首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Current flood protection policies in the Netherlands are based on design water levels. This concept does not allow for a proper evaluation of costs and benefits of flood protection. Hence, research is being carried out on the introduction of a flood risk approach, which looks into both the probability of flooding and the consequences of flooding. This research is being carried out within the framework of a major project called the Floris project (FLOod RISk in the Netherlands). To assess the probability of flooding the Floris project distinguishes different failure modes for dikes and structures within the dike ring. Based on a probabilistic analysis of both loads and resistance the probability of failure is determined for each failure mode. Subsequently the probabilities of failure for different failure modes and dike sections are integrated into an estimate of the probability of flooding of the dike ring as a whole. In addition the Floris project looks into the different consequences of flooding, specifically the economic damages and the number of casualties to be expected in case of flooding of a particular dike ring. The paper describes the approach in the Floris project to assess the flood risk of dike rings in the Netherlands. One of the characteristics of the Floris project is the explicit attention to different types of uncertainties in assessing the probability of flooding. The paper discusses the different starting-points adopted and presents an outline on how the Floris project will deal with uncertainties in the analysis of weak spots in a dike ring as well as in the cost benefit analysis of flood alleviation measures.  相似文献   

2.
A flood risk model was developed for the Czech Republic to calculate the probability of insured losses from flood events. The model was GIS based, making use of a 100 m horizontal resolution DTM and a network of the major rivers in the country. A review of historical flooding was undertaken to define the worst and most widespread flood events. Synthetic flood events were generated based on a study of the spatial variation in magnitude of river flows from selected historical flood events going back to 1935. A total of 30 synthetic events were generated each providing peak flows at 25 gauging stations throughout the country. The flows were converted into flood levels using rating equations based on information provided by the Czech Hydrological and Meteorological Institute. The extent of and depth of flooding was mapped on a cell by cell basis by applying an automated procedure developed using the grid option within the Arc/Info GIS. The flood depths were combined with maps of the postal codes to define an average flood depth per post code. The model was calibrated using maps of the observed flood extents from 1997 and 2002.  相似文献   

3.
Pakistan has experienced severe floods over the past decades due to climate variability. Among all the floods, the flood of 2010 was the worst in history. This study focuses on the assessment of (1) riverine flooding in the district Jhang (where Jhelum and Chenab rivers join, and the district was severely flood affected) and (2) south Asiatic summer monsoon rainfall patterns and anomalies considering the case of 2010 flood in Pakistan. The land use/cover change has been analyzed by using Landsat TM 30 m resolution satellite imageries for supervised classification, and three instances have been compared, i.e., pre-flooding, flooding, and post-flooding. The water flow accumulation, drainage density and pattern, and river catchment areas have been calculated by using Shutter Radar Topography Mission digital elevation model 90 m resolution. The standard deviation of south Asiatic summer monsoon rainfall patterns, anomalies and normal (1979–2008) has been calculated for July, August, and September by using rainfall data set of Era interim (0.75° × 0.75° resolution). El Niño Southern Oscillation has also been considered for its role in prevailing rainfall anomalies during the year 2010 over Upper Indus Basin region. Results show the considerable changing of land cover during the three instances in the Jhang district and water content in the rivers. Abnormal rainfall patterns over Upper Indus Basin region prevailed during summer monsoon months in the year 2010 and 2011. The El Niño (2009–2010) and its rapid phase transition to La Niña (2011–2012) may be the cause of severity and disturbances in rainfall patterns during the year 2010. The Geographical Information System techniques and model based simulated climate data sets have been used in this study which can be helpful in developing a monitoring tool for flood management.  相似文献   

4.
The most direct method of design flood estimation is at-site flood frequency analysis, which relies on a relatively long period of recorded streamflow data at a given site. Selection of an appropriate probability distribution and associated parameter estimation procedure is of prime importance in at-site flood frequency analysis. The choice of the probability distribution for a given application is generally made arbitrarily as there is no sound physical basis to justify the selection. In this study, an attempt is made to investigate the suitability of as many as fifteen different probability distributions and three parameter estimation methods based on a large Australian annual maximum flood data set. A total of four goodness-of-fit tests are adopted, i.e., the Akaike information criterion, the Bayesian information criterion, Anderson–Darling test, and Kolmogorov–Smirnov test, to identify the best-fit probability distributions. Furthermore, the L-moments ratio diagram is used to make a visual assessment of the alternative distributions. It has been found that a single distribution cannot be specified as the best-fit distribution for all the Australian states as it was recommended in the Australian rainfall and runoff 1987. The log-Pearson 3, generalized extreme value, and generalized Pareto distributions have been identified as the top three best-fit distributions. It is thus recommended that these three distributions should be compared as a minimum in practical applications when making the final selection of the best-fit probability distribution in a given application in Australia.  相似文献   

5.
Flood risk assessment of River Indus of Pakistan   总被引:1,自引:1,他引:0  
Annual flood peak discharges is widely used in risk assessment. Major sources of flooding in Pakistan are River Jhelum, River Chenab, River Kabul, and upper and lower parts of River Indus. These rivers are major tributaries of the River Indus System which is one of the most important systems of the world and the greatest system of Pakistan. River Indus is the longest river of Pakistan containing seven gauge stations and several barrages, and it plays a vital role in the irrigation system and power generation for the country. This paper estimates the risk of flood in River Indus using historical data of maximum peak discharges. On the basis of our analysis, we find out which dam/barrage reservoir need to be updated in capacity, and whether there are more dams/barrages needed.  相似文献   

6.
Multi-day rainfall events are an important cause of recent severe flooding in Pakistan, and any change in the magnitude of such events may have severe impact upon urban structures such as dams, urban drainage systems, and flood. This article uses statistical distributions to define extremes of annual rainfall of different cities of Punjab (Lahore, Murree, Sialkot, and Jhelum) with given return periods. Our calculations suggest that general extreme value is the best-fitted distribution for the extreme annual rainfall of different cities of Punjab. Our calculations show that different cities of Punjab have 5 years return period for receiving more than 100 mm daily rainfall. While they have 30 years return period for receiving more than 200 mm daily rainfall. This asks for construction of new dams in Pakistan.  相似文献   

7.
The increasing natural disasters, especially floods during the last quarter century, are raising the economic losses in Taiwan. The most severe hazard in Taiwan is flooding induced by typhoons and storms in summer and autumn. By comparing the rivers around the world, the ones in Taiwan have the steepest slopes, the largest discharge per unit drainage area, and the shortest time of concentrations. Rapid urbanization without proper land uses managements usually worsen the flood problems. Consequently, flood hazards mitigation has become the most essential task for Taiwan to deal with. Although the government keeps improving flood defense structures, the flood damage grows continuously. In this article, possible flood mitigation strategies are identified for coping with complex environmental and social decisions with flood risk involved.  相似文献   

8.
In Pakistan, floods are among the most devastating and recurring natural hazards. Flood hazard assessment requires flood event magnitude and probability of occurrence. Flood frequency analysis is the most common technique used for the at-site estimation of flood recurrence magnitude. This paper evaluates four most commonly used distribution methods, i.e., Generalized Extreme Value (GEV), Log Pearson 3 (LP3), Gumbel Max, and Normal for the flood frequency and estimation of flood recurrence. Different hydrological stations data namely Khwazakhela, Chakdarra, Panjkora, and Munda Headwork located at Swat river was taken from Provincial Irrigation Department, Khyber Pakhtunkhwa. The analysis is done for 5-, 10-, 25-, 50-, and 100-year return periods by using annual maximum discharge data from 1980 to 2016 (37 yr). Three goodness-of-fit tests were applied to the fitted distributions, i.e., Kolmogorov–Smirnov, Anderson–Darling, and Chi-squared at 5% significance level. Results indicate that LP3 and GEV were ranked top two distributions at all locations while Gumbel Max and Normal were the least fitted having rank 3 and 4, respectively. Based on the goodness-of-fit ranking, LP3 was selected for the estimation of flood magnitude and return periods at Khwazakhela. Designed hydrographs based on probabilistic approach and flood 2010 hydrograph are presented for flood simulation.  相似文献   

9.
很多城市缺乏洪灾灾情资料,导致缺少洪灾损失量化的有效手段。为满足城市洪涝日益严峻的风险管理需求,亟需缺灾情资料城市的洪灾损失定量评估方法。提出了"因子变异-动态比拟-目标驱动-情景拟合"的缺灾情资料洪灾损失率函数构建方法:借鉴等比例替代思想,采用多引用对象和多特征指标构建变异比拟因子;建立以变差系数最小为目标的动态比拟方法,形成移植样本矩阵;以Beta分布概率最大为驱动目标,确定水深-损失率拟合序列;设置多拟合情景,以拟合相关系数最大为准则,优选洪灾损失率函数。以郑州市为例,模拟4种土地利用类型的洪灾损失率函数,结果表明,本文提出的缺资料城市洪灾损失率函数构建方法可行,特征组合指标呈现动态变化性,多种函数组合拟合效果最优。  相似文献   

10.
Kougkoulos  Ioannis  Merad  Myriam  Cook  Simon J.  Andredakis  Ioannis 《Natural Hazards》2021,109(2):1959-1980

France experiences catastrophic floods on a yearly basis, with significant societal impacts. In this study, we use multiple sources (insurance datasets, scientific articles, satellite data, and grey literature) to (1) analyze modern flood disasters in the PACA Region; (2) discuss the efficiency of French public policy instruments; (3) perform a SWOT analysis of French flood risk governance (FRG); and (4) suggest improvements to the FRG framework. Despite persistent government efforts, the impacts of flood events in the region have not lessened over time. Identical losses in the same locations are observed after repeated catastrophic events. Relative exposure to flooding has increased in France, apparently due to intense urbanization of flood-prone land. We suggest that the French FRG could benefit from the following improvements: (1) regular updates of risk prevention plans and tools; (2) the adoption of a build back better logic; (3) taking undeclared damages into account in flood risk models; (4) better communication between the actors at the different steps of each cycle (preparation, control, organization, etc.); (5) better communication between those responsible for risk prevention, emergency management, and disaster recovery; (6) an approach that extends the risk analysis outside the borders of the drainage basin; and (7) increased participation in FRG from local populations.

  相似文献   

11.
Waste disposal sites are mostly located in lowland areas close to residential areas inducing a long-term risk of potential environmental contamination due to flooding. During recent flood events, these areas were reportedly exposed to inundations. This paper aims to develop a qualitative approach to assess flood risk associated with flood-prone waste disposals at the basis of Austrian case studies. Risk is investigated as a function of the probability of an event and the consequences of that event. The presented assessment approach is characterized as qualitative as consequences are expressed in risk categories but not in expected (monetary) losses. The probability of inundation, the hydrodynamic impacts on considered waste disposal sites and the expected consequences to the environment (potential emissions of hazardous substances) were linked. Derived risk categories from “minor risk” to “serious risk” were used to express flood risk to environmental goods like groundwater bodies, nature reserves and recreation areas. A screening of 1,064 waste disposals yielded roughly 30% of sites located within or close to flood risk zones. Three representative case study areas were selected and investigated in detail by applying 2D hydrodynamic models to calculate flow depths and shear stress and by developing emission scenarios. The hydrodynamic modelling covered three hydrologic scenarios with statistical recurrence intervals of 30, 100 and 300 years. Derived leaching scenarios ranged from minor emissions up to total erosion of the waste disposal site. Based on four parameters representing flood characteristics, the susceptibility to erosion (flow velocity and shear stress) and the estimated leaching behaviour, a flood risk evaluation matrix (FREM) was elaborated. The study outlines that in case of flooding the hazardous emissions could lead to partly tremendous impacts on environmental goods. Identified uncertainties associated with considered processes were considerably high. However, the developed qualitative approach provides a decision support aid to identify waste disposals with imminent risk for humans and the environment.  相似文献   

12.
Flooding can have catastrophic effects on human lives and livelihoods and thus comprehensive flood management is needed. Such management requires information on the hydrologic, geotechnical, environmental, social, and economic aspects of flooding. The number of flood events that took place in Busan, South Korea, in 2009 exceeded the normal situation for that city. Mapping the susceptible areas helps us to understand flood trends and can aid in appropriate planning and flood prevention. In this study, a combination of bivariate probability analysis and multivariate logistic regression was used to produce flood susceptibility maps of Busan City. The main aim of this research was to overcome the weakness of logistic regression regarding bivariate probability capabilities. A flood inventory map with a total of 160 flood locations was extracted from various sources. Then, the flood inventory was randomly split into a testing dataset 70 % for training the models and the remaining 30 %, which was used for validation. Independent variables datasets included the rainfall, digital elevation model, slope, curvature, geology, green farmland, rivers, slope, soil drainage, soil effect, soil texture, stream power index, timber age, timber density, timber diameter, and timber type. The impact of each independent variable on flooding was evaluated by analyzing each independent variable with the dependent flood layer. The validation dataset, which was not used for model generation, was used to evaluate the flood susceptibility map using the prediction rate method. The results of the accuracy assessment showed a success rate of 92.7 % and a prediction rate of 82.3 %.  相似文献   

13.

Landslides are natural hazards that represent a huge economic burden and cause the loss of human life around the world. In countries such as Colombia, the mass movement events that cause the highest number of deaths and economic losses are often related to river or stream flooding caused by landslides in basins. Therefore, it is necessary to develop tools that estimate and assess landslide risk in such areas. This study presents a methodology to assess the risk associated with landslides in streams or river basins. The hazard posed by landslides is evaluated considering probabilistic methods that include the effects of rainfall and earthquakes. In addition, this study assesses the probability of a sliding mass reaching riverbeds and the probability of riverbed obstruction. Vulnerability is then estimated using impact curves based on the obstruction height. Finally, risk is estimated as the probability that economic losses occur along the riverbed. This methodology is based on probability methods, such as the first-order second-moment (FOSM) method, and the punctual estimates method (PEM). The methodology was applied in the La Liboriana River basin, in the municipality of Salgar in the northwestern Colombian Andes. On May 18, 2015, this mountainous and tropical area suffered a flash flood caused by landslides in the basin, which killed more than 100 inhabitants and caused infrastructure damage and significant economic losses. The results suggest that the proposed method coherently assesses the hazard posed by landslides and that the expected losses are comparable with the records from previous events.

  相似文献   

14.
This article attempts to analyse the nature, magnitude and causes of 2010 disastrous flood that seriously affected the province of Khyber Pakhtunkhwa (KPK), Pakistan. Pakistan is famous for its summer floods, but the flood of 2010 is considered to be the century’s worst. It has broken all the previous records in terms of discharge, damages and amount of rainfall occurred. Most of the meteorological stations have received rainfall above normal. Data for this study were collected both from primary and secondary sources. A total 150 questionnaires were filled in from the flood victims. However, secondary data were obtained from the Pakistan Meteorology Department, Flood Forecasting and Warning Centre, Federal Flood Commission, Provincial Disaster Management Authority, National Disaster Management Authority, Surface Water Hydrology Department and Provincial Irrigation and Drainage Authority. The analysis reveals that heavy and prolonged rainfall for four consecutive days (27–30 July) was the major cause of 2010-flood. In addition to this, the development of unusual low pressure zone over the northern Pakistan, aggradations of river bed, rapid deforestation, ponding back of river by motorway, blocking of bridges by tree trunks and subsequent bursting of temporary dams have played their role in causing the disastrous flood in almost all the rivers of KPK. This has inflicted terrible damages to human lives, standing crops, housing, infrastructure and other properties.  相似文献   

15.
Frolova  N. L.  Kireeva  M. B.  Magrickiy  D. V.  Bologov  M. B.  Kopylov  V. N.  Hall  J.  Semenov  V. A.  Kosolapov  A. E.  Dorozhkin  E. V.  Korobkina  E. A.  Rets  E. P.  Akutina  Y.  Djamalov  R. G.  Efremova  N. A.  Sazonov  A. A.  Agafonova  S. A.  Belyakova  P. A. 《Natural Hazards》2016,80(1):103-125

Hydrological extreme events pose an imminent risk to society and economics. In this paper, various aspects of hydrological hazards in Russia are analysed at different scales of risk assessment. It is shown that the number of hydrological and meteorological hazards in Russia has been growing every year. The frequency of economic losses associated with extreme low flow in this century has increased by factor five compared to the last decade of the previous century. With regard to floods, an interesting spatial patter can be observed. On the one hand, the number of floods in the Asian part of the country has increased, whereas on the other hand, the number and intensity of floods in estuarine areas in the European part of Russia have significantly reduced since the middle of the twentieth century, especially in the 2000s. This decrease can be attributed to runoff flooding in the mouths of regulated rivers, with an effective system of flood and ice jam protection. The analysis shows that there is an 8–12-year periodicity in the number of flood occurrences and that flood surges have intensified over the last 110 years, especially on the European territory of Russia. An integrated index that accounts for flood hazards and socio-economic vulnerability was calculated for each region of Russia. A classification of flood risk was also developed, taking into account more than 20 hydrological and social–economic characteristics. Based on these characteristics, hazard and vulnerability maps for entire Russia were generated which can be used for water management and the development of future water resources plans.

  相似文献   

16.
Flood disasters and its consequent damages are on the rise globally. Pakistan has been experiencing an increase in flood frequency and severity along with resultant damages in the past. In addition to the regular practices of loss and damage estimation, current focus is on risk assessment of hazard-prone communities. Risk measurement is complex as scholars engaged in disaster science and management use different quantitative models with diverse interpretations. This study tries to provide clarity in conceptualizing disaster risk and proposes a risk assessment methodology with constituent components such as hazard, vulnerability (exposure and sensitivity) and coping/adaptive capacity. Three communities from different urban centers in Pakistan have been selected based on high flood frequency and intensity. A primary survey was conducted in selected urban communities to capture data on a number of variables relating to flood hazard, vulnerability and capacity to compute flood risk index. Households were categorized into different risk levels, such as can manage risk, can survive and cope, and cannot cope. It was found that risk levels varied significantly across the households of the three communities. Metropolitan city was found to be highly vulnerable as compared to smaller cities due to weak capacity. Households living in medium town had devised coping mechanisms to manage risk. The proposed methodology is tested and found operational for risk assessment of flood-prone areas and communities irrespective of locations and countries.  相似文献   

17.
A series of empirical studies involving typhoon rainstorm and flood risk scenario analysis were carried out on a medium spatial scale, covering Pingyang County. Considering a rainstorm/water-logging conversion process, active flooding submergence and per unit area values (million yuan/km2), two typical risk scenarios (50- and 100-year frequency) were simulated and analyzed. The study revealed that high-risk areas distributed across the towns of Aojiang, Qiancang and Xiaojiang, with a maximum submerged depth of 4.61 m for a 100-year flood hazard. In the case of a disaster loss rate >65 %, the potential maximum loss could be more than 10 million yuan/km2. For medium-scale disaster risk, more attention must be paid to catastrophic events, which have a low probability of occurrence but would induce great losses. An amended risk formula could determine the degree of priority for responses to hazards of equal risk value better. In Pingyang County, the 50-year flood risk for Kunyang, Aojiang, Qiancang and Xiaojiang is greater than that of 100-year events for the next 50 years. However, these areas should give priority to their responses to 100-year disaster events during the next 100 years. In addition, the attention of disaster risk should vary in different spatial regions.  相似文献   

18.
In the Netherlands the current dike design policy is to design flood defence structures corresponding to an agreed flooding probability with an extra safety board of at least 0.5 m. For river dikes a return period of 1,250 years is used to determine the design water levels. A problem with this strategy is that it builds on assumptions with regard to the intrinsically uncertain probability distributions for the peak discharges. The uncertainty is considerable and due to (1) the measuring records that are limited to about 100 years and (2) the changing natural variability as a result of climate change. Although the probability distributions are regularly updated based on new discharge data the nature of the statistics is such that a change in the natural variability of the peak discharge affects the probability distribution only long after the actual change has happened. Here we compare the performance of the probabilistic dike design strategy with the older strategy, referred to as the ‘self-learning dike’. The basic principle of the latter strategy is that the dike height is kept at a level equal to the highest recorded water level plus a certain safety margin. The two flood prevention strategies are compared on the basis of the flooding safety over a 100-year period. The Rhine gauge station at Lobith serves as case study. The results indicate that the self-learning dike performs better than the probabilistic design in terms of safety and costs, both under current and climate change conditions.  相似文献   

19.
A new geomatics-based approach for flood prediction was developed and used to model the magnitude and spatial extent of a future Red River flood in southern Manitoba. This approach combines the statistical modelling capabilities of Markov (non-spatial) analysis and logistic regression (spatial) within a geographic information system (GIS) environment, utilizing modelling inputs derived from remotely sensed RADARSAT imagery and other digital geographic data. The 1997 Red River flood was the second largest in recorded history, and the largest for which accurate data are available. The results indicate: (i) a flood “one time interval-in terms of 3 days time unit measurement- larger in area” than the 1997 flood is expected to affect 17.6% more land (an additional 47.6 km2) within the study area compared to 1997 levels based on Markovian probability derived from observations from the 1997 event; and (ii) the majority of this excess flooding will take place on agricultural land; no additional communities are expected to be at risk. Quantitative assessment verified the capability of this modelling approach for producing statistically significant results. The methodology used in this research would be easily transferable to other areas, and may provide the basis for a viable alternative to conventional hydrologic-based flood prediction approaches This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Risk, including flood risk, can be defined as ??the combination of the probability of an event and its consequences??. Assessing and managing the risk from flooding should explicitly include the estimation of impacts to people. Extensive research is currently ongoing looking at both quantitative and qualitative approaches for assessing flood impacts on people. Although there is some literature available on such approaches, examples of methodological and routinely applications of these methodologies as part of flood risk assessments are rare. This paper focuses on quantitative approaches for estimating impacts of flooding to people, notably on methods for assessing fatality numbers associated with flooding. Three methods for assessing losses of life are discussed in detail. The methods discussed here constitute the forefront of research in Canada, UK and The Netherlands. These methods provide an assessment of the physical consequences of flooding on people and can be used to introduce the impacts to people as quantitative metric for the assessment of flood risk. In this paper, the three methodologies are discussed and applied in a UK case study reproducing the 1953 East Coast flood event. This study aims to provide a comprehensive comparison on both the reliability and the applicability of the methods. We analyse possible added values on using of these methods in systematic analyses, aiming to provide guidelines for applying these methods for flood fatality risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号