkages between landscape morphology and tectonics, climate, and geology. We considered six catchments affected by a different degree of erosion: three affected by shallow and deep‐seated landslides, and three not affected by erosion. For each of these catchments, 2 m DTMs were derived from LiDAR data. The scaling regimes of local slope versus drainage area suggested that for the catchments affected by landslides: (i) the hillslope‐to‐valley transitions morphology, for a given value of drainage area, is shifted towards higher value of slopes, thus indicating a likely migration of the channelized processes and erosion toward the catchment boundary (the catchment head becomes steeper because of erosion); (ii) the topographic gradient along valley profiles tends to decrease progressively (the valley profile becomes gentler because of sediment deposition after the typhoon). The catchments without any landslides present a statistically indistinguishable slope–area scaling regime. These results are interesting since for the first time, using multi‐temporal high‐resolution topography derived by LiDAR, we demonstrated that a single climate event is able to cause significant major geomorphic changes on the landscape, detectable using slope–area scaling analysis. This provides new insights about landscape evolution under major climate forcing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Effects of large organic material on channel form and fluvial processes   总被引:1,自引:0,他引:1  
Stream channel development in forested areas is profoundly influenced by large organic debris (logs, limbs and rootwads greater than 10 cm in diameter) in the channels. In low gradient meandering streams large organic debris enters the channel through bank erosion, mass wasting, blowdown, and collapse of trees due to ice loading. In small streams large organic debris may locally influence channel morphology and sediment transport processes because the stream may not have the competency to redistribute the debris. In larger streams flowing water may move large organic debris, concentrating it into distinct accumulations (debris jams). Organic debris may greatly affect channel form and process by: increasing or decreasing stability of stream banks; influencing development of midchannel bars and short braided reaches; and facilitating, with other favourable circumstances, development of meander cutoffs. In steep gradient mountain streams organic debris may enter the channel by all the processes mentioned for low gradient streams. In addition, considerable debris may also enter the channel by way of debris avalanches or debris torrents. In small to intermediate size mountain streams with steep valley walls and little or no floodplain or flat valley floor, the effects of large organic debris on the fluvial processes and channel form may be very significant. Debris jams may locally accelerate or retard channel bed and bank erosion and/or deposition; create sites for significant sediment storage; and produce a stepped channel profile, herein referred to as ‘organic stepping’, which provides for variable channel morphology and flow conditions. The effect of live or dead trees anchored by rootwads into the stream bank may not only greatly retard bank erosion but also influence channel width and the development of small scour holes along the channel beneath tree roots. Once trees fall into the stream, their influence on the channel form and process may be quite different than when they were defending the banks, and, depending on the size of the debris, size of the stream, and many other factors, their effects range from insignificant to very important.  相似文献   

12.
Here, we propose that an earthquake can trigger the failure of a landslide mass while simultaneously triggering liquefaction of runout‐path materials before the arrival of the landslide mass, thus greatly increasing the size and mobility of an overriding landslide. During the 2008 Wenchuan earthquake, about 60 000 landslides were triggered, directly resulting in about 20 000 casualties. While these landslides mainly originated from steep slopes, some landslides with high mobility formed in colluvial valley deposits. Among these, the most catastrophic was the Xiejiadian landslide in Pengzhou city, which traveled hundreds of meters before coming to rest. Through field investigation and laboratory testing, we conclude that this landslide primarily formed from colluvial deposits in the valley and secondarily from failure of slopes in granitic rock located uphill. Much of the granitic slope failure was deposited in the upper part of the travel path (near the slide head); the remainder was dispersed throughout the main landslide deposit. Superposition of deposits at the landslide toe indicates that landslide debris derived from colluvial soil was deposited first. The deposits at the landslide toe displayed flow characteristics, such as fine materials comprising basal layers and large boulders covering the deposit surface. We hypothesize that the main part of the landslide resulted from seismogenic liquefaction of valley colluvium, rather than from liquefaction potentially caused by undrained loading from the granitic slope failures impacting the colluvium. To examine the likelihood that seismogenic liquefaction occurred, we took samples from different areas of the landslide deposit and performed undrained cyclic shear tests on them in the laboratory. The results showed that the sandy soils that comprise most of the deposit are highly liquefiable under seismic loading. Therefore, we conclude that liquefaction of the colluvium in the valley during the earthquake was the main reason for this rapid (~46 m/s) long‐runout (1·7 km) landslide. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Natural hillslopes are mostly composed of complex slope shapes, which significantly affect soil erosion. However, existing studies have mainly focused on uniform slopes to simplify complex hillslopes, and the mechanisms responsible for the influence of slope shape on soil and nutrient losses are still not well understood, especially in the application of soil improvers to reduce soil loss. To investigate the effects of slope shape and polyacrylamide (PAM) application on runoff, soil erosion and nutrient loss, this study conducted artificial field rainfall experiments involving two PAM application rates and nine slope shapes. The results indicate that the average amount of soil loss from convex slopes was 1.5 and 1.3 times greater than that from concave and uniform slopes, respectively, and the average amount of ammonia nitrogen loss and phosphate loss increased by 24.0%–58.6%. Soil and nutrient losses increased as the convexity of the convex slopes increased. For runoff, there was little difference between concave and convex slopes, but the runoff amount for both slopes was greater than that for uniform slopes. After PAM application, the soil loss decreased by more than 90%, and the nutrient loss decreased by 28.2%–68.1%. The application of PAM was most effective in reducing soil erosion and nutrient loss from convex slopes, and it is recommended to appropriately increase the PAM application rate for convex slopes. A strong linear relationship between ammonia nitrogen and phosphate concentrations and sediment concentrations was found in the runoff on slopes with no PAM application. However, this linear relationship weakened for slopes with PAM application. The findings of this study may be valuable for optimizing nonpoint source pollution management in basins.  相似文献   

14.
Nature can provide analogues for post‐mining landscapes in terms of landscape stability and also in terms of the rehabilitated structure ‘blending in’ with the surrounding undisturbed landscape. In soil‐mantled landscapes, hillslopes typically have a characteristic pro?le that has a convex upper hillslope pro?le with a concave pro?le lower down the slope. In this paper hillslope characteristic form is derived using the area–slope relationship from pre‐mining topography at two sites in Western Australia. Using this relationship, concave hillslope pro?les are constructed and compared to linear hillslopes in terms of sediment loss using the SIBERIA erosion model. It is found that concave hillslopes can reduce sediment loss by up to ?ve times that of linear slopes. Concave slopes can therefore provide an alternative method for the construction of post‐mining landscapes. An understanding of landscape geomorphological properties and the use of erosion models can greatly assist in the design of post‐mining landscapes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
16.
To evaluate the effects of hillslope topography on storm runoff in a weathered granite mountain, discharge rate, soil pore water pressures, and water chemistry were observed on two types of hillslope: a valley‐head (a concave hillslope) and a side slope (a planar hillslope). Hydrological responses on the valley‐head and side slope reflected their respective topographic characteristics and varied with the rainfall magnitude. During small rainfall events (<35 mm), runoff from the side slope occurred rapidly relative to the valley‐head. The valley‐head showed little response in storm runoff. As rainfall amounts increased (35–60 mm), the valley‐head yielded a higher flow relative to the side slope. For large rainfall events (>60 mm), runoff from both hillslopes increased with rainfall, although that from the valley‐head was larger than that from the side slope. The differences in the runoff responses were caused by differences in the roles of lower‐slope soils and the convergence of the hillslope. During small rainfall events, the side slope could store little water; in contrast, all rainwater could be stored in the soils at the valley‐head hollow. As the amount of rainfall increased, the subsurface saturated area of the valley‐head extended from the bottom to the upper portion of the slope, with the contributions of transient groundwater via lateral preferential flowpaths due to the high concentration of subsurface water. Conversely, saturated subsurface flow did not contribute to runoff responses, and the subsurface saturated area at the side slope did not extend to the upper slope for the same storm size. During large rainfall events, expansion of the subsurface saturated area was observed in both hillslopes. Thus, differences in the concentration of subsurface water, reflecting hillslope topography, may create differences in the extension of the subsurface saturated area, as well as variability in runoff responses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The tectonically stable central highlands of Sri Lanka and its alluvial valleys are the source areas and sinks, respectively, for one of the most prolific Quaternary gemstone provinces in the world. However, the known 10Be/26Al cosmogenic‐nuclide‐determined low natural (preanthropogenic) denudation rates of 2–11 mm kyr?1, and resulting sediment fluxes, are grossly inadequate to deliver the vast throughputs of overburden required to concentrate the known gemstone deposits. Basin‐wide, unstable, slow‐moving channelized landslides and debris flows, aided by biotic factors, are the dominant mechanisms of mass‐wasting on hill‐slopes and bulk delivery of sediment to the alluvial valleys and fluvial networks. Channelization ensures modulated sediment transfer and run‐out during an erosional–depositional continuum. In a selected inventory of landslides, mobilized sediment volumes ranged from less than 1000 cubic metres to a maximum of ~800 000 cubic metres per event. Monsoonal rainfall (both cumulative seasonal and total daily thresholds) is the primary external factor, which interacts with colluvium thickness and steep slopes in triggering landslides. There are three to five ‘threshold’ rainfall events per year in the highlands that can be expected to generate landslides. They can occur under conditions of decreasing daily rainfall as the seasonal total rainfall increases. GIS databases show a very significant spatial overlap and direct causal linkage between several hundred landslide occurrences and the innumerable gem pits and mines in the catchments of the best known mining region of Sri Lanka. Landslide‐associated mass movements, besides providing significant numbers of gemstones to the alluvial valleys over time, are also a fundamental factor in the geomorphic evolution of the rugged central highland landscape. Rainfall‐driven landslide activity may be a natural geological response affecting erosional equilibrium in high‐relief tectonically stable terrains. Climatically forced base level changes will, over time, control sediment storage, removal or reworking in the valleys. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Understanding natural soil redistribution processes is essential for measuring the anthropogenic impact on landscapes. Although meteoric beryllium-10 (10Be) has been used to determine erosion processes within the Pleistocene and Holocene, fewer studies have used the isotope to investigate the transport and accumulation of the resulting sediment. Here we use meteoric 10Be in hilltop and valley site soil profiles to determine sediment erosion and deposition processes in the Christina River Basin (Pennsylvania, USA). The data indicate natural erosion rates of 14 to 21 mm 10−3 yr and soil ages of 26 000 to 57 000 years in hilltop sites. Furthermore, valley sites indicate an alteration in sediment supply due to climate change (from the Pleistocene to the Holocene) within the last 60 000 years and sediment deposition of at least 0.5–2 m during the Wisconsinan glaciation. The change in soil erosion rate was most likely induced by changes in geomorphic processes; probably solifluction and slope wash during the cold period, when ice advanced into the mid latitudes of North America. This study shows the value of using meteoric 10Be to determine sediment accumulation within the Quaternary and quantifies major soil redistribution occurred under natural conditions in this region. © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Amphitheatre-headed canyons are common on Earth and Mars and researchers have long sought to draw inferences about canyon-forming processes from the morphology of canyon heads and associated knickpoints, often suggesting that amphitheatre heads indicate erosion by groundwater seepage erosion. However, the conditions and processes that lead to amphitheatre-headed canyon formation have been debated for many years. We consider two hypotheses that attribute the amphitheatre-headed canyon formation to fluvial erosion of strong-over-weak stratigraphy or, alternatively, groundwater spring discharge and seepage erosion. A spatial analysis of canyon-form distribution with respect to local stratigraphy along the Escalante River and on Tarantula Mesa, Utah indicates that canyon form is most closely related to variations in local sedimentary rock strata, rather than inferred groundwater spring intensity. Lateral facies variations that affect the continuity of strong layers can induce or disrupt the formation of amphitheatres. Furthermore, we find that amphitheatre retreat rate is dictated by the interaction of fluvial processes downstream of the amphitheatre headwalls and stratigraphy, rather than waterfall and groundwater processes that likely importantly influence headwall form. We conclude that fluvial erosion of strong-over-weak stratigraphic layering alone is sufficient to form amphitheatres at knickpoints and canyon heads. Thus, we re-affirm that formation process should not be inferred from canyon-head morphology, particularly where a strong-over-weak layering is known or plausible. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号