首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ca. 13 m long sediment core PG1351, recovered in 1998 from the central part of Lake El’gygytgyn, NE Siberia, was investigated for lithostratigraphy, water content, dry bulk density (DBD), total organic carbon (TOC), total nitrogen (TN), total sulphur (TS) and biogenic silica (opal) contents, and for TOC stable isotope ratios (δ13CTOC). The event stratigraphy recorded in major differences in sediment composition match variations in regional summer insolation, thus confirming a new age model for this core, which suggests that it spans the last 250 ka BP. Four depositional units of contrasting lithological and biogeochemical composition have been distinguished, reflecting past environmental conditions associated with relatively warm, peak warm, cold and dry, and cold but more moist climate modes. A relatively warm climate, resulting in complete summer melt of the lake ice cover and seasonal mixing of the water column, prevailed during the Holocene and Marine Isotope Stages (MIS) 3, 5.1, 5.3, 6.1, 6.3, 6.5, 7.1–7.3, 7.5, 8.1 and 8.3. MIS 5.5 (Eemian) was characterized by significantly enhanced aquatic primary production and organic matter supply from the catchment, indicating peak warm conditions. During MIS 2, 5.2, 5.4, 6.2 and 6.4 the climate was cold and dry, leading to perennial lake ice cover, little regional snowfall, and a stagnant water body. A cold but more moist climate during MIS 4, 6.6, 7.4, 8.2 and 8.4 is thought to have produced more snow cover on␣the perennial ice, strongly reducing light penetration and biogenic primary production in␣the lake. While the cold–warm pattern during␣the past three glacial–interglacial cycles is probably controlled by changes in regional summer insolation, differences in the intensity of the warm phases and in the degree of aridity (changing snowfall) during cold phases likely were due to changes in atmospheric circulation patterns. This is the seventh in a series of eleven papers published in this special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. JulieBrigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

2.
尕海湖DG03孔碳酸盐含量及其环境意义   总被引:5,自引:1,他引:5       下载免费PDF全文
通过对尕海DG03孔岩芯碳酸盐含量的测定,表明碳酸盐含量指标较好地记录了尕海湖地区自冰消期晚期以来的气候环境变化。对阿勒罗德暖期和新仙女木期都有较好的反映,并揭示出早全新世气候变暖且波动明显,中全新世早期暖湿,后期温凉偏干,晚全新世气候明显变干,早期较为寒冷,后期偏暖。碳酸盐含量的变化反映了湖水的浓缩程度,与湖泊所处的沉积阶段相联系,同时与岩性特征所反映的环境也有关。在风成作用堆积的粉砂至中砂层,碳酸盐含量降至很低;在滨湖相沉积的细砂层,碳酸盐含量也较低,因此,碳酸盐含量指示的气候环境意义应与岩性及其他指标相结合进行分析,方可得到可信的结论。  相似文献   

3.
近150a来南红山湖的地球化学特征及环境意义   总被引:4,自引:2,他引:4  
通过对西昆仑山南红山湖的沉积地球化学特征的分析,恢复了南红山湖区近150a来的环境变化。19世纪50年代初-19世纪80年代中期,气候受小冰期末次波动的影响,以冷湿为特点。19世纪80年代中期-1997年,处于小冰期后回暖期,以暖干趋势为主。其中19世纪80年代中期-20世纪20年代初,以暖干为特点;20世纪20年代初-20世纪中叶,气候较干燥,而且温度与湿度的结合较复杂,属于冷干-暖湿交替的气候类型;20世纪中叶-1997年,气候总特征以暖干为主,尤其是1990年以后,温度升高趋势明显,气候干燥。从近150a湖泊变化的整体趋势看,随着时间的推移,南红山湖在逐渐萎缩。就湖区的气候变化与西昆仑山古里雅冰芯所恢复的气温、降水变化及与较近的两个站点的气象记录进行了对比,认为该地区与古里雅冰芯地区受相同的气候系统控制;高原上区域间存在气候差异;应开展多尺度、高分辨率的多种代用资料的研究。  相似文献   

4.
安固里淖沉积物记录的气候环境变迁   总被引:19,自引:5,他引:14  
姜加明  吴敬禄  沈吉 《地理科学》2004,24(3):346-351
根据对河北坝上地区安固里淖湖泊沉积物粒度、碳酸盐与TOC含量的分析,探讨了安固里淖近400年来的气候与环境变迁。研究结果表明,安固里淖地区近400年来的气候大致经历了凉干-冷湿-暖干三个气候变化阶段:1634~1801年间的气候凉干期、1801~1889年间的冷湿期以及1889年至今的暖干期,表现为暖干与冷湿相交替的气候演替类型,近百年来干暖化趋势明显。  相似文献   

5.
We inferred past climate conditions from the δ13C and δ15N of organic matter (OM) in a sediment core (DP-2011-02) from the sub-alpine Daping Swamp, in the western Nanling Mountains, South China. In the study region, a 1000-m increase in altitude results in a ~0.75‰ decrease in δ13C and a ~2.2‰ increase in δ15N. Organic carbon stable isotope (δ13C) values of the dominant modern vegetation species, surface soils, and the core samples taken in the swamp exhibit a strong terrestrial C3 plant signature. Comprehensive analysis of the core indicates both terrestrial and aquatic sources contribute to the OM in sediment. Temperature and precipitation are most likely the critical factors that influence δ13C: warm and wet conditions favor lower δ13C, whereas a dry and cool climate leads to higher δ13C values. Higher δ15N values may result from greater water depth and increased primary productivity, promoted by large inputs of dissolved inorganic nitrogen, induced by high surface runoff. Lower δ15N values are associated with lower lake stage and reduced productivity, under drier conditions. Therefore, stratigraphic shifts in these stable isotopes were used to infer past regional climate. Measures of δ13C and δ15N in deglacial deposits, in combination with total organic carbon (TOC) and nitrogen (TN) concentrations, the TOC/TN ratio, coarse silt and sand fractions, dry bulk density and low-frequency mass magnetic susceptibility, reveal two dry and cold events at 15,400–14,500 and 13,000–11,000 cal a BP, which correspond to Heinrich event 1 and the Younger Dryas, respectively. A pronounced warm and wet period that occurred between those dry episodes, from 14,500 to 13,000 cal a BP, corresponds to the Bølling–Allerød. The δ13C and δ15N data, however, do not reflect a warm and wet early Holocene. The Holocene optimum occurred between ~8000 and 6000 cal a BP, which is different from inferences from the nearby Dongge cave stalagmite δ18O record, but consistent with our previous results. This study contributes to our understanding of climate-related influences on δ13C and δ15N in OM of lake sediments in South China.  相似文献   

6.
Wallywash Great Pond (17° 57 N, 77° 48 W, 7 m a.s.l.) is the largest perennial lake in Jamaica. It occupies a fault trough within the karstic White Limestone. The Great Pond is a hardwater lake with a pH of 8.2–8.6 and an alkalinity of 3.6–3.9 meq 1–1. Its chemistry is strongly influenced by the spring discharge from the limestone. The lake water is subject to degassing, evaporation and bicarbonate assimilation by submerged plants and algae, resulting in marl precipitation. A 9.23 m core (WGP2), taken from a water depth of 2.8 m, was analysed for magnetic susceptibility, loss-on-ignition, carbonate content, mole % MgCO3 in calcite, and stable isotopes in the fine carbonate fraction. The chronology is based on ten14C and four U/Th dates. Four main sediment types alternate in the core: marl; organic, calcareous mud; organic mud or peat; and earthy, brown, calcareous mud. The marls represent periods of wet/warm climate during sea-level highstands and the organic deposits, shallower, swampy conditions. In contrast, the brown, calcareous muds were laid down when the lake was dry or ephemeral. The last interglacial (120 000- 106 000 yr BP) is represented by three distinct marl units. After a dry interval, stable, wet/warm conditions set in from 106 000 to 93 000 yr BP. A dry/cool climate prevailed between 93 000 and at least 9500 yr BP. Three subsequent cycles of alternating wet and dry conditions culminated in flooding of the basin by the Black River during the late Holocene. These recent events cannot be accurately dated by14C due to significant and temporally-variable inputs of dead carbon from the springs.  相似文献   

7.
A combination of water and sediment chemistry was used to investigate carbonate production and preservation in Lake Pumayum Co (altitude 5,030 m a.s.l.), south Tibet, China. We compared the chemical composition of lake water in various parts of the lake with that of input rivers and found that the loss of Ca2+ results from calcite sedimentation induced by evaporation and biogenic precipitation. This is supported by evaporation data from the catchment and δ18O measurements on water. Results suggest that CaCO3 is the predominant carbonate in this lake. There is a positive correlation in the sediments among concentrations of total inorganic carbon (TIC), Ca, total organic carbon (TOC), and total nitrogen, confirming that most carbonates in sediment are endogenic. The Jiaqu River is the largest inflow to Lake Pumayum Co and has a strong influence on both lake water chemistry and sediment composition. The river and lake bathymetry influence carbonate sedimentation by affecting water flow velocity and growing conditions for macrophytes. Different carbon contents and relationships between TIC and TOC in the two long cores from different depths in the lake reveal that hypolimnetic conditions also influence carbonate precipitation and preservation.  相似文献   

8.
The geochemistry of ostracode shells and bulk carbonates in a 19-meter sediment core documents at century-scale resolution the evolution of water chemistry in Coldwater Lake, North Dakota, providing a continuous paleohydrologic record of Holocene climate change in the northern Great Plains. A combination of 18O, 13C, Mg/Ca and Sr/Ca in ostracode calcite aided by Sr/Ca in bulk carbonates are used to constrain the paleoclimatic reconstructions. A fresh-water phase in the early Holocene, indicated by the absence of Candona rawsoni and low concentrations of Sr/Ca in bulk carbonate, was followed by a sharp increase in salinity between 10800 and 8900 yr B.P. The climate was predominately dry during the late part of the early Holocene and most of the middle Holocene (8900–5000 yr B.P.), when the lake was very sensitive and recorded a series of dry and wet oscillations. Maximum salinity occurred around 5500 yr B.P. and was followed by a gradual decrease between 5000 and 2400 yr B.P. From 2400 yr B.P. the 18O, Mg/Ca, and Sr/Ca in the ostracodes indicate generally wet conditions interrupted by a series of lesser salinity and temperature oscillations lasting until 600 yr B.P. Ostracode geochemistry indicates that a warm and dry climate returned at about the time of the Little Ice Age (600–150 yr B.P.). Ostracode 13C shows a ong-term increasing trend during the Holocene, which suggests that lake productivity and atmospheric CO2 exchange made greater contributions to the hypolimnetic carbon pool as the lake became shallower with time.  相似文献   

9.
近千年来内蒙古岱海气候环境演变的湖泊沉积记录   总被引:46,自引:11,他引:35  
内陆封闭湖泊是气候环境变化的敏感指示计。通过对内蒙古岱海湖泊岩芯的有机碳同位素、总有机碳、碳酸盐含量和磁化率等多环境指标的综合分析,结合Pb-210测定的沉积速率,讨论了岱海地区近千年来的气候环境演化过程。揭示了本区现代小冰期的前期冷湿,后期冷干的气候特征。记录的最后两次冷期与根据冰芯、树轮、历史文献重建的10年平均温度推得的1450’s~1510’s、1790’s~1890’s两次冷期极相吻合。  相似文献   

10.
Total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) were determined in combination with stable isotope ratios of carbon and nitrogen (δ13COrg, δ15N) in a 63 cm sediment core from Longgan Lake, located in the middle reaches of the Yangtze River, China. These geochemical and isotopic records provide a continuous history of lake productivity and trophic state of Longgan Lake since 1890. Variations of δ13COrg, TOC, TN and TP indicate that primary productivity of Longgan Lake increased continuously during the last century and that the trophic state of the lake shifted from oligotrophic to mestrotrophic conditions accordingly. Anthropogenic sources of organic carbon (OC), nitrogen (N) and phosphorus (P) were distinguished from their natural background in the sediments using mass accumulation rates. Element mass accumulation rates suggested increased human activities in the lake’s catchment since 1950s, were especially the utilization of artificial fertilizers amplified the anthropogenic input of N and P into the lake. In the course of the improved availability of dissolved nutrients also primary productivity of Longgan Lake increased, resulting in an increase of the Suess-effect corrected organic carbon isotope ratios. δ15N of bulk sediments show a marked shift towards lower values around 1950 that has been attributed to the input of nitrogen from chemical fertilizers characterized by relatively depleted isotopic signatures into the lake.  相似文献   

11.
Climatic and environmental changes since the last glacial period are important to our understanding of global environmental change. There are few records from Southern Tibet, one of the most climatically sensitive areas on earth. Here we present a study of the lake sediments (TC1 core) from Lake Chen Co, Southern Tibet. Two sediment cores were drilled using a hydraulic borer in Terrace 1 of Lake Chen Co. AMS 14C dating of the sediments showed that the sequence spanned >30,000 years. Analyses of present lake hydrology indicated that glacier melt water is very important to maintaining the lake level. Sediment variables such as grain size, TOC, TN, C/N, Fe/Mn, CaCO3, and pollen were analyzed. Warm and moderately humid conditions dominated during the interval 30,000–26,500 cal year BP. From 26,500 to 20,000 cal year BP, chemical variables and pollen assemblages indicate a cold/dry environment, and pollen amounts and assemblages suggest a decline in vegetation. From 20,000 to 18,000 cal year BP, the environment shifted from cold/dry to warm/humid and vegetation rebounded. The environment transitioned to cold/humid during 16,500–10,500 cal year BP, with a cold/dry event around 14,500 cal year BP. After 10,500 cal year BP, the environment in this region tended to be warm/dry, but exhibited three stages. From 10,500 to 9,000 cal year BP, there was a short warm/humid period, but a shift to cold/dry conditions occurred around 9,000 cal year BP. Thereafter, from 9,000 to 6,000 cal year BP, there was a change from cold/dry to warm/humid conditions, with the warmest period around 6,000 cal year BP. After 6,000 cal year BP, the environment cooled rapidly, but then displayed a warming trend. Chemical variables indicate that a relatively warm/dry event occurred around 5,500–5,000 cal year BP, which is supported by time-lagged pollen assemblages around 4,800 cal year BP. Our lake sediment sequence exhibits environmental changes since 30,000 cal year BP, and most features agree with records from the Greenland GISP2 ice core and with other sequences from the Tibetan Plateau. This indicates that environmental changes inferred from Lake Chen Co, Southern Tibet were globally significant.  相似文献   

12.
黄旗海岩芯烧失量分析与冰后期环境演变   总被引:3,自引:1,他引:2       下载免费PDF全文
重建闭流型湖泊的水位及环境变化,可以为研究冰后期及全新世以来的气候变化及季风环流演变提供不可或缺的关键信息。对HQH4岩芯烧失量与川蔓藻化石种子的研究结果显示,黄旗海湖区在全新世到来之前的气候寒冷,湖面冰封期较长,夏季温度较低,致使湖泊的有机生产率和自生碳酸盐产量比全新世低很多。黄旗海从全新世早期起进入了稳定的湖泊发展阶段后有机生产率显著上升,自生碳酸盐产量同步大幅度增长。在10 200~6 800 a BP期间,烧失量出现显著波动,很大程度上反映了气候发生暖湿-冷干-暖湿-冷湿的变化。在6 800~3 800 a BP期间,烧失量较高而且波动较小,反映了中全新世黄旗海以稳定的温暖湿润气候为主,湖水水位变化不大,有机质和碳酸盐生产力较高。从3 800 a BP起,气候逐渐变凉,间有多次冷暖干湿的剧烈变化,水位波动频繁。  相似文献   

13.
Lacustrine Sedimentary Organic Matter Records of Late Quaternary Paleoclimates   总被引:32,自引:0,他引:32  
Identification of the sources of organic matter in sedimentary records provides important paleolimnologic information. As the types and abundances of plant life in and around lakes change, the composition and amount of organic matter delivered to lake sediments changes. Despite the extensive early diagenetic losses of organic matter in general and of some of its important biomarker compounds in particular, bulk identifiers of organic matter sources appear to undergo minimal alteration after sedimentation. Age-related changes in the elemental, isotopic, and petrographic compositions of bulk sedimentary organic matter therefore preserve evidence of past environmental changes.We review different bulk organic matter proxies of climate change in tropical and temperate sedimentary records ranging in age from 10-500 ka. Times of wetter climate result in enhanced algal productivity in lakes as a consequence of greater wash-in of soil nutrients, and these periods are recorded as elevated Rock-Eval hydrogen indices, lowered organic C/N ratios, less negative organic 13C values, and increased organic carbon mass accumulation rates. Lowering of lake water levels, which typically depresses algal productivity, can also cause an apparent increase in organic carbon mass accumulation rates through suspension of sediments from lake margins and redeposition in deeper basins. Alternations between C3 and C4 watershed plants accompany climate changes such as glacial/interglacial transitions and wet/dry cycles, and these changes in land-plant types are evident in 13C values of organic matter in lake sediments. Changes in climate-driven hydrologic balances of lakes are recorded in D values of sedimentary organic matter. Visual microscopic examination of organic matter detritus is particularly useful in identifying changes in bulk organic matter delivery to lake sediments and therefore is important as an indicator of climate changes.  相似文献   

14.
Optical and geochemical techniques were applied to sedimentary organic matter from the profundal area of the Eocene Lake Prinz von Hessen, which formed in a pull-apart basin on the Sprendlinger Horst, near Darmstadt, Germany. Variations in total sulphur content (S tot) and total organic carbon content (TOC), hydrogen index (HI), oxygen index (OI) and 13C values of the organic matter were used to reconstruct the lakes filling history. Following an initial rapid deepening phase, open lake conditions developed with HI reaching more than 500 mg HC/g TOC and TOC values up to 40%. The productivity of the lake was probably high and organic matter preservation was enhanced by a stratified water column. As the lake began to fill with sediment and became shallower, TOC and HI values declined, as the lake water was better oxygenated and preservation conditions declined. 13C values between –31 and –27 are controlled by the mixing of aquatic (algae and microbial mats) and terrigenous organic matter (wood, spores, pollen and cuticles). Following a rapid drop in lake level, shallow lake conditions alternated with swamp deposits (lignites) in the basin center. The organic matter preserved during this stage is strictly terrigenous in nature and experienced oxic degradation (HI 100 mg HC/g TOC). 13C values between –26 and –24 are typical for Eocene terrigenous matter. The inferred lake level fluctuations are interpreted to have been controlled by tectonic as well as climatic processes.  相似文献   

15.
Total organic carbon (TOC) content, total nitrogen (TN) content, stable nitrogen isotope (δ15N) and stable organic carbon isotope (δ13Corg) ratios were continuously analysed on a high resolution sediment profile from Lake Sihailongwan (SHL), covering the time span between 16,500 and 9,500 years BP. Strong variations of the investigated proxy parameters are attributed to great climatic fluctuations during the investigated time period. Variations in organic carbon isotope ratios and the ratio of TOC/TN (C/N ratio) are discussed with respect to changing proportions of different organic matter (OM) sources to bulk sedimentary OM. Phases of high TOC content, high TN content, depleted δ13Corg values and high δ15N values are interpreted as times with increased productivity of lacustrine algae in relation to input of terrigenous organic matter. Two distinct phases of enriched nitrogen isotope ratios from 14,200 to 13,700 and 11,550 to 11,050 years BP point towards a reduced phytoplankton discrimination against 15N due to a diminished dissolved inorganic nitrogen pool. The combination of geochemical (TOC, TN, C/N ratio) and isotopic (δ13Corg, δ15N) proxy parameters points to a division of climate development into four stages. A cold and dry stage before 14,200 years BP, a warm optimum stage with high phytoplankton productivity from 14,200 to 12,450 BP, a colder and drier stage from 12,450 to 11,600 BP and a stage of climatic amelioration with high variability in TOC and TN contents after 11,600 BP. These results are discussed in relation to monsoon variability and Northern Hemisphere climate development of the late glacial.  相似文献   

16.
Three piston cores from Lake Victoria (East Africa) have been analysed for organic carbon (TOC) and nitrogen (TN) content, stable isotopes (13C and 15N), and Hydrogen Index (HI). These data are combined with published biogenic silica and water content analyses to produce a detailed palaeolimnological history of the lake over the past ca. 17.5 ka. Late Pleistocene desiccation produced a lake-wide discontinuity marked by a vertisol. Sediments below the discontinuity are characterised by relatively low TOC and HI values, and high C/N, 13C and 15N, reflecting the combined influence of abundant terrestrial plant material and generally unfavourable conditions for organic matter preservation. A thin muddy interval with lower 13C and higher HI and water content indicates that dry conditions were interrupted by a humid period of a few hundred years duration when the lake was at least 35 m deep. The climate changed to significantly more humid conditions around 15.2 ka when the dry lake floor was rapidly flooded. Abundant macrophytic plant debris and high TOC and 13C values at the upper vertisol surface probably reflect a marginal swamp. 13C values decrease abruptly and HI begins to increase around 15 ka BP, marking a shift to deeper-water conditions and algal-dominated lake production. C/N values are relatively low during this period, suggesting a generally adequate supply of nitrogen, but increasing 15N values reflect intense utilisation of the lake's DIN reservoir, probably due to a dramatic rise in productivity as nutrients were released to the lake from the flooded land surface.An abrupt drop in 13C and 15N values around 13.8-13.6 ka reflects a period of deep mixing. Productivity increased due to more efficient nutrient recycling, and 13C values fell as 12C-rich CO2 released by bacterial decomposition of the organic material was brought into the epilimnion. A weak drop in HI values suggests greater oxygen supply to the hypolimnion at this time. Better mixing was probably due to increased wind intensity and may mark the onset of the Younger Dryas in the region.After the period of deep mixing, the water column became more stable. TOC, C/N, 13C and HI values were at a maximum during the period between 10 and 4 ka, when the lake probably had a stratified water column with anoxic bottom waters. A gradual decrease in values over the last 4000 yrs suggest a change to a more seasonal climate, with periodic mixing of the water column. Rising sediment accumulation rates and a trend to more uniform surface water conditions over the last 2000 yrs are probably a result of increased anthropogenic impact on the lake and its catchment.Following a maximum at the time of the rapid lake-level rise during the terminal Pleistocene, 15N has remained relatively low and displays a gradual but consistent trend to lower values from the end of the Pleistocene to the present. TN values have risen during the same period. The lack of correlation between 13C and 15N, and the absence of any evidence for isotopic reservoir effects despite the rise in TN, suggests that the atmosphere, rather than the lake's dissolved nitrogen pool has been the principal source of nitrogen throughout the Holocene. The importance of atmospheric N fixation to Lake Victoria's nitrogen cycle thus predates by a very considerable margin any possible anthropogenic eutrophication of the lake.  相似文献   

17.
阳澄湖水质现状及原因探讨   总被引:3,自引:0,他引:3  
桂智凡  薛滨  姚书春  魏文佳 《地理科学》2011,31(12):1487-1492
阳澄湖丰水期和枯水期水质调查结果显示:TN、叶绿素、TP和CODMn丰枯期都呈从西湖区向东湖区递减趋势,且一般枯水期大于丰水期,TP反之;丰枯期水质均较差,为Ⅳ类或劣Ⅴ类,污染物主要为TN和TP;富营养化加重趋势有所缓解,但水体仍呈富营养化状态。氮磷来源分析表明:丰枯期NO3--N、NO2--N与TN以及丰水期PO43--P与TP有显著正相关关系。叶绿素浓度与TN在枯水期有显著相关性,其他时期叶绿素浓度与TN、TP的相关性均不显著。阳澄湖养殖活动和底泥营养盐释放可能是导致上述变化的主要原因。  相似文献   

18.
Ostracode analysis was carried out on samples from ice-rich permafrost deposits obtained on the Bykovsky Peninsula (Laptev Sea). A composite profile was investigated that covers most of a 38-m thick permafrost sequence and corresponds to the last ca. 60 kyr of the Late Quaternary. The ostracode assemblages are similar to those known from European Quaternary lake deposits during cold stages. The ostracode habitats were small, shallow, cold, oligotrophic pools located in low centred ice wedge polygons or in small thermokarst depressions. In total, 15 taxa, representing 7 genera, were identified from 65 samples. The studied section is subdivided into six ostracode zones that correspond to Late Quaternary climatic and environmental stadial-interstadial variations established by other paleoenvironmental proxies: (1) cold and dry Zyrianian stadial (58–53 kyr BP); (2) warm and dry Karginian interstadial (48–34 kyr BP); (3) transition from the Karginian interstadial to the cold and dry Sartanian stadial (34–21 kyr BP); (4) transition from the Sartanian stadial to the warm and dry Late Pleistocene period, the Allerød (21–14 kyr BP); (5) transition from the Allerød to the warm and wet Middle Holocene (14–7 kyr BP); and (6) cool and wet Late Holocene (ca. 3 kyr BP). The abundance and diversity of the ostracodes will be used as an additional bioindicator for paleoenvironmental reconstructions of the Siberian Arctic.  相似文献   

19.
湖沼沉积物地球化学元素对地球气候环境变化敏感性强。本文以江西定南大湖湖沼沉积物地球化学元素为研究对象,使用主成分分析法,并结合总有机碳(TOC)、有机碳同位素(δ13Corg)、中值粒径(Md)、化学蚀变指数(CIA)等相关气候代用指标,以元素组对的形式阐释不同地化元素响应不同气候环境下的地球化学行为和迁移规律。研究结果显示:第一主成分(PC1)包括Al2O3、TiO2、SiO2、Nb、Rb、Ga、Ba、S等元素,曲线变化与CIA相似,指示湖泊流域的化学风化强度,气候暧湿,PC1含量高;第二主成分(PC2)包括Co、Zr、Hf元素,曲线变化与中值粒径较为一致,指示湖泊流域的水动力条件,气候冷干,PC2含量高;第三主成分(PC3)包括Sc、Cu、U、V元素,曲线变化与TOC、δ13Corg含量变化一致。大湖沉积物的物质来源为:在气候暧湿、流域化学风化作用强的条件下,地表径流冲刷流域周边花岗岩风化壳物质并搬运至湖盆沉积,但不排除在冷干时期,风力携带粉尘物质堆积的影响,粉尘物质可能主要源于周边的风化碎屑物。  相似文献   

20.
Genovesa Crater Lake is a remote, hypersaline lake in the northern Galápagos archipelago that contains a finely laminated sediment record. This sediment record has the potential to provide a high-resolution history of past climate variability in the eastern tropical Pacific. Here we present modern climate, lake, and sediment observations from 2009 to 2012 to explore how local climate variability influences Genovesa Crater Lake and its sediments. Surface lake temperature is strongly linked to air temperature and is highly seasonal. Temperature stratification is strongest during the warm season, whereas temperature becomes more uniform through the water column in the cool season. Deeper and earlier mixing occurred during the 2010 La Niña, which subsequently delayed 2011 cool season mixing and maximum warm season surface temperatures in 2011 and 2012. Lake salinity changes are influenced by precipitation, evaporation and persistent seawater influx. The largest declines in subsurface salinity follow months after the rainy season, when temperatures cool and fresher surface water from the previous warm/wet season mixes into the subsurface. Between 2009 and 2012, more calcium carbonate precipitated during a period of higher salinity. The period of highest calcium carbonate abundance measured in sediment records that span the late nineteenth to twentieth century coincides with the failure of two consecutive rainy seasons in 1988 and 1989 as well as the coldest monthly sea surface temperature measured at Puerto Ayora in 1989. More calcium carbonate-rich laminae from AD 1550 ± 70 to 1675 ± 90 may indicate a greater frequency of prolonged droughts or cooler temperatures, although enhanced productivity may also modulate carbonate precipitation. More Ca-rich laminae in Genovesa coincide with dry conditions inferred from other Galápagos sediment proxies, as well as prolonged dry and cool conditions inferred from reconstructions of the Southern Oscillation Index and NINO3 sea surface temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号