首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007–2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by ~90 and ~200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3–5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.  相似文献   

2.
Summary The atmospheric and oceanic conditions associated with the southwest monsoon during the contrasting monsoon years of 2002 and 2003 over the Arabian Sea have been analyzed in the present study. Early onset of southwesterlies and reduced net heat gain due to low solar radiation were responsible for low sea-surface temperatures (SSTs) over the Arabian Sea during 2002 pre-monsoon (particularly in May). Conversely, light winds and an increased net heat gain set up the pre-monsoon warming in 2003. The development and intensification of deep convection over a large area of the Arabian Sea prior to the onset of the monsoon was observed during 2003, but was absent in 2002. Weak cross equatorial flow and a weak low level jet over the Arabian Sea reduced moisture transport towards the Indian subcontinent in July 2002. This scenario helped to contribute to a prolonged break in monsoon conditions during July. However, no such break in conditions occurred during July 2003. In 2002, the summer monsoon cooling of the Arabian Sea occurred well before July, whereas in 2003 cooling occurred during July. Estimates of wind driven Ekman (horizontal) and vertical transports showed maximum values in the month of June (July) in 2002 (2003). These estimates clearly show the importance of horizontal and vertical advection in the summer cooling of the Arabian Sea. During the southwest monsoon period, the Arabian Sea was warmer in 2003 than in 2002. Late onset of the southwesterlies in June, late cooling of the Arabian Sea in July, and downwelling Rossby wave propagation were responsible for the warm SSTs in 2003. Weak wind stress curl in July dampened the westward propagating sea surface height anomaly signals (Rossby waves) before they reached the western Arabian Sea in 2002, whereas, in 2003 strong wind stress curl enhanced Rossby wave propagation. During the summer monsoon period, subsurface temperatures in the south central Arabian Sea were warmer in 2003 than in 2002, particularly in July and August. Strong Ekman convergence, solar penetration, and downwelling (downward velocities) are responsible for the enhanced subsurface warming in 2003.  相似文献   

3.
The evolution of the tropospheric temperature fields over Indian and South China Sea monsoon areas and their thermal mechanisms are compared and analyzed during the period from March to June, 1996. The results show that the onsets of the Indian and South China Sea summer monsoons are closely associated with the seasonal warming in the troposphere over the zonal belt of 10°N~30°N in these areas, which leads to the inversion of meridional temperature gradient. During the pre-onset period, the warming over the South China Sea monsoon region is mainly due to the warm horizontal advection and diabatic (latent) heating processes. Meanwhile, the warming is suppressed by the vertical adiabatic process (cooling). In spring over the Indian monsoon region, the significant adiabatic heating due to the subsidence motion, which compensates the cooling due to the strong cold advection and diabatic cooling processes, results in a larger warming rate than over the South China Sea monsoon region. However, the meridional temperature gradient over the Indian monsoon region is so large during the late winter and early spring that it takes longer time to warm the troposphere to have the reversion of meridional temperature gradient than it does over the South China Sea monsoon region. It results in the phenomenon that the South China Sea summer monsoon generally breaks out earlier than the Indian summer monsoon.  相似文献   

4.
Future projections of the Indian summer monsoon rainfall (ISMR) and its large-scale thermodynamic driver are studied by using CMIP5 model outputs. While all models project an increasing precipitation in the future warming scenario, most of them project a weakening large-scale thermodynamic driver arising from a weakening of the upper tropospheric temperature (UTT) gradient over south Asian summer monsoon region. The weakening of the UTT gradient under global warming scenarios is related to the increase in sea surface temperature (SST) over the equatorial Indian Ocean (EIO) leading to a stronger increase of UTT over the EIO region relative to the northern Indian region, a hypothesis supported by a series of Atmospheric General Circulation Model (AGCM) experiments forced by projected SSTs. To diagnose the inconsistency between the model projections of precipitation and the large-scale thermodynamic driver, we have examined the rate of total precipitation explained by convective and stratiform precipitations in observations and in CMIP5 models. It is found that most models produce too much (little) convective (stratiform) precipitation compared to observations. In addition, we also find stronger precipitable water—precipitation relationship in most CMIP5 models as compared to observations. Hence, the atmospheric moisture content produced by the model immediately gets converted to precipitation even though the large-scale thermodynamics in models weaken. Therefore, under global warming scenarios, due to increased temperature and resultant increased atmospheric moisture supply, these models tend to produce unrealistic local convective precipitation often not in tune with other large-scale variables. Our results questions the reliability of the ISMR projections in CMIP5 models and highlight the need to improve the convective parameterization schemes in coupled models for the reliable projections of the ISMR.  相似文献   

5.
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and 0.14 °C per decade during the 1971–2002 period. There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the Nino3 effect, and correlation values are more pronounced than for the Arabian Sea. Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute of Tropical Meteorology, Pune 411008, India.  相似文献   

6.
The reproducibility and future changes of the onset of the Asian summer monsoon were analyzed based on the simulations and projections under the Representative Concentration Pathways(RCP) scenario in which anthropogenic emissions continue to rise throughout the 21 st century(i.e. RCP8.5) by all realizations from four Chinese models that participated in the Coupled Model Intercomparison Project Phase 5(CMIP5). Delayed onset of the monsoon over the Arabian Sea was evident in all simulations for present-day climate, which was associated with a too weak simulation of the low-level Somali jet in May.A consistent advanced onset of the monsoon was found only over the Arabian Sea in the projections, where the advanced onset of the monsoon was accompanied by an increase of rainfall and an anomalous anticyclone over the northern Indian Ocean. In all the models except FGOALS-g2, the enhanced low-level Somali jet transported more water vapor to the Arabian Sea, whereas in FGOALS-g2 the enhanced rainfall was determined more by the increased wind convergence. Furthermore,and again in all models except FGOALS-g2, the equatorial SST warming, with maximum increase over the eastern Pacific,enhanced convection in the central West Pacific and reduced convection over the eastern Indian Ocean and Maritime Continent region, which drove the anomalous anticyclonic circulation over the western Indian Ocean. In contrast, in FGOALS-g2, there was minimal(near-zero) warming of projected SST in the central equatorial Pacific, with decreased convection in the central West Pacific and enhanced convection over the Maritime Continent. The broader-scale differences among the models across the Pacific were related to both the differences in the projected SST pattern and in the present-day simulations.  相似文献   

7.
Summary During most El-Ni?o events the Indian summer monsoon rainfall has been below normal. El-Ni?o that occurred during 1997 was one of the strongest in the 20th century, but did not have an adverse impact on the Indian summer monsoon rainfall in 1997. This is despite the fact that most parameters observed in May 1997 suggested that the Indian summer monsoon rainfall may be below normal. This intriguing feature of the 1997 Indian summer monsoon rainfall has been examined by studying the evolution of various parameters from May to August. The behavior of the 1997 monsoon is related to its evolution during June and July, with westward migration of cloudbands from West Pacific that increased convection over Bay of Bengal. We find that there exists a significant correlation between convective activity over Bay of Bengal and winds over the Arabian Sea with the latter lagging convection over Bay of Bengal by about three days. The convective activity over Bay of Bengal induces stronger winds over the Arabian Sea and this in turn enhances advection of moisture into the Indian landmass and leads to increased precipitable water and strength of the monsoon. Using a simple thermodynamic model we show that increased precipitable water during July leads to increased rainfall. A similar behavior has also been noticed during the 1983 monsoon, with precursors indicating a possible poor monsoon but subsequent events changed the course of the monsoon. Received May 21, 2001 Revised October 10, 2001  相似文献   

8.
This study examines the influence of the mid-latitude circulation on the surface heat low (HL) and associated monsoon rainfall over northwestern India and Pakistan using the ERA40 data and high resolution (T106L31) climate model ECHAM5 simulation. Special emphasis is given to the surface HL which forms over Pakistan and adjoining areas of India, Iran and Afghanistan during the summer season. A heat low index (HLI) is defined to depict the surface HL. The HLI displays significant correlations with the upper level mid-latitude circulation over western central Asia and low level monsoon circulation over Arabian Sea and acts as a bridge connecting the mid-latitude wave train to the Indian summer monsoon. A time-lagged singular value decomposition analysis reveals that the eastward propagation of the mid-latitude circumglobal wave train (CGT) influences the surface pressure anomalies over the Indian domain. The largest low (negative) pressure anomalies over the western parts of the HL region (i.e., Iran and Afghanistan) occur in conjunction with the upper level anomalous high that develops over western-central Asia during the positive phase of the CGT. The composite analysis also reveals a significant increase in the low pressure anomalies over Iran and Afghanistan during the positive phase of CGT. The westward increasing low pressure anomalies with its north?Csouth orientation provokes enormous north?Csouth pressure gradient (lower pressure over land than over sea). This in turn enables the moist southerly flow from the Arabian Sea to penetrate farther northward over northwestern India and Pakistan. A monsoon trough like conditions develops over northwestern India and Pakistan where the moist southwesterly flow from the Arabian Sea and the Persian Gulf converge. The convergence in association with the orographic uplifting expedites convection and associated precipitation over northwestern India and Pakistan. The high resolution climate model ECHAM5 simulation also underlines the proposed findings and mechanism.  相似文献   

9.
In this study, a smaller domain over India alone and a larger South Asia (SA) domain have been used in the Regional Climate Model version 4.2 (RegCM4.2) to examine the effect of the domain size on the Indian summer monsoon simulations. These simulations were carried out over a period of 36 years at 50 km horizontal resolution with the lateral boundary forcings of the UK Met Office Hadley Centre Global Circulation Model Version 2.0. Results show that the Indian summer monsoon rainfall is significantly reduced when the domain size for the model integration is reduced from SA to the Indian domain. In case of SA domain simulation, the Equitable Threat Scores have higher values in case of very light, light and moderate rainfall events than those in case of the Indian domain simulation. It is also found that the domain size of model integration has dominant impact on the simulated convective precipitation. The cross-equatorial flow and the Somali Jet are better represented in the SA simulation than those in the Indian domain simulation. The vertically integrated moisture flux over the Arabian Sea in the SA domain simulation is close to that in the NCEP/NCAR reanalysis while it is underestimated in the Indian domain simulation. It is important to note that when RegCM4.2 is integrated over the smaller Indian domain, the effects of the Himalayas and the moisture advection from the Indian seas are not properly represented in the model simulation and hence the monsoon circulation and associated rainfall are underestimated over India.  相似文献   

10.
亚洲夏季风建立前后对流层温度场演变特征及其热力成因   总被引:5,自引:1,他引:4  
对1996年亚洲夏季风爆发前后(3~6月)印度及南海季风区对流层温度演变特征及其热力成因作了比较分析。结果表明:印度和南海夏季风的爆发与各季风区对流层中上层南北温差逆转密切相关,而南北温差逆转是由10~30°N之间纬度带对流层的季节性增暖引起的。夏季风爆发前期,南海季风区的增温主要由暖平流及非绝热加热过程(主要为凝结潜热)共同作用所致。春季在印度季风区大陆上空存在显著的下沉绝热增温,使得对流层中上层的增温率比华南大陆及邻近地区上空的增温率显著得多。但印度季风区冬末春初的南北温差(南暖北冷)也非常明显,以至该地区对流层中上层增暖到引起南北温差发生逆转的时间较迟,而南海季风区对流层中层南北温差发生逆转的时间相对要早,因而印度夏季风比南海夏季风迟爆发。  相似文献   

11.
Summary In this study, a detailed examination on the evolution of summer monsoon onset over southern tip of the Indian peninsula, its advancement and withdrawal over the Indian sub-continent is carried out by utilizing the analysis/forecast fields of a global spectral model for Monsoon-1995. The data base used in this study is derived from the archives of global data assimilation and forecasting system of NCMRWF, India, valid for 00UTC at 1.5° latitude/longitude resolution for the summer monsoon period of 1995. By utilizing the analyses and forecast fields, and the established knowledge of the Indian monsoon, objective criteria are employed in this study for determining the onset, advancement, and withdrawal of the monsoon.It is found that all the major characteristics of Monsoon-1995 are captured well by the analysis-forecast system even though the criteria adopted in this study are more objective and different in nature as compared to the conventional procedures. The onset date of monsoon over the southern tip of the Indian peninsula as determined by the dynamical onset procedure is found to be matching well with the realized date. Further, the evolution of monsoon onset characteristics over the Arabian Sea both in the analyses and forecasts is found to be in good agreement with the earlier studies. However, the magnitudes of net tropospheric moisture build-up and tropospheric temperature increase differ with respect to analyses and corresponding forecast fields. In addition, all important characteristics of the advancement and withdrawal of monsoon over the Indian sub-continent viz. stagnation, revival etc., are brought out reasonably well by the analysis and forecast system.With 10 Figures  相似文献   

12.
Wilhelm May 《Climate Dynamics》2011,37(9-10):1843-1868
In this study the potential future changes in different aspects of the Indian summer monsoon associated with a global warming of 2°C with respect to pre-industrial times are assessed, focussing on the role of the different mechanisms leading to these changes. In addition, these changes as well as the underlying mechanisms are compared to the corresponding changes associated with a markedly stronger global warming exceeding 4.5°C, associated with the widely used SRES A1B scenario. The study is based on two sets of four ensemble simulations with the ECHAM5/MPI-OM coupled climate model, each starting from different initial conditions. In one set of simulations (2020?C2200), greenhouse gas concentrations and sulphate aerosol load have been prescribed in such a way that the simulated global warming dioes not exceed 2°C with respect to pre-industrial times. In the other set of simulations (1860?C2200), greenhouse gas concentrations and sulphate aerosol load have been prescribed according to observations until 2000 and according to the SRES A1B scenario after 2000. The study reveals marked changes in the Indian summer monsoon associated with a global warming of 2°C with respect to pre-industrial conditions, namely an intensification of the summer monsoon precipitation despite a weakening of the large-scale monsoon circulation. The increase in the monsoon rainfall is related to a variety of different mechanisms, with the intensification of the atmospheric moisture transport into the Indian region as the most important one. The weakening of the large-scale monsoon circulation is mainly caused by changes in the Walker circulation with large-scale divergence (convergence) in the lower (uppper) troposphere over the Indian Ocean in response to enhanced convective activity over the Indian Ocean and the central and eastern Pacific and reduced convective activity over the western tropical Pacific. These changes in the Walker circulation induce westerly (easterly) wind anomalies at lower (upper) level in the Indian region. The comparison with the changes in the Indian summer monsoon associated with a global warming of 4.5°C reveals that both the intensification of the monsoon precipitation and the weakening of the large-scale monsoon circulation (particularly in the lower troposphere) are relatively strong (with respect to the magnitude of the projected global warming by the end of the twentieth century for the two scenarios) in the scenario with a global warming of 2°C. The relatively strong intensification of the monsoon rainfall is related to rather strong increases in evaporation over the Arabian Sea and the Bay of Bengal, while a rather weak amplification of the meridional temperature gradient between the Indian Ocean and the land areas to the north contributes to the relatively strong reduction of the large-scale monsoon flow.  相似文献   

13.
In this paper, a diagnostic study is carried out with global analysis data sets to determine how the large scale atmospheric circulation affecting the anomalous drought of the Indian summer monsoon 2002. The daily analysis obtained from National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) for the month of July is used to investigate the mean circulation characteristics and the large scale energetics over the Indian monsoon domain. Examination of rainfall revealed that the summer monsoon (JJAS) rainfall of 2002 over India is 22% below normal in which the large deficit of 56% below normal rainfall in July. The recent past drought during summer season of 2004 and 2009 are 12 and 23%, respectively, below normal rainfall. The large deficit of rainfall in 2009 is from the June month with 48% below normal rainfall, where as 2004 drought contributed from July (19%) and August (24%). Another significant facet of the rainfall in July 2002 is lowest ever recorded in the past 138 years (1871–2008). The circulation features illustrated weak low level westerly wind at 850 hPa (Somali Jet) in July during large deficit rainfall years of 1987 and 2002 with a reduction of about 30% when compared with the excess and normal rainfall years of 1988 and 2003. Also, tropical easterly jet at 150 hPa reduced by 15% during the deficit rainfall year of 2002 against the excess rainfall year of 1988. Both the jet streams are responsible for low level convergence and upper level divergence leading to build up moisture and convective activity to sustain the strength of the monsoon circulation. These changes are well reflected in reduction of tropospheric moisture profile considerably. It is found that the maximum number of west pacific cyclonic system during July 2002 is also influenced for large deficit rainfall over India. The dynamic, thermodynamic and energetic clearly show the monsoon break type situation over India in the month of July 2002 resulting less convective activity and the reduction of moisture. The large diabatic heating, flux convergence of heat and moisture over south east equatorial Indian Ocean are also responsible for drought situation in July 2002 over the Indian region.  相似文献   

14.
Summary In this paper, interseasonal characteristics of the Asian summer monsoon in the years of 1987 and 1988 are studied as 1987 is characterized by a large deficiency of monsoon rainfall (drought) and that of 1988 by a large excess monsoon rainfall (flood) over India. In order to compare the similarities and differences seen in the large scale dynamics and energetics of the Asian summer monsoon during the years of extreme monsoon activity, uninitialized analyses (12 Z) of the European Centre for Medium Range Weather Forecasts (ECMWF), U.K. are utilized in this study for the summer monsoon seasons of 1987 and 1988.It is found that the excess rainfall season (1988) is characterized by much stronger tropical easterly jet (TEJ) associated with the upper tropospheric easterlies and the East African low level jet (Somali Jet) associated with lower tropospheric westerlies. Such a feature mainly determines the strength of the reverse Hadley circulation which normally covers the South Asian continent during the northern summer. Further, the energetics of the TEJ show that the monsoon of 1988 has comparatively stronger zones of kinetic energy flux divergence (convergence) at its entrance (exit) regions. These zones of kinetic energy flux divergence are largely maintained by the adiabatic processes over the strong kinetic energy flux divergence zones over the Bay of Bengal and east central Arabian Sea as compared to that of 1987. Apart from this, both the zonal and meridional components of the ageostrophic flows are found to be stronger during 1988 monsoon season. Analysis of the vertically integrated thermodynamical features of the monsoon indicate that the monsoon of 1988 was characterized by an excess import of heat and moisture into the monsoon atmosphere as compared to that of 1987. Further, from the quantitative estimation of certain significant heat and moisture budget parameters during the contrasting monsoon seasons of 1987 and 1988, it becomes evident that considerable differences exist in the quantities of adiabatic production of heat energy, diabatic heating and the moisture source/sink.With 13 Figures  相似文献   

15.
Summary The interannual variability of North-West India Winter Precipitation (NWIWP) has been examined in association with the variability of sea surface temperature (SST), surface air temperature (SAT) and upper tropospheric (200 hPa) wind patterns over India and the surrounding regions. We have considered data for a period of 54 years (1950–2003). During the years of excess NWIWP, the SST was above normal over the equatorial Indian Ocean, SAT was below normal over east Mediterranean Sea and over the Himalayan region and upper tropospheric westerlies strengthen and shift southwards. Upper tropospheric westerlies over north and central India was found to be related with the SST anomalies over the equatorial Indian Ocean. The decrease of SAT over north India and surroundings may largely be a manifestation of cooling brought about by excessive precipitation and sweep of cold air advection in rear of the storms. The intensifying of upper troposphere westerlies embedded with a jet increases the upper level divergence over north India due to increased horizontal shear resulting in intense anticyclone at upper troposphere.  相似文献   

16.
The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Ni?o-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development.  相似文献   

17.
包庆  Bin WANG  刘屹岷 《大气科学》2008,32(5):997-1005
20世纪50年代以来,随着全球海表面温度年代际变化和全球变暖现象的出现,东亚夏季风降水和环流场也出现相应的年代际变化。是什么原因引起这个长期的变化趋势?研究表明青藏高原增暖可能是导致东亚夏季风年代际变化的重要因子之一。为了能够更好地理解青藏高原地表状况对下游东亚季风的影响,作者使用德国马普气象研究所大气环流模式(ECHAM)进行一系列数值试验。在两组敏感性试验中,通过改变高原上的地表反照率从而达到改变地表温度的目的。数值试验结果表明:青藏高原增暖有助于增强对流层上层的南亚高压、高原北侧西风急流和高原南侧东风急流以及印度低空西南季风;与此同时,东亚地区低层西南气流水汽输送增强。高原增暖后降水场的变化表现为:印度西北部季风降水增加,长江中下游以及朝鲜半岛梅雨降水增多;在太平洋副热带高压控制下的西北太平洋地区和孟加拉湾东北部,季风降水减少。对数值模拟结果的初步诊断分析表明:在感热加热和对流引起的潜热加热相互作用下,南亚高压强度加强,东亚夏季低层西南季风增大、梅雨锋降水增强,高原东部对流层上层的副热带气旋性环流增加,以及对流层低层的西太平洋副热带高压增强。另外,在青藏高原增暖的背景下,孟加拉湾地区季风降水减弱。本项研究有助于更好地理解东亚夏季风年代际变化特征和未来气候变化趋势。  相似文献   

18.
亚洲夏季风爆发的深对流特征   总被引:9,自引:1,他引:9  
钱维宏  朱亚芬 《气象学报》2001,59(5):578-590
文中应用NOAA卫星反演的1980~1995年候平均对流层上部水汽亮温(BT)资料、向外长波辐 射(OLR)资料和美国NMC全球分析850 hPa风资料与美国CMAP降水资料作了对比分析,发现B T能够较好地反映中低纬度地区的深对流降水,偏南风场辐合区与深对流降水有比较一致的 关系,而OLR不能反映热带外地区的对流降水。BT资料所具有的这一特征可以应用于亚洲夏 季风爆发过程的深对流特征分析。BT描述深对流的临界值是244 K。亚洲季风区是全球深对 流季节变化范围和强度最大的地区。赤道外地区的夏季风爆发可以定义为来自热带地区深对 流的季节扩张。中南半岛上的夏季风对流发生在南海夏季风爆发之前。华南前汛期深对流是 中低纬系统相互作用的结果。第28候,南海夏季风的突然爆发在降水、风场和卫星反演 的深对流特征上都有明确的反映。南海夏季风爆发后,印度夏季风对流由南向北逐渐爆发, 青藏高原东侧和中国东部沿海的夏季风对流向北推进早于中国中部地区。  相似文献   

19.
Interannual variations of the monsoon onset over Kerala (MOK) have been studied using data from over 60?years (1948?C2009) of NCEP/NCAR reanalysis and outgoing long-wave radiation. The sea surface temperature fields over the North Indian Ocean associated with the MOK have been examined in association with El Nino and Indian Ocean Dipole (IOD) events which originate in the Pacific and Indian Ocean, respectively. An analysis of the tropical convective maximum showed significant differences in its strength and location during the El Nino, IOD, early, normal, and delayed MOK composites. Further, we also looked into the role of the convective systems formed over the Arabian Sea and Bay of Bengal on MOK. The most significant features during early (delayed) MOK years is the abnormal persistence of westerlies (easterlies) several days prior to MOK and enhanced (suppressed) deep convection over the southeastern Arabian Sea and the southern Bay of Bengal. Moisture builds up over peninsular India several pentads prior to MOK during La Nina, negative IOD, and concurrent La Nina and negative IOD years as compared to the El Nino, positive IOD, and concurrent El Nino and positive IOD years, indicating its significant role on MOK. The monsoon Hadley cell and Walker circulations are weaker (stronger) during a delayed (early) MOK. Further, the sea surface temperature anomalies in the western Pacific are negative (positive) during delayed (early) MOK.  相似文献   

20.
Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula-South China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean, Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation. In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS. However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes, so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号