首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The South Atlantic response to a collapse of the North Atlantic meridional overturning circulation (AMOC) is investigated in the ECHAM5/MPI-OM climate model. A reduced Agulhas leakage (about 3.1?Sv; 1?Sv?=?106?m3?s?1) is found to be associated with a weaker Southern Hemisphere (SH) supergyre and Indonesian throughflow. These changes are due to reduced wind stress curl over the SH supergyre, associated with a weaker Hadley circulation and a weaker SH subtropical jet. The northward cross-equatorial transport of thermocline and intermediate waters is much more strongly reduced than Agulhas leakage in relation with an AMOC collapse. A cross-equatorial gyre develops due to an anomalous wind stress curl over the tropics that results from the anomalous sea surface temperature gradient associated with reduced ocean heat transport. This cross-equatorial gyre completely blocks the transport of thermocline waters from the South to the North Atlantic. The waters originating from Agulhas leakage flow somewhat deeper and most of it recirculates in the South Atlantic subtropical gyre, leading to a gyre intensification. This intensification is consistent with the anomalous surface cooling over the South Atlantic. Most changes in South Atlantic circulation due to global warming, featuring a reduced AMOC, are qualitatively similar to the response to an AMOC collapse, but smaller in amplitude. However, the increased northward cross-equatorial transport of intermediate water relative to thermocline water is a strong fingerprint of an AMOC collapse.  相似文献   

2.
Summary The transient response of the Southern Hemisphere to climate change is examined using an intermediate complexity climate model. Unlike previous studies, the Southern Ocean response on the centennial to multi-centennial time-scale is assessed in some detail. It is shown that changes in atmospheric CO2-concentrations lead to an increase in the strength of the Antarctic Circumpolar Current (ACC) by ∼20 Sv by 2750 for an atmospheric CO2-concentration of 750 ppm. This increase is predominantly the result of an enhanced steric height gradient. The increase in the strength of the ACC induces changes in its steering around topographic features. This change in ACC pathway causes increased surface flow of colder waters into some regions (reducing the rate of warming) and increased surface flow of warmer waters into others (increasing the rate of warming). This meridional shifting of the ACC causes changes in atmospheric temperature in the Southern Hemisphere to be nonuniform. It is also shown that the strength and location of the Antarctic Bottom Water (AABW) overturning cell is affected by increased atmospheric CO2. For a CO2-concentration scenario increasing gradually to 750 ppm, AABW production initially decreases, then recovers and eventually increases. New production zones form, which extend AABW production all the way from the Weddell Sea eastward into the Ross Sea. These new production zones are the result of increased areas of atmosphere-ocean interactions, due to decreased sea-ice coverage, although the overturned waters are now warmer and fresher due to climate change. A new production zone of Antarctic Intermediate water is also established in the Southeast Pacific Ocean, poleward of its present-day location.  相似文献   

3.
《大气与海洋》2012,50(4):307-317
ABSTRACT

This study investigates the response of the subtropical gyre circulation in the North Pacific Ocean to quadrupled CO2 using the Community Earth System Model, version 1 (CESM1). In particular, an overriding technique is applied to isolate and quantify the effects of wind stress and thermal warming caused by CO2 emissions. Results show that, in response to the increase in CO2, the total mass transport in the subtropical gyre is reduced by approximately 11%. This reduction results mainly from negative anomalies of the wind stress curl over the subtropical region, with a smaller contribution from the thermal warming effect. Furthermore, a detailed analysis finds that the change in the subtropical gyre is baroclinic in nature [i.e., the gyre appears to be spin-up in the upper ocean (above 300?m) but spin-down in the lower thermocline (from 300 to 1500?m)]. This reversal between the upper ocean and lower thermocline is a result of the thermal warming effect, which intensifies ocean stratification, hindering the transfer of momentum from the upper layers to the lower layers and leading to an acceleration of the gyre in the upper ocean but a deceleration in the lower thermocline. Another feature of the response of the subtropical gyre to quadrupled CO2 is the respective poleward and equatorward movements of its northern and southern boundaries, which is a result of the change in the zero wind stress curl lines.  相似文献   

4.
The Southern Hemisphere westerly winds are an important component of the climate system at hemispheric and global scales. Variations in their intensity and latitudinal position through an ice-age cycle have been proposed as important drivers of global climate change due to their influence on deep-ocean circulation and changes in atmospheric CO2. The position, intensity, and associated climatology of the southern westerlies during the last glacial maximum (LGM), however, is still poorly understood from empirical and modelling standpoints. Here we analyse the behaviour of the southern westerlies during the LGM using four coupled ocean-atmosphere simulations carried out by the Palaeoclimate Modelling Intercomparison Project Phase 2 (PMIP2). We analysed the atmospheric circulation by direct inspection of the winds and by using a cyclone tracking software to indicate storm tracks. The models suggest that changes were most significant during winter and over the Pacific ocean. For this season and region, three out four models indicate decreased wind intensities at the near surface as well as in the upper troposphere. Although the LGM atmosphere is colder and the equator to pole surface temperature gradient generally increases, the tropospheric temperature gradients actually decrease, explaining the weaker circulation. We evaluated the atmospheric influence on the Southern Ocean by examining the effect of wind stress on the Ekman pumping. Again, three of the models indicate decreased upwelling in a latitudinal band over the Southern Ocean. All models indicate a drier LGM than at present with a clear decrease in precipitation south of 40°S over the oceans. We identify important differences in precipitation anomalies over the land masses at regional scale, including a drier climate over New Zealand and wetter over NW Patagonia.  相似文献   

5.
 The Younger Dryas (YD, dated between 12.7–11.6 ky BP in the GRIP ice core, Central Greenland) is a distinct cold period in the North Atlantic region during the last deglaciation. A popular, but controversial hypothesis to explain the cooling is a reduction of the Atlantic thermohaline circulation (THC) and associated northward heat flux as triggered by glacial meltwater. Recently, a CH4-based synchronization of GRIP δ18O and Byrd CO2 records (West Antarctica) indicated that the concentration of atmospheric CO2 (COatm 2) rose steadily during the YD, suggesting a minor influence of the THC on COatm 2 at that time. Here we show that the COatm 2 change in a zonally averaged, circulation-biogeochemistry ocean model when THC is collapsed by freshwater flux anomaly is consistent with the Byrd record. Cooling in the North Atlantic has a small effect on COatm 2 in this model, because it is spatially limited and compensated by far-field changes such as a warming in the Southern Ocean. The modelled Southern Ocean warming is in agreement with the anti-phase evolution of isotopic temperature records from GRIP (Northern Hemisphere) and from Byrd and Vostok (East Antarctica) during the YD. δ13C depletion and PO4 enrichment are predicted at depth in the North Atlantic, but not in the Southern Ocean. This could explain a part of the controversy about the intensity of the THC during the YD. Potential weaknesses in our interpretation of the Byrd CO2 record in terms of THC changes are discussed. Received: 27 May 1998 / Accepted: 5 November 1998  相似文献   

6.
The effect of idealized wind-driven circulation changes in the Southern Ocean on atmospheric CO2 and the ocean carbon inventory is investigated using a suite of coarse-resolution, global coupled ocean circulation and biogeochemistry experiments with parameterized eddy activity and only modest changes in surface buoyancy forcing, each experiment integrated for 5,000 years. A positive correlation is obtained between the meridional overturning or residual circulation in the Southern Ocean and atmospheric CO2: stronger or northward-shifted westerly winds in the Southern Hemisphere result in increased residual circulation, greater upwelling of carbon-rich deep waters and oceanic outgassing, which increases atmospheric pCO2 by ~20 μatm; weaker or southward-shifted winds lead to the opposing result. The ocean carbon inventory in our model varies through contrasting changes in the saturated, disequilibrium and biogenic (soft-tissue and carbonate) reservoirs, each varying by O(10–100) PgC, all of which contribute to the net anomaly in atmospheric CO2. Increased residual overturning deepens the global pycnocline, warming the upper ocean and decreasing the saturated carbon reservoir. Increased upwelling of carbon- and nutrient-rich deep waters and inefficient biological activity results in subduction of unutilized nutrients into the ocean interior, decreasing the biogenic carbon reservoir of intermediate and mode waters ventilating the Northern Hemisphere, and making the disequilibrium carbon reservoir more positive in the mode waters due to the reduced residence time at the surface. Wind-induced changes in the model carbon inventory are dominated by the response of the global pycnocline, although there is an additional abyssal response when the peak westerly winds change their latitude, altering their proximity to Drake Passage and changing the depth extent of the southward return flow of the overturning: a northward shift of the westerly winds isolates dense isopycnals, allowing biogenic carbon to accumulate in the deep ocean of the Southern Hemisphere, while a southward shift shoals dense isopycnals that outcrop in the Southern Ocean and reduces the biogenic carbon store in the deep ocean.  相似文献   

7.
Atmosphere?Cocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50?C70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.  相似文献   

8.
The Northern Hemisphere winter (DJF) stationary eddy response of a general circulation model (GCM) to a doubling of atmospheric CO2 is simulated with a linear steady state model as a response to anomalies in diabatic heating (latent, sensible and radiative), mountain and transient eddy effects. For this analysis the doubled CO2 experiment performed by Wilson and Mitchell (1987) is used. The linear simulations of the control and perturbation climate capture most of the important features of the GCMs stationary eddies. The simulation of the anomalous stationary eddy pattern in the Northern Hemisphere captures only some of the important features of the GCMs anomalies. The climate anomalies in the Southern Hemisphere are poorly simulated. In the Northern Hemisphere the climate anomalies are dominated by the effect of transient eddies and mountains. In low latitudes also the contribution of latent heating is important. The contributions of sensible and radiative heating are small.  相似文献   

9.
S. J. Kim 《Climate Dynamics》2004,22(6-7):639-651
The role of reduced atmospheric CO2 concentration and ice sheet topography plus its associated land albedo on the LGM climate is investigated using a coupled atmosphere-ocean-sea ice climate system model. The surface cooling induced by the reduced CO2 concentration is larger than that by the ice sheet topography plus other factors by about 30% for the surface air temperature and by about 100% for the sea surface temperature. A large inter-hemispheric asymmetry in surface cooling with a larger cooling in the Northern Hemisphere is found for both cases. This asymmetric inter-hemispheric temperature response is consistent in the ice sheet topography case with earlier studies using an atmospheric model coupled with a mixed-layer ocean representation, but contrasts with these results in the reduced CO2 case. The incorporation of ocean dynamics presumably leads to a larger snow and sea ice feedback as a result of the reduction in northward ocean heat transport, mainly as a consequence of the decrease in the North Atlantic overturning circulation by the substantial freshening of the North Atlantic convection regions. A reversed case is found in the Southern Ocean. Overall, the reduction in atmospheric CO2 concentration accounts for about 60% of the total LGM climate change.  相似文献   

10.
Vegetation is a major component of the climate system because of its controls on the energy and water balance over land. This functioning changes because of the physiological response of leaves to increased CO2. A climate model is used to compare these changes with the climate changes from radiative forcing by greenhouse gases. For this purpose, we use the Community Earth System Model coupled to a slab ocean. Ensemble integrations are done for current and doubled CO2. The consequent reduction of transpiration and net increase of surface radiative heating from reduction in cloudiness increases the temperature over land by a significant fraction of that directly from the radiative warming by CO2. Large-scale atmospheric circulation adjustments result. In particular, over the tropics, a low-level westerly wind anomaly develops associated with reduced geopotential height over land, enhancing moisture transport and convergence, and precipitation increases over the western Amazon, the Congo basin, South Africa, and Indonesia, while over mid-latitudes, land precipitation decreases from reduced evapotranspiration. On average, land precipitation is enhanced by 0.03 mm day?1 (about 19 % of the CO2 radiative forcing induced increase). This increase of land precipitation with decreased ET is an apparent negative feedback, i.e., less ET makes more precipitation. Global precipitation is slightly reduced. Runoff increases associated with both the increased land precipitation and reduced evapotranspiration. Examining the consistency of the variations among ensemble members shows that vegetation feedbacks on precipitation are more robust over the tropics and in mid to high latitudes than over the subtropics where vegetation is sparse and the internal climate variability has a larger influence.  相似文献   

11.
The impact of climate warming on the seasonal variability of the Humboldt Current system ocean dynamics is investigated. The IPSL-CM4 large scale ocean circulation resulting from two contrasted climate scenarios, the so-called Preindustrial and quadrupling CO2, are downscaled using an eddy-resolving regional ocean circulation model. The intense surface heating by the atmosphere in the quadrupling CO2 scenario leads to a strong increase of the surface density stratification, a thinner coastal jet, an enhanced Peru–Chile undercurrent, and an intensification of nearshore turbulence. Upwelling rates respond quasi-linearly to the change in wind stress associated with anthropogenic forcing, and show a moderate decrease in summer off Peru and a strong increase off Chile. Results from sensitivity experiments show that a 50% wind stress increase does not compensate for the surface warming resulting from heat flux forcing and that the associated mesoscale turbulence increase is a robust feature.  相似文献   

12.
A key question in studies of the potential for reducing uncertainty in climate change projections is how additional observations may be used to constrain models. We examine the case of ocean carbon cycle models. The reliability of ocean models in projecting oceanic CO2 uptake is fundamentally dependent on their skills in simulating ocean circulation and air–sea gas exchange. In this study we demonstrate how a model simulation of multiple tracers and utilization of a variety of observational data help us to obtain additional information about the parameterization of ocean circulation and air–sea gas exchange, relative to approaches that use only a single tracer. The benefit of using multiple tracers is based on the fact that individual tracer holds unique information with regard to ocean mixing, circulation, and air–sea gas exchange. In a previous modeling study, we have shown that the simulation of radiocarbon enables us to identify the importance of parameterizing sub-grid scale ocean mixing processes in terms of diffusive mixing along constant density surface (isopycnal mixing) and the inclusion of the effect of mesoscale eddies. In this study we show that the simulation of phosphate, a major macronutrient in the ocean, helps us to detect a weak isopycnal mixing in the upper ocean that does not show up in the radiocarbon simulation. We also show that the simulation of chlorofluorocarbons (CFCs) reveals excessive upwelling in the Southern Ocean, which is also not apparent in radiocarbon simulations. Furthermore, the updated ocean inventory data of man-made radiocarbon produced by nuclear tests (bomb 14C) enable us to recalibrate the rate of air–sea gas exchange. The progressive modifications made in the model based on the simulation of additional tracers and utilization of updated observational data overall improve the model’s ability to simulate ocean circulation and air–sea gas exchange, particularly in the Southern Ocean, and has great consequence for projected CO2 uptake. Simulated global ocean uptake of anthropogenic CO2 from pre-industrial time to the present day by both previous and updated models are within the range of observational-based estimates, but with substantial regional difference, especially in the Southern Ocean. By year 2100, the updated model estimated CO2 uptake are 531 and 133 PgC (1PgC?=?1015 gram carbon) for the global and Southern Ocean respectively, whereas the previous version model estimated values are 540 and 190 PgC.  相似文献   

13.
14.
The contributions of expanded continental ice, reduced atmospheric CO2, and changes in land albedo to the maintenance of the climate of the last glacial maximum (LGM) are examined. A series of experiments is performed using an atmosphere-mixed layer ocean model in which these changes in boundary conditions are incorporated either singly or in combination. The model used has been shown to produce a reasonably realistic simulation of the reduced temperature of the LGM (Manabe and Broccoli 1985b). By comparing the results from pairs of experiments, the effects of each of these environmental changes can be determined.Expanded continental ice and reduced atmospheric CO2 are found to have a substantial impact on global mean temperature. The ice sheet effect is confined almost exclusively to the Northern Hemisphere, while lowered CO2 cools both hemispheres. Changes in land albedo over ice-free areas have only a minor thermal effect on a global basis. The reduction of CO2 content in the atmosphere is the primary contributor to the cooling of the Southern Hemisphere. The model sensitivity to both the ice sheet and CO2 effects is characterized by a high latitude amplification and a late autumn and early winter maximum.Substantial changes in Northern Hemisphere tropospheric circulation are found in response to LGM boundary conditions during winter. An amplified flow pattern and enhanced westerlies occur in the vicinity of the North American and Eurasian ice sheets. These alterations of the tropospheric circulation are primarily the result of the ice sheet effect, with reduced CO2 contributing only a slight amplification of the ice sheet-induced pattern.  相似文献   

15.
G. B. Tucker 《Climatic change》1991,18(2-3):195-204
Climate models are essentially surrogates for the real system, in which experiments can be carried out. When these experiments attempt to simulate future climate, the results cannot be compared with the real atmosphere because they involve changes unique in recorded human history. Confidence indicators include model comparison with the real atmosphere for current climate representation and model intercomparison for future climate representation.From a Southern Hemisphere perspective general circulation models (GCMs) reveal some inadequacies in their representation of climate and differ significantly from each other in their response to a CO2 doubling. Representation of drought as a response to sea surface temperature anomaly is shown to be successful but strongly dependent on correct parameterization of land surface exchange processes. More attention to Southern Hemisphere representation is required, particularly because of the likely strong role of the oceans.  相似文献   

16.
We present several equilibrium runs under varying atmospheric CO2 concentrations using the University of Victoria Earth System Climate Model (UVic ESCM). The model shows two very different responses: for CO2 concentrations of 400 ppm or lower, the system evolves into an equilibrium state. For CO2 concentrations of 440 ppm or higher, the system starts oscillating between a state with vigorous deep water formation in the Southern Ocean and a state with no deep water formation in the Southern Ocean. The flushing events result in a rapid increase in atmospheric temperatures, degassing of CO2 and therefore an increase in atmospheric CO2 concentrations, and a reduction of sea ice cover in the Southern Ocean. They also cool the deep ocean worldwide. After the flush, the deep ocean warms slowly again and CO2 is taken up by the ocean until the stratification becomes unstable again at high latitudes thousands of years later. The existence of a threshold in CO2 concentration which places the UVic ESCM in either an oscillating or non-oscillating state makes our results intriguing. If the UVic ESCM captures a mechanism that is present and important in the real climate system, the consequences would comprise a rapid increase in atmospheric carbon dioxide concentrations of several tens of ppm, an increase in global surface temperature of the order of 1–2°C, local temperature changes of the order of 6°C and a profound change in ocean stratification, deep water temperature and sea ice cover.  相似文献   

17.
Experiments with the coupled climate model CLIMBER-3α, which contains an oceanic general circulation model, show deep upwelling in the Southern Ocean to be proportional to the surface wind stress in the latitudinal band of Drake Passage. At the same time, the distribution of the Southern Ocean upwelling onto the oceanic basins is controlled by buoyancy distribution; the inflow into each basin being proportional to the respective meridional density difference. We observe approximately the same constant of proportionality for all basins, and demonstrate that it can be directly related to the flow geometry. For increased wind stress in the Southern Ocean, the overturning increases both in the Atlantic and the Indo-Pacific basin. For strongly reduced wind stress, the circulation enters a regime where Atlantic overturning is maintained through Pacific upwelling, in order to satisfy the transports set by the density differences. Previous results on surface buoyancy and wind stress forcing, obtained with different models, are reproduced within one model in order to distill a consistent picture. We propose that both Southern Ocean upwelling and meridional density differences set up a system of conditions that determine the global meridional overturning circulation.  相似文献   

18.
The midlatitude westerlies are one of the major components of the global atmospheric circulation. They play an important role in midlatitude weather and climate, and are particularly significant in interpreting aeolian sediments. In this study, we analyzed the behavior and the possible mechanism involved in the change of the westerlies, mainly in terms of the jet stream position, in the mid-Pliocene warm period(3.3 to 3.0 million years ago) using simulations of 15 climate models from the Pliocene Model Intercomparison Project(Plio MIP). Compared to the reference period, the mid-Pliocene midlatitude westerlies generally shifted poleward(approximately 3.6 of latitude in the Northern Hemisphere and 1.9 of latitude in the Southern Hemisphere at 850 h Pa level) with a dipole pattern. The dipole pattern of the tropospheric zonal wind anomalies was closely related to the change of the tropospheric meridional temperature gradient as a result of thermal structure adjustment.The poleward shift of the midlatitude westerly jet corresponded to the poleward shift of the mean meridional circulation.The sea surface temperatures and sea ice may have affected the simulated temperature structure and zonal winds, causing the spread of the westerly anomalies in the mid-Pliocene between the atmosphere-only and coupled atmosphere–ocean general circulation model simulations.  相似文献   

19.
The increase of atmospheric CO2 concentrations due to anthropogenic activities is substantially damped by the ocean, whose CO2 uptake is determined by the state of the ocean, which in turn is influenced by climate change. We investigate the mechanisms of the ocean’s carbon uptake within the feedback loop of atmospheric CO2 concentration, climate change and atmosphere/ocean CO2 flux. We evaluate two transient simulations from 1860 until 2100, performed with a version of the Max Planck Institute Earth System Model (MPI-ESM) with the carbon cycle included. In both experiments observed anthropogenic CO2 emissions were prescribed until 2000, followed by the emissions according to the IPCC Scenario A2. In one simulation the radiative forcing of changing atmospheric CO2 is taken into account (coupled), in the other it is suppressed (uncoupled). In both simulations, the oceanic carbon uptake increases from 1 GT C/year in 1960 to 4.5 GT C/year in 2070. Afterwards, this trend weakens in the coupled simulation, leading to a reduced uptake rate of 10% in 2100 compared to the uncoupled simulation. This includes a partial offset due to higher atmospheric CO2 concentrations in the coupled simulation owing to reduced carbon uptake by the terrestrial biosphere. The difference of the oceanic carbon uptake between both simulations is primarily due to partial pressure difference and secondary to solubility changes. These contributions are widely offset by changes of gas transfer velocity due to sea ice melting and wind changes. The major differences appear in the Southern Ocean (?45%) and in the North Atlantic (?30%), related to reduced vertical mixing and North Atlantic meridional overturning circulation, respectively. In the polar areas, sea ice melting induces additional CO2 uptake (+20%).  相似文献   

20.
This study evaluates the equilibrium response of a coupled ocean–atmosphere model to the doubling, quadrupling, and halving of CO2 concentration in the atmosphere. Special emphasis in the study is placed upon the response of the thermohaline circulation in the Atlantic Ocean to the changes in CO2 concentration of the atmosphere. The simulated intensity of the thermohaline circulation (THC) is similar among three quasi-equilibrium states with the standard, double the standard, and quadruple the standard amounts of CO2 concentration in the atmosphere. When the model atmosphere has half the standard concentration of CO2, however, the THC is very weak and shallow in the Atlantic Ocean. Below a depth of 3 km, the model oceans maintain very thick layer of cold bottom water with temperature close to –2 °C, preventing the deeper penetration of the THC in the Atlantic Ocean. In the Circumpolar Ocean of the Southern Hemisphere, sea ice extends beyond the Antarctic Polar front, almost entirely covering the regions of deepwater ventilation. In addition to the active mode of the THC, there exists another stable mode of the THC for the standard, possibly double the standard (not yet confirmed), and quadruple the standard concentration of atmospheric carbon dioxide. This second mode is characterized by the weak, reverse overturning circulation over the entire Atlantic basin, and has no ventilation of the entire subsurface water in the North Atlantic Ocean. At one half the standard CO2 concentration, however, the intensity of the first mode is so weak that it is not certain whether there are two distinct stable modes or not. The paleoceanographic implications of the results obtained here are discussed as they relate to the signatures of the Cenozoic changes in the oceans.An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号