首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《水文科学杂志》2013,58(4):511-524
Abstract

The design and operation of flood management systems require computation of flood hydrographs for both design floods and flood forecasting purposes, since observed data are usually inadequate for these tasks. This is particularly relevant for most developing countries, i.e. mainly for tropical catchments. One possible way of obtaining information about flood hydrographs is through the use of rainfall—runoff models. Two such models, namely the Bochum model and the Nash Cascade—Diskin Infiltration model, which are semi-distributed and lumped models, respectively, were used in the present study. These models were applied to two catchments in Kenya with drainage areas of 6.71 km2 and 26.03 km2. A set of 13 selected rainfall—runoff events was used to calibrate and validate the models. The physical parameters required by the models were derived from catchment characteristics using GIS and remote sensing data while the conceptual parameters were obtained by optimization. The flood hydrographs simulated using the parameters so derived indicated that it is possible to use the two models in this tropical environment.  相似文献   

2.
The surface runoff system is often represented by a single-input single-output model in which the rainfall excess x(t) is defined as the input function and the direct surface runoff y(t) is the output. The problem considered is the optimal identification of the system from given records of several independent storm events each consisting of an input and the corresponding output function. The system is represented by a discrete-time second-order Volterra series. The method is a point by point identification which can be extended to Volterra systems of order higher than a second order. The identified system is required to be conservative as in a previous work of Diskin & Boneh [1973]. In this study the identified system is further required to be copositive. Therefore the notion of copositivity is introduced and an example of a watershed system in Southern Illinois is identified with variable copositivity threshold constraints.  相似文献   

3.
Changes in climate and urban growth are the most influential factors affecting hydrological characteristics in urban and extra‐urban contexts. The assessment of the impacts of these changes on the extreme rainfall–runoff events may have important implications on urban and extra‐urban management policies against severe events, such as floods, and on the design of hydraulic infrastructures. Understanding the effects of the interaction between climate change and urban growth on the generation of runoff extremes is the main aim of this paper. We carried out a synthetic experiment on a river catchment of 64 km2 to generate hourly runoff time series under different hypothetical scenarios. We imposed a growth of the percentage of urban coverage within the basin (from 1.5% to 25%), a rise in mean temperature of 2.6 °C, and an alternatively increase/decrease in mean annual precipitation of 25%; changes in mean annual precipitation were imposed following different schemes, either changing rainstorm frequency or rainstorm intensity. The modelling framework consists of a physically based distributed hydrological model, which simulates fast and slow mechanisms of runoff generation directly connected with the impervious areas, a land‐use change model, and a weather generator. The results indicate that the peaks over threshold and the hourly annual peaks, used as hydrological indicators, are very sensitive to the rainstorm intensity. Moreover, the effects of climate changes dominate on those of urban growth determining an exacerbation of the fast runoff component in extreme events and a reduction of the slow and deep runoff component, thus limiting changes in the overall runoff.  相似文献   

4.
This study presents single‐objective and multi‐objective particle swarm optimization (PSO) algorithms for automatic calibration of Hydrologic Engineering Center‐ Hydrologic Modeling Systems rainfall‐runoff model of Tamar Sub‐basin of Gorganroud River Basin in north of Iran. Three flood events were used for calibration and one for verification. Four performance criteria (objective functions) were considered in multi‐objective calibration where different combinations of objective functions were examined. For comparison purposes, a fuzzy set‐based approach was used to determine the best compromise solutions from the Pareto fronts obtained by multi‐objective PSO. The candidate parameter sets determined from different single‐objective and multi‐objective calibration scenarios were tested against the fourth event in the verification stage, where the initial abstraction parameters were recalibrated. A step‐by‐step screening procedure was used in this stage while evaluating and comparing the candidate parameter sets, which resulted in a few promising sets that performed well with respect to at least three of four performance criteria. The promising sets were all from the multi‐objective calibration scenarios which revealed the outperformance of the multi‐objective calibration on the single‐objective one. However, the results indicated that an increase of the number of objective functions did not necessarily lead to a better performance as the results of bi‐objective function calibration with a proper combination of objective functions performed as satisfactorily as those of triple‐objective function calibration. This is important because handling multi‐objective optimization with an increased number of objective functions is challenging especially from a computational point of view. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Basin landscapes possess an identifiable spatial structure, fashioned by climate, geology and land use, that affects their hydrologic response. This structure defines a basin's hydrogeological signature and corresponding patterns of runoff and stream chemistry. Interpreting this signature expresses a fundamental understanding of basin hydrology in terms of the dominant hydrologic components: surface, interflow and groundwater runoff. Using spatial analysis techniques, spatially distributed watershed characteristics and measurements of rainfall and runoff, we present an approach for modelling basin hydrology that integrates hydrogeological interpretation and hydrologic response unit concepts, applicable to both new and existing rainfall‐runoff models. The benefits of our modelling approach are a clearly defined distribution of dominant runoff form and behaviour, which is useful for interpreting functions of runoff in the recruitment and transport of sediment and other contaminants, and limited over‐parameterization. Our methods are illustrated in a case study focused on four watersheds (24 to 50 km2) draining the southern coast of California for the period October 1988 though to September 2002. Based on our hydrogeological interpretation, we present a new rainfall‐runoff model developed to simulate both surface and subsurface runoff, where surface runoff is from either urban or rural surfaces and subsurface runoff is either interflow from steep shallow soils or groundwater from bedrock and coarse‐textured fan deposits. Our assertions and model results are supported using streamflow data from seven US Geological Survey stream gauges and measured stream silica concentrations from two Santa Barbara Channel–Long Term Ecological Research Project sampling sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
D. Ramier  E. Berthier  H. Andrieu 《水文研究》2011,25(14):2161-2178
Runoff on impervious surfaces (roads, roofs, etc.) raises a number of environmental and road safety‐related problems. The primary objective of this research effort is to improve our knowledge of the hydrological behaviour of impervious urban surfaces in order to better assess runoff on these surfaces and its subsequent consequences. This article will focus on two street stretches studied over a 38‐month period. Measurements of rainfall and runoff discharge on these stretches have made it possible to estimate runoff losses as well as to constitute a database for modelling purposes. On the basis of these data, two models have been used, one simple the other more detailed and physically based. For both models, runoff discharges at a 3‐min time step are well reproduced, although runoff coefficients and runoff losses are still poorly estimated. Detailed analyses of experimental data and model output, however, indicate that runoff losses could be quite high on such ‘impervious surfaces’ (between 30 and 40% of total rainfall, depending on the street stretch) and that these losses are mainly because of evaporation and infiltration inside the road structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The closed-form analytical stormwater quality models are developed for simulating urban catchment pollutant buildup and washoff processes. By integrating the rainfall–runoff transformation with pollutant buildup and washoff functions, stormwater quality measures, such as the cumulative distribution functions (CDFs) of pollutant loads, the expected value of pollutant event mean concentrations (EMCs) and the average annual pollutant load can be derived. This paper presents methodologies and major procedures for the development of urban stormwater quality models based on derived probability distribution theory. In order to investigate the spatial variation in model parameters and its impact on stormwater pollutant buildup and washoff processes as well as pollutant loads to receiving waters, an extended form of the original rainfall–runoff transformation which is based on lumped runoff coefficient approach is proposed to differentiate runoff generation mechanisms between the impervious and pervious areas of the catchment. In addition, as a contrast to the aggregated pollutant buildup models formulated with a single lumped buildup parameter, the disaggregated form of the pollutant buildup model is proposed by introducing a number of physically-based parameters associated with pollutant buildup and washoff processes into the pollutant load models. The results from the case study indicate that analytical urban stormwater management model are capable of providing results in good agreement with the field measurements, and can be employed as alternatives to continuous simulation models in the evaluation of long-term stormwater quality measures.  相似文献   

8.
Heejun Chang 《水文研究》2007,21(2):211-222
This study investigates changes in streamflow characteristics for urbanizing watersheds in the Portland Metropolitan Area of Oregon for the period from 1951 to 2000. The objective of this study was to assess how mean annual runoff ratio, mean seasonal runoff ratio, annual peak runoff ratio, changes in streamflow in response to storm amount, the fraction of time that the daily mean flow exceeds the annual mean flow, 3‐day recession constants, and dry/wet flow ratio vary among watersheds with different degrees of urban development. There were no statistically significant changes in annual runoff ratio and annual peak runoff ratio for the mixed land‐use watershed (Tualatin River watershed) and the urban watershed (Johnson Creek watershed) during the entire study period. The Tualatin River watershed, where most of the urban development occurred in a lower part of the watershed, showed a statistically significant increase in annual peak runoff ratio during the 1976 and 2000 period. The Upper Tualatin River watershed illustrated a significant decrease in annual peak runoff ratio for the entire study period. With significant differences in seasonal runoff ratio, only Johnson Creek exhibited a significant increase in both wet and dry season runoff ratios. Streamflow during storm events declined rapidly in the urban watershed, with a high 3‐day recession constant. At an event storm scale, streamflow in Fanno Creek, which is the most urbanized watershed, responded quickly to precipitation input. The fraction of time that the daily mean flow exceeded the annual mean flow and dry/wet flow ratio are all lower in Johnson Creek. This suggests a shorter duration of storm runoff and lower baseflow in the urbanized watershed when compared to the mixed land use watershed. The findings of this study demonstrate the importance of spatial and temporal scale, climate variability, and basin physiographic characteristics in detecting the hydrologic effects of urbanization in the Pacific Northwest of the USA. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

A modelling experiment is used to examine different land-use scenarios ranging from extreme deforestation (31% forest cover) to pristine (95% forest cover) conditions and related Payment for Ecosystem Services (PES) schemes to assess whether a change in streamflow dynamics, discharge extremes and mean annual water balance of a 73.4-km2 tropical headwater catchment in Costa Rica could be detected. A semi-distributed, conceptual rainfall–runoff model was adapted to conceptualize the empirically-based, dominant hydrological processes of the study area and was multi-criteria calibrated using different objective functions and empirical constraints on model simulations in a Monte Carlo framework to account for parameter uncertainty. The results suggest that land-use change had relatively little effect on the overall mean annual water yield (<3%). However, streamflow dynamics proved to be sensitive in terms of frequency, timing and magnitude of discharge extremes. For low flows and peak discharges of return periods greater than one year, land use had a minor influence on the runoff response. Below these thresholds (<1-year return period), forest cover potentially decreased runoff peaks and low flows by as much as 10%, and non-forest cover increased runoff peaks and low flows by up to 15%. The study demonstrated the potential for using hydrological modelling to help identify the impact of protection and reforestation efforts on ecosystem services.

Editor Z.W. Kundzewicz

Citation Birkel, C., Soulsby, C., and Tetzlaff, D., 2012. Modelling the impacts of land-cover change on streamflow dynamics of a tropical rainforest headwater catchment. Hydrological Sciences Journal, 57 (8), 1543–1561.  相似文献   

10.
Automated rainfall simulator for variable rainfall on urban green areas   总被引:1,自引:0,他引:1  
Rainfall simulators can enhance our understanding of the hydrologic processes affecting the total runoff to urban drainage systems. This knowledge can be used to improve urban drainage designs. In this study, a rainfall simulator is developed to simulate rainfall on urban green surfaces. The rainfall simulator is controlled by a microcomputer programmed to replicate the temporal variations in rainfall intensity of both historical and synthetic rainfall events with constant rainfall intensity on an area of 1 m2. The performance of the rainfall simulator is tested under laboratory conditions with regard to spatial uniformity of the rainfall, the kinetic energy of the raindrops, and the ability to replicate historical and synthetic rainfall events with temporally varying intensity. The rainfall simulator is applied in the field to evaluate its functionality under field conditions and the influence of wind on simulated rainfall. Finally, a field study is carried out on the relationship between runoff, soil volumetric water content, and surface slope. Performance and field tests show that the simulated rainfall has a uniform spatial distribution, whereas the kinetic energy of the raindrops is slightly higher than that of other comparable rainfall simulators. The rainfall simulator performs best in low wind speed conditions. The simulator performs well in replicating historical and synthetic rainfall events by matching both intensity variations and accumulated rainfall depth. The field study shows good correlation between rainfall, runoff, infiltration, soil water content, and surface slope.  相似文献   

11.
ABSTRACT

The spatial-temporal variation of runoff in an inland basin is very sensitive to climate change. Investigation of runoff change in arid areas is typically limited by lack of meteorological and hydrogeological data. This study focused on runoff change in the Yarkand River source area of the Tarim Basin, China, with the aim of analysing the influence of climate change on the response characteristics of discharge. Sensitivity analysis was introduced to reflect the degree of influence of climate on runoff. Based on the sensitivity factors, over 30 sets of schemes including the IPCC Fourth Assessment Report were simulated using the MIKE 11/NAM rainfall–runoff model and the response of runoff was analysed. The results indicate that there are significant correlations and synchronous fluctuations between runoff and precipitation, evaporation and temperature. The characteristics of the sensitivity of runoff can be fitted well by Bi-Gaussian functions. The functions show that high sensitivity indexes mainly appear in the interval of 165 ± 100 m3 s-1. The influence of precipitation on runoff is greater than that of other climate factors. Through simulation using the NAM model, we found that change of annual runoff was related to the initial climate condition. Annual runoff will have an increasing trend if it has a strong sensitivity to the initial meteorological condition. Moreover, the runoff decreases linearly with evaporation. Also it has a positive relationship with temperature and precipitation. Across the four seasons, the impact in summer and winter is greater than that in spring and autumn. Estimation of the spatial-temporal influence of climate on runoff could provide insight for water resource development in arid areas.
Editor Z.W. Kundzewicz Associate editor not assigned  相似文献   

12.
A basic hypothesis is proposed: given that wavelet‐based analysis has been used to interpret runoff time‐series, it may be extended to evaluation of rainfall‐runoff model results. Conventional objective functions make certain assumptions about the data series to which they are applied (e.g. uncorrelated error, homoscedasticity). The difficulty that objective functions have in distinguishing between different realizations of the same model, or different models of the same system, is that they may have contributed in part to the occurrence of model equifinality. Of particular concern is the fact that the error present in a rainfall‐runoff model may be time dependent, requiring some form of time localization in both identification of error and derivation of global objective functions. We explore the use of a complex Gaussian (order 2) wavelet to describe: (1) a measured hydrograph; (2) the same hydrograph with different simulated errors introduced; and (3) model predictions of the same hydrograph based upon a modified form of TOPMODEL. The analysis of results was based upon: (a) differences in wavelet power (the wavelet power error) between the measured hydrograph and both the simulated error and modelled hydrographs; and (b) the wavelet phase. Power difference and wavelet phase were used to develop two objective functions, RMSE(power) and RMS(phase), which were shown to distinguish between simulated errors and model predictions with similar values of the commonly adopted Nash‐Sutcliffe efficiency index. These objective functions suffer because they do not retain time, frequency or time‐frequency localization. Consideration of wavelet power spectra and time‐ and frequency‐integrated power spectra shows that the impacts of different types of simulated error can be seen through retention of some localization, especially in relation to when and the scale over which error was manifest. Theoretical objections to the use of wavelet analysis for this type of application are noted, especially in relation to the dependence of findings upon the wavelet chosen. However, it is argued that the benefits of localization and the qualitatively low sensitivity of wavelet power and phase to wavelet choice are sufficient to warrant further exploration of wavelet‐based approaches to rainfall‐runoff model evaluation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Chloride (Cl) in urban waterways largely originates from runoff containing deicing salts. Cl is retained in watersheds after deicing ends, resulting in deleterious effects on aquatic biota. Stormwater management ponds (SWMPs), designed to mitigate ‘flashy’ urban runoff response, are known to impact pollutant transport. However, there is little information on what role SWMPs play in the timing and magnitude of Cl transport over different timescales. This study quantifies the mass of Cl retained in two SWMPs over varying timescales. Both ponds are in an urbanizing watershed in south-central Ontario; one drains a commercial area, the other, a residential area. High frequency measurements of water level and specific conductivity, from which flow and Cl concentration were derived, were taken with sensors at pond inlets and outlets. For one SWMP, data were also collected upstream and downstream of the confluence of the pond outflow and the receiving creek to quantify the in-stream response to Cl-laden pond outflows. The findings suggest that SWMPs likely play a role in watershed-scale Cl retention; one SWMP consistently retained Cl while the other had variable retention and release of Cl. In the receiving creek, Cl concentrations downstream of the pond exceeded the acute toxicity threshold for aquatic organisms twice as often as concentrations upstream of the pond, and Cl pulses corresponded to Cl release events from the pond. The results of this study suggest that SWMPs concentrate spatially distributed salt inputs and modify the timing and magnitude of their release to receiving streams. Stream reaches that receive water inputs from SWMPs may be more vulnerable to Cl toxicity than reaches that do not receive flow via SWMPs. The results of this study will help parameterize the role of SWMPs in watershed-scale Cl transport models and geospatial models of salt vulnerable areas.  相似文献   

14.
Much has been written on the subject of objective functions to calibrate rainfall–runoff models. Many studies focus on the best choice for low-flow simulations or different multi-objective purposes. Only a few studies, however, investigate objective functions to optimize the simulations of low-flow indices that are important for water management. Here, we test different objective functions, from single objective functions with different discharge transformations or using low-flow indices, to combinations of single objective functions, and we evaluate their robustness and sensitivity to the rainfall–runoff model. We find that the Kling and Gupta efficiency (KGE) applied to a transformation of discharge is inadequate to fulfil all assessment criteria, whereas the mean of the KGE applied to the discharge and the KGE applied to the inverse of the discharge is sufficient. The robustness depends on the climate variability rather than the objective function and the results are insensitive to the model.
EDITOR A. Castellarin; ASSOCIATE EDITOR C. Perrin  相似文献   

15.
Situated at the foot of the Pichincha volcano, the city of Quito is frequently subjected to hydroclimatic hazards. In 1995 an 11·2 km2 watershed, located in the vicinity of the city, was equipped with eight rain gauges and two flow gauges to better understand the local rainfall/runoff transformation processes. Rainfall simulation experiments were carried out on more than 40 one‐square‐metre plots to measure infiltration point‐processes. The high density of measurement devices allowed us to identify the origin and nature of the various contributions to runoff for the different physiographic units of the watershed: urban area from an altitude of 2800 to 3200 m; farmland, pasture and forested land, and finally páramo above 3900 m. Runoff occurs mainly in the lower part of the basin and is caused by urbanization; however, the natural soils of this area can also produce Hortonian runoff, which is predominant in a few events. This contribution can be studied through rainfall simulation experiments. In the upper natural zone, the younger and more permeable soils generate less runoff on the slopes. However, almost permanently saturated contributing areas, which are located in the bottom of the quebradas, may generate flood events, the size of which depends on the extent of the area concerned. Variations in the runoff coefficients are related first to the baseflow and second to the amount of rainfall in the previous 24 h. This analysis, which underlines the complexity of a small, peri‐urban, volcanic catchment, is a necessary preliminary to runoff modelling in an area where very few experiments have been carried out on small catchments. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Urban growth is a global phenomenon, and the associated impacts on hydrology from land development are expected to increase, especially in peri‐urban catchments. It is well understood that greater peak flows and higher stream flashiness are associated with increased surface imperviousness and storm location. However, the effect of the distribution of impervious areas on runoff peak flow response and stream flashiness of peri‐urban catchments has not been well studied. In this study, a new geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri‐urban catchments with runoff peak flows and stream flashiness. Study sites include 21 suburban catchments in New York representing a range of drainage area from 5 to 189 km2 and average imperviousness from 10% to 48%. On the basis of RNICO, all development patterns are divided into 3 classes: upstream, centralized, and downstream. Results showed an obvious increase in runoff peak flows and decrease in time to peak when moving from upstream to centralized and downstream urbanization classes. This indicates that RNICO is an effective tool for classifying urban development patterns and for macroscale understanding of the hydrologic behavior of small peri‐urban catchments, despite the complexity of urban drainage systems. We also found that the impact of impervious distribution on runoff peak flows and stream flashiness decreases with catchment scale. For small catchments (A < 40 km2), RNICO was strongly correlated with the average (R2 = .95) and maximum (R2 = .91) gaged peak flows due to the relatively efficient subsurface routing through stormwater and sewer networks. Furthermore, the Richards–Baker stream flashiness index in small catchments was positively correlated with fractional impervious area (R2 = .84) and RNICO (R2 = .87). For large catchments (A > 40 km2), the impact of impervious surface distribution on peak flows and stream flashiness was negligible due to the complex drainage network and great variability in travel times. This study emphasizes the need for greater monitoring of discharge in small peri‐urban catchments to support flood prediction at the local scale.  相似文献   

17.
The nature and rates of fluvial and slope processes change over time and space as urbanized areas replace forested land in Singapore. Storm-based and time-based data, from undisturbed rainforests, heavily disturbed construction sites, urban grass-covered slopes and an experimental plot, are collected to observe the impact of rainwater on the soil moisture conditions, surface microtopography, runoff generation, sediment movement, and ground lowering in the three different categories of land use. The undisturbed forested environment is characterized by high throughfall (58% of total rainfall) and frequent negative soil moisture suctions. The slow and unconcentrated overland flow during heavy storms is restricted by the forest floor microtopography. No rills develop. Ground lowering is recorded as 3·2–3·4 mm a?1. But sediment movement is episodic and suspended sediment concentrations in overland flow are 172–222 mg l?1. During urban construction, gully development is rapid on the bare slopes, runoff generation, voluminous, and sediment-laden discharges (5200–75498 mg l?1) lead to sediment plumes at channel mouths. Ground lowering rates are measured at 132·4 mm a?1. Once grass-covered, runoff carries less suspended sediment (800 mg l?1) and ground lowering rates are reduced, but depend on the condition of the cover, ranging from 0·2 to 8·2 mm a?1. As urban development continues, environments are altered both in time as well as spatially.  相似文献   

18.
《水文科学杂志》2013,58(4):883-892
Abstract

Contour benches are earthen structures constructed across cultivated slopes, at intervals down the slope, largely used in semi-arid zones. The results of an experiment to monitor water and sediment balance inside a contour bench terrace system are presented. The study site, located in the El-Gouazine watershed (central Tunisia), includes two terraced plots of approximately 3000 m2, one of which was left fallow for several years, while the other was tilled. The characteristics of rainfall—runoff processes and erosion inside both terraced plots during a two-year period (2004–2006) are described. Ploughing reduced runoff by 75%. Erosion was monitored following runoff episodes that produced observable deposits in the bench channel. After ploughing, erosion was reduced by 44% between July 2004 and July 2005 and by 50% between October 2005 and July 2006. However, erosion per millimetre of runoff was about twice as great on the tilled soil as on the fallow. Even though ploughing weakens the soil, it seems to reduce erosion by increasing infiltration. For the studied rain events, ploughing used in combination with contour bench terraces seems to have limited erosion and enhanced the effectiveness of contour bench terrace management.  相似文献   

19.
A model developed for estimating the evaporation of rainfall intercepted by forest canopies is applied to estimate measurements of the average runoff from the roofs of six houses made in a previous study of hydrological processes in an urban environment. The model is applied using values of the mean rates of wet canopy evaporation and rainfall derived previously for forests and an estimate of the roof storage capacity derived from the data collected in the previous study. Although the model prediction is sensitive to the value of storage capacity, close correlation between the modelled and measured runoff indicates that the model captures the essential processes. It is concluded that the process of evaporation from an urban roof is sufficiently similar to that from a forest canopy for forest evaporation models to be used to give a useful estimate of urban roof runoff. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Urban expansion and the scarcity of water supplies in arid and semiarid regions have increased the importance of urban runoff to localized water resources. However, urban catchment responses to precipitation are poorly understood in semiarid regions where intense rainfall often results in large runoff events during the short summer monsoon season. To evaluate how urban runoff quantity and quality respond to rainfall magnitude and timing, we collected stream stage data and runoff samples throughout the 2007 and 2008 summer monsoons from four ephemeral drainages in Tucson, Arizona. Antecedent rainfall explained 20% to 30% of discharge (mm) and runoff ratio in the least impervious (22%) catchment but was not statistically related to hydrologic responses at more impervious sites. Regression models indicated that rainfall depth, imperviousness and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality did not vary with imperviousness or catchment size. Rainfall depth and duration, time since antecedent rainfall and event and cumulative discharge controlled runoff hydrochemistry and resulted in five specific solute response patterns: (i) strong event and seasonal solute mobilization (solute flush), (ii) event chemostasis and strong seasonal flush, (iii) event chemostasis and weak seasonal flush, (iv) event and seasonal chemostasis and (v) late seasonal flush. Our results indicate that hydrologic responses of semiarid catchments are controlled by rainfall partitioning at the event scale, whereas wetting magnitude, frequency and timing alter solute stores readily available for transport and control temporal runoff quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号