首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 515 毫秒
1.
综合宽角反射、近垂直反射的探测结果和有关地质资料,对大别造山带地壳结构和超高压变质带研究显示:大别造山带地壳具有层块结构特征。沿安义-庄墓剖面,上地壳有7个弹性块体,中地壳有5个,下地壳有4个。扬子与华北地块的主缝合带是超高压变质带,扬子地块与大别造山带的现今分界线是与郯庐断裂相交的太湖-马庙断裂,磨子潭-晓天断裂是大别造山带的北界,北淮阳构造带呈楔状向下插入,它与华北地块的分界是肥中断裂。郯庐断裂在中、上地壳近于直立,下地壳向西倾斜。超高压变质带的厚度为5-7km,产状向北插入到北大别块体之下,折返过程是构造就位,不是大别山的均匀抬升,折返的主运动面是水吼-五河高温剪切带。  相似文献   

2.
Western, central, and eastern provinces are recognized in the Scotia Sea. They are distinguished by their bottom topography, geophysical characteristics, and crustal structure, which record their different origin and evolution. The western province is characterized by the oceanic crust that formed on the West Scotia Ridge, where active spreading may have ceased as a result of a collision between propagating rift and the structural barrier of the thick continental lithosphere of the Falkland Plateau. The central province is a series of blocks mainly composed of continental crust that subsided to various depths depending on the degree of extension in the course of rifting. These blocks are separated by local areas with oceanic crust formed due to the breakup of the continental crust and diffusive spreading. These areas are characterized by deep bottom and high values of Bouguer anomalies. The southern framework of the central province consists of subsided continental blocks and microcontinents divided by small spreading-type basins formed by lithospheric extension complicated by strike-slip faulting. The eastern province is composed of oceanic crust formed on the backarc spreading East Scotia Ridge. The results of density analysis, analog, and numerical simulations allowed us to explain some features of the structure and evolution of these provinces. The insight into tectonic structure of the provinces and their evolution allowed us to recognize several types of riftogenic basins differing in geodynamics, age, and geological and geophysical characteristics.  相似文献   

3.
Oceanic arcs are commonly cited as primary building blocks of continents, yet modern oceanic arcs are mostly subducted. Also, lithosphere buoyancy considerations show that oceanic arcs (even those with a felsic component) should readily subduct. With the exception of the Arabian–Nubian orogen, terranes in post-Archean accretionary orogens comprise < 10% of accreted oceanic arcs, whereas continental arcs compose 40–80% of these orogens. Nd and Hf isotopic data suggest that accretionary orogens include 40–65% juvenile crustal components, with most of these (> 50%) produced in continental arcs.Felsic igneous rocks in oceanic arcs are depleted in incompatible elements compared to average continental crust and to felsic igneous rocks from continental arcs. They have lower Th/Yb, Nb/Yb, Sr/Y and La/Yb ratios, reflecting shallow mantle sources in which garnet did not exist in the restite during melting. The bottom line of these geochemical differences is that post-Archean continental crust does not begin life in oceanic arcs. On the other hand, the remarkable similarity of incompatible element distributions in granitoids and felsic volcanics from continental arcs is consistent with continental crust being produced in continental arcs.During the Archean, however, oceanic arcs may have been thicker due to higher degrees of melting in the mantle, and oceanic lithosphere would be more buoyant. These arcs may have accreted to each other and to oceanic plateaus, a process that eventually led to the production of Archean continental crust. After the Archean, oceanic crust was thinner due to cooling of the mantle and less melt production at ocean ridges, hence, oceanic lithosphere is more subductable. Widespread propagation of plate tectonics in the late Archean may have led not only to rapid production of continental crust, but to a change in the primary site of production of continental crust, from accreted oceanic arcs and oceanic plateaus in the Archean to primarily continental arcs thereafter.  相似文献   

4.
Rodingites were dredged from fracture zones of the equatorial Mid-Atlantic Ridge along with serpentinized ultramafics, and fresh and metamorphosed basalts and gabbroids. These rodingites were generated by a metasomatic process at low temperature involving an enrichment in lime and water, and a loss of silica and alkalis. The parent rocks were gabbronorites which intruded ultramafic material as it ascended from the upper mantle to its present location in the upper oceanic crust. The gabbronorites were probably altered to rodingites while they were still in the lower oceanic crust. Since the rodingitization process appears to be concomitant, complementary and simultaneous with the serpentinization of the host ultramafic rocks, we infer that the serpentinization process also took place in the deeper part of the oceanic crust. These two simultaneous metasomatic processes thus predate the major phase of tectonic events which uplifted these blocks as cold, solid diapiric emplacements of ultramafic material and accompanying rodingites to their present positions along lines of weakness expressed as fracture zones.  相似文献   

5.
论南沙海槽的地壳性质   总被引:10,自引:0,他引:10       下载免费PDF全文
苏达权  黄慈流 《地质科学》1996,31(4):409-415
根据海上地球物理测量,对四条剖面的重力和地震剖面资料进行联合正反演推算,结合已发表的国内外地质、地球物理资料对南沙海槽的地壳厚度及性质进行了分析。结果表明,南沙海槽的地壳为一个减薄的陆壳,从南沙微陆块向婆罗洲方向厚度减薄,具有类似大陆边缘从陆壳向洋壳过渡部位的地壳构造特征。顺着海槽的走向,地壳厚度变化趋势是从东北向西南变薄。从构造演化的角度分析,南沙海槽是古南海洋陆交界的边缘,由于古南海的闭合及晚白垩世以后婆罗洲逆时针方向旋转,海槽的大部分是陆壳,其西南端可能有残留的洋壳。  相似文献   

6.
台湾—四川黑水地学大断面所揭示的湖南深部构造   总被引:21,自引:0,他引:21  
秦葆瑚 《湖南地质》1991,10(2):89-96
本文介绍了“台湾—黑水地学大断面综合研究”(袁学诚,1990)中与湖南深部构造有关的研究成果:提出了华南地壳三层结构模型的确凿证据,明确了华南是较稳定的大陆地壳,整个华南不存在洋壳。并按上地幔电性差异推断华南岩石圈中存在软、硬不同的块体,据此划分了华南深部构造单元。指出湘中岩石圈增厚到300km,而且湘中地热流比正常值偏低1—2倍。由陆壳反射地震查明了江南古陆之下存在更老的结晶基底,对雪峰地区是否存在巨大推覆构造运动问题,给出了否定的答案。此外该成果还为研究湖南区域构造,提供了丰富的基础资料。也为探讨控制超大型矿床的深部构造背景,开创了新局面。这些研究成果必然会对我省基础地质研究工作产生深远影响。  相似文献   

7.
袁四化  潘桂棠  任飞 《地球科学》2020,45(8):2826-2845
在中国区域大地构造研究中,对洋岛-海山/洋底高原的识别尚未引起足够重视.为深入研究中国大陆洋板块构造,系统回顾了洋岛-海山/洋底高原的基本概念、基本特征和增生造山过程.洋岛-海山/洋底高原是在海底扩张、大洋壳演化过程中由于地幔热点/柱作用形成的有异常厚度洋壳的区域,是大洋岩石圈的重要组成部分.洋岛-海山/洋底高原在垂向上具有典型的二元结构,下部以镁铁质、超镁铁质岩石为主,上部以碳酸盐岩建造为主.现今大洋盆地中大面积分布着正在演化中和正在俯冲的洋岛-海山,根据比较大地构造学原理,古洋岛-海山的存在指示古大洋盆地的存在,是研究造山带的重要载体.认为地史时期大洋盆地中有相当数量的洋岛、海山,在俯冲增生碰撞造山过程中保留下来的古洋岛-海山残块以构造岩片(块)形式夹持在俯冲增生杂岩中,随大洋盆地关闭;其作为缝合带的重要组成部分,是识别对接带的重要判别依据之一.   相似文献   

8.
Photo/TV surveying (approximately 4500 photographs of the oceanic floor) and multibeam echo sounding data were compared to analyze the structural features of the northeastern slope of Govorov Guyot. A network of linear structures complicating this slope was visualized. The trajectories of the linear structures were determined and shown in rose diagrams. It was demonstrated that the photo/TV surveying of the oceanic floor represents an effective tool for studying its topography. The blocks bordered by linear fractures are characterized by different parameters of ferromanganese ore mineralization of the crust type, which may be explained by the determining role of the tectonic factor in the relief-forming process. The combination of the topographic features and the hydrodynamic regime within the blocks provides conditions favorable to different extents for the accumulation of Mn hydroxides.  相似文献   

9.
为能科学、快速量化地圈定出大洋海山钴结壳优质矿区,笔者基于国际海底管理局提出的矿区选取模型,利用我国西太平洋海山钴结壳资源调查的公开的拖网采样资料,综合钴结壳的分布规律和证据权法所得海山钴结壳资源预测后验概率图,将西太平洋麦哲伦海山区戈沃罗夫盖特平顶海山圈定为钴结壳资源前景较好的远景区,并采用人机交互式的矿区圈定方法圈定出符合国际海底管理局规章要求的7个群组共100个钴结壳矿块。据此估算出戈沃罗夫盖特平顶海山湿结壳资源量为69 487.6×104 t;圈定的100个矿块主要分布在2 000~3 000 m斜坡上,湿结壳资源量为14 092×104 t,干结壳资源量为9 789.35×104 t;锰金属量为1 961.3×104 t,铜金属量为10.17×104 t,钴金属量为54.06×104 t,镍金属量为34.87×104 t。这些数据表明,戈沃罗夫盖特平顶海山规模较大,钴结壳资源前景潜力大,可作为钴结壳深入调查和矿区申请备选海山。  相似文献   

10.
There are numerous controversies surrounding the tectonic properties and evolution of the Proto-South China Sea(PSCS).By combining data from previously published works with our geological and paleontological observations of the South China Sea(SCS),we propose that the PSCS should be analyzed within two separate contexts:its paleogeographic location and the history of its oceanic crust.With respect to its paleogeographic location,the tectonic properties of the PSCS vary widely from the Triassic to the mid-Late Cretaceous.In the Triassic,the Paleo-Tethys and the Paleo-Pacific Oceans were the major causes of tectonic changes in the SCS,while the PCSC may have been a remnant sea residing upon Tethys or Paleo-Pacific oceanic crust.In the Jurassic,the Meso-Tethys and the Paleo-Pacific oceans joined,creating a PSCS back-arc basin consisting of Meso-Tethys and/or Paleo-Pacific oceanic crust.From the Early Cretaceous to the midLate Cretaceous,the Paleo-Pacific Ocean was the main tectonic body affecting the SCS;the PSCS may have been a marginal sea or a back-arc basin with Paleo-Pacific oceanic crust.With respect to its oceanic crust,due to the subduction and retreat of the Paleo-Pacific plate in Southeast Asia at the end of the Late Cretaceous,the SCS probably produced new oceanic crust,which allowed the PSCS to formally emerge.At this time,the PSCS was most likely a combination of a new marginal sea and a remnant sea;its oceanic crust,which eventually subducted and became extinct,consisted of both new oceanic crust and remnant oceanic crust from the Paleo-Pacific Ocean.In the present day,the remnant PSCS oceanic crust is located in the southwestern Nansha Trough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号