首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A detailed study of long-term variability of winds using 30 years of data from the European Centre for Medium-range Weather Forecasts global reanalysis (ERA-Interim) over the Indian Ocean has been carried out by partitioning the Indian Ocean into six zones based on local wind extrema. The trend of mean annual wind speed averaged over each zone shows a significant increase in the equatorial region, the Southern Ocean, and the southern part of the trade winds. This indicates that the Southern Ocean winds and the southeast trade winds are becoming stronger. However, the trend for the Bay of Bengal is negative, which might be caused by a weakening of the monsoon winds and northeast trade winds. Maximum interannual variability occurs in the Arabian Sea due to monsoon activity; a minimum is observed in the subtropical region because of the divergence of winds. Wind speed variations in all zones are weakly correlated with the Dipole Mode Index (DMI). However, the equatorial Indian Ocean, the southern part of the trade winds, and subtropical zones show a relatively strong positive correlation with the Southern Oscillation Index (SOI), indicating that the SOI has a zonal influence on wind speed in the Indian Ocean. Monsoon winds have a decreasing trend in the northern Indian Ocean, indicating monsoon weakening, and an increasing trend in the equatorial region because of enhancement of the westerlies. The negative trend observed during the non-monsoon period could be a result of weakening of the northeast trade winds over the past few decades. The mean flux of kinetic energy of wind (FKEW) reaches a minimum of about 100?W?m?2 in the equatorial region and a maximum of about 1500?W?m?2 in the Southern Ocean. The seasonal variability of FKEW is large, about 1600?W?m?2, along the coast of Somalia in the northern Indian Ocean. The maximum monthly variability of the FKEW field averaged over each zone occurs during boreal summer. During the onset and withdrawal of monsoon, FKEW is as low as 50?W?m?2. The Southern Ocean has a large variation of about 1280?W?m?2 because of strong westerlies throughout the year.  相似文献   

2.
This study investigates the atmospheric circulation in transient climate simulations with a coupled atmosphere–ocean general circulation model (GCM) for the mid-Holocene (MH) period 7–4.5 ka BP driven with combinations of orbital, solar and greenhouse gas forcings. The focus is on southern South America. Statistical downscaling models are derived from observational data and applied to the simulations to estimate precipitation in south-eastern Patagonia during the MH. These estimates are compared with lake level estimates for Laguna Potrok Aike (LPA) from sediments. Relative to pre-industrial conditions (i.e. 1550–1850), which show extraordinarily high lake levels, the proxy-based reconstructed lake levels during the MH are lower. The downscaled simulated circulation differences indicate higher LPA precipitation during the MH from March to August, higher annual means, and reduced precipitation from September to February. Thus the reconstructed lower LPA lake levels can not be explained solely by the simulated precipitation changes. Possible reasons for this discrepancy are discussed. Based on proxy data from southern South America hypotheses have also been proposed on the latitudinal position of the southern hemispheric westerlies (SHWs). In agreement with some of these hypotheses our simulations show an increased seasonal cycle of the latitudinal position of the SHWs during the MH, which can be explained by the orbital forcing. The simulations also show stronger SHWs over southern Patagonia during austral summer and weaker SHWs during winter. The downscaling model associates weaker SHWs with increased precipitation in the LPA region. However, this relationship is only moderate, and therefore the downscaling model does not support the assumption of a strong link between mean SHWs and precipitation over south-eastern Patagonia, which is the basis of many proxy-based hypotheses about the SHWs.  相似文献   

3.
The climate of the last glacial maximum (LGM) is simulated with a coupled climate model. The simulated climate undergoes a rapid adjustment during the first several decades after imposition of LGM boundary conditions, as described in Part 1, and then evolves toward equilibrium over 900 model years. The climate simulated by the coupled model at this period is compared with observationally-based LGM reconstructions and with LGM results obtained with an atmosphere-mixed layer (slab) ocean version of the model in order to investigate the role of ocean dynamics in the LGM climate. Global mean surface air temperature and sea surface temperature (SST) decrease by about 10 °C and 5.6 °C in the coupled model which includes ocean dynamics, compared to decreases of 6.3 and 3.8 °C in slab ocean case. The coupled model simulates a cooling of about 6.5 °C over the tropics, which is larger than that of the CLIMAP reconstruction (1.7 °C) and larger than that of the slab ocean simulation (3.3 °C), but which is in reasonable agreement with some recent proxy estimates. The ocean dynamics of the coupled model captures features found in the CLIMAP reconstructions such as a relative maximum of ocean cooling over the tropical Pacific associated with a mean La Niña-like response and lead to a more realistic SST pattern than in the slab model case. The reduction in global mean precipitation simulated in the coupled model is larger (15%) than that simulated with the slab ocean model (~10%) in conjunction with the enhanced cooling. Some regions, such as the USA and the Mediterranean region, experience increased precipitation in accord with proxy paleoclimate evidence. The overall much drier climate over the ocean leads to higher sea surface salinity (SSS) in most ocean basins except for the North Atlantic where SSS is considerably lower due to an increase in the supply of fresh water from the Mississippi and Amazon rivers and presumably a decrease in salt transport by the weakened North Atlantic overturning circulation. The North Atlantic overturning stream function weakens to less than half of the control run value. The overturning is limited to a shallower depth (less than 1000 m) and its outflow is confined to the Northern Hemisphere. In the Southern Ocean, convection is much stronger than in the control run leading to a stronger overturning stream function associated with enhanced Antarctic Bottom Water formation. As a result, Southern Ocean water masses fill the entire deep ocean. The Antarctic Circumpolar Current (ACC) transport through the Drake Passage increases by about 25%. The ACC transport, despite weaker zonal winds, is enhanced due to changes in bottom pressure torque. The weakening of the overturning circulation in the North Atlantic and the accompanying 30% decrease in the poleward ocean heat transport contrasts with the strengthening of the overturning circulation in the Southern Ocean and a 40% increase in heat transport. As a result, sea ice coverage and thickness are affected in opposite senses in the two hemispheres. The LGM climate simulated by the coupled model is in reasonable agreement with paleoclimate proxy evidence. The dynamical response of the ocean in the coupled model plays an important role in determining the simulated, and undoubtedly, the actual, LGM climate.  相似文献   

4.
In the study authors analyzed the interannual relationship between the Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) and the tropical Indian Ocean (TIO) precipitation in boreal winter for the period 1979–2009. A significant simultaneous teleconnection between them is found. After removing the El Niño/Southern Oscillation and Indian Ocean dipole signals, the AO/NAO and the TIO precipitation (0°–10°S, 60°–80°E) yield a correlation of +0.56, which is also consistent with the AO/NAO-outgoing longwave radiation correlation of ?0.61. The atmospheric and oceanic features in association with the AO/NAO-precipitation links are investigated. During positive AO/NAO winter, the Rossby wave guided by westerlies tends to trigger persistent positive geopotential heights in upper troposphere over about 20°–30°N and 55°–70°E, which is accompanied by a stronger Middle East jet stream. Meanwhile, there are anomalous downward air motions, strengthening the air pressure in mid-lower troposphere. The enhanced Arabian High brings anomalous northern winds over the northern Indian Ocean. As a result the anomalous crossing-equator air-flow enhances the intertropical convergence zone (ITCZ). On the other hand, the anomalous Ekman transport convergence by the wind stress curl over the central TIO deepens the thermocline. Both the enhanced ITCZ and the anomalous upper ocean heat content favor in situ precipitation in the central TIO. The AO/NAO-TIO precipitation co-variations in the IPCC AR4 historical climate simulation (1850–1999) of Bergen Climate Model version 2 were investigated. The Indian Ocean precipitation anomalies (particularly the convective precipitation along the ITCZ), in conjunction with the corresponding surface winds and 200 hPa anticyclonic atmospheric circulation and upper ocean heat contents were well reproduced in simulation. The similarity between the observation and simulation support the physical robustness of the AO/NAO-TIO precipitation links.  相似文献   

5.
This study investigates the possible causes for the precipitation of Guangdong during dragon-boat rain period(DBRP) in 2022 that is remarkably more than the climate state and reviews the successes and failures of the prediction in2022. Features of atmospheric circulation and sea surface temperature(SST) are analyzed based on several observational datasets for nearly 60 years from meteorological stations and the NCEP/NCAR Global Reanalysis Data. Results show that fluctuation of the 200-h Pa weste...  相似文献   

6.
The midlatitude westerlies are one of the major components of the global atmospheric circulation. They play an important role in midlatitude weather and climate, and are particularly significant in interpreting aeolian sediments. In this study, we analyzed the behavior and the possible mechanism involved in the change of the westerlies, mainly in terms of the jet stream position, in the mid-Pliocene warm period(3.3 to 3.0 million years ago) using simulations of 15 climate models from the Pliocene Model Intercomparison Project(Plio MIP). Compared to the reference period, the mid-Pliocene midlatitude westerlies generally shifted poleward(approximately 3.6 of latitude in the Northern Hemisphere and 1.9 of latitude in the Southern Hemisphere at 850 h Pa level) with a dipole pattern. The dipole pattern of the tropospheric zonal wind anomalies was closely related to the change of the tropospheric meridional temperature gradient as a result of thermal structure adjustment.The poleward shift of the midlatitude westerly jet corresponded to the poleward shift of the mean meridional circulation.The sea surface temperatures and sea ice may have affected the simulated temperature structure and zonal winds, causing the spread of the westerly anomalies in the mid-Pliocene between the atmosphere-only and coupled atmosphere–ocean general circulation model simulations.  相似文献   

7.
关键区海温年代际异常对我国东部夏季降水影响   总被引:1,自引:1,他引:0       下载免费PDF全文
利用1931—2010年UKMO HADISST1全球月海表温度、NOAA再分析资料及我国东部96个站月降水量资料,使用REOF,SVD及合成分析等方法探讨了关键区冬季海表温度 (SST) 年代际异常对我国东部夏季降水的影响。结果表明:当冬季黑潮区SST年代际异常处于正位相时,夏季500 hPa中高纬度地区位势高度呈“+-+”距平分布,西风带经向环流盛行,西太平洋副热带高压加强、西伸;850 hPa风场距平场上,北方地区为反气旋性异常控制,南海上空为异常偏南气流,这样的环流配置有利于我国东部夏季多雨带出现在长江中下游地区;当冬季南印度洋偶极子 (SIOD) 年代际异常处于正位相时,夏季500 hPa中高纬度地区位势高度为正距平,阻塞形势发展,经向环流盛行,有利于冷空气南下,西太平洋副热带高压强度偏强,位置略偏南、偏西;850 hPa风场距平场上,北方地区为一反气旋性异常控制,异常偏北气流延伸至我国南方地区,索马里越赤道气流偏强。这种环流配置使得副热带锋区偏南,夏季多雨带位于华南及东南沿海地区。  相似文献   

8.
Mid-latitude winter atmospheric variability in the South Indian Ocean and southwest Pacific Ocean regions of the circum-Antarctic are reconstructed using sea-salt aerosol concentrations measured in the high resolution Law Dome (DSS) ice core from East Antarctica. The sea-salt aerosol concentration data, as sodium (Na), were measured at approximately monthly resolution spanning the past 700 years. Analyses of covariations between Na concentrations in Law Dome ice, and mean sea-level pressure (MSLP) and wind field data were conducted to define the mid-latitude and sub-Antarctic atmospheric circulation patterns associated with variations in Na delivery. High Na concentrations in Law Dome snow are associated with increased meridional aerosol transport from mid-latitude sources. The seasonal average Na concentration for early winter (May, June, July (MJJ)) is strongly correlated to the mid-latitude MSLP field in the South Indian and southwest Pacific Oceans, and southern Australian regions. In addition, the average MJJ Na concentrations display a strong association with the stationary Rossby wave number 3 circulation, and are anti-correlated to the Southern Annular Mode (SAM) index of climate variability: high (low) Na concentrations occurring during negative (positive) SAM phases. This observed relationship is used to derive a proxy record for early-winter MSLP anomalies and the SAM in the South Indian and southwest Pacific Ocean regions over the period 1300–1995 AD. The proxy SAM index from 1300 to 1995 AD shows pronounced decadal-scale variability throughout. The period after 1500 AD is marked by a tendency toward slower variations and a weakly-positive mean SAM (enhanced westerlies in the 50° to 65°S zone) compared to the early part of the record.  相似文献   

9.
利用热力适应理论讨论了印度洋海温异常影响中国天气和西太平洋副热带高压异常的物理机制。结果表明 :通过第一级热力适应 ,印度洋上的海温异常形成低层气旋式环流 ,并在其东侧的偏南气流中产生对流性降水 ;然后通过第二级热力适应 ,在 50 0 h Pa上导致西太平洋副热带高压加强西伸、2 0 0 h Pa上南亚高压异常增强。从而证明两级热力适应是导致印度洋海温异常影响中国天气气候异常的重要物理机制。  相似文献   

10.
本文分析了中国科学院大气物理研究所年代际气候预测系统IAP DecPreS的海洋同化试验(简称EnOI-IAU试验)在西北太平洋地区的海表面温度(SST)年循环的模拟技巧,并通过对比IAP DecPreS系统自由耦合历史气候模拟试验结果,在包含海气耦合过程的框架下讨论了耦合模式中西北太平洋夏季SST模拟差异,及其对亚洲季风区夏季季风降水模拟的影响。结果表明,EnOI-IAU试验较好地模拟出了西北太平洋各个季节的SST空间分布,并显著减小了原存在于历史气候模拟试验中持续全年的SST冷偏差。混合层热收支诊断分析表明,包含同化过程在内的海洋过程的模拟差异对西北太平洋海温的模拟提升有重要贡献。夏季,EnOI-IAU试验模拟的印度季风伴随的低层西风较观测偏东、偏强,且高估了赤道西太平洋区域的降水量值、低估了印度洋区域的降水量值。水汽收支分析显示,气旋式环流异常造成的水汽辐合异常是造成亚洲季风区降水模拟差异的主要原因。研究表明,较之历史模拟试验,EnOI-IAU试验中夏季西北太平洋地区SST增暖造成局地对流增强,进而使得局地产生异常上升运动,水汽辐合增强,造成西北太平洋地区降水模拟偏多,激发出低层西风异常及赤道外气旋式环流异常。该低层西风异常导致了北印度洋地区低层辐散异常,减小了原存在于历史试验中印度洋地区的正降水偏差。西北太平洋气旋式环流异常一方面增强了印度夏季风伴随的低层西风,使得更多的水汽从阿拉伯海输送到西太平洋暖池区域,增强了该区域的降水量;另一方面,该气旋式环流异常减小了历史模拟试验中中国南部区域偏强的低层风速,进而提升了模式对东亚低层西南风的模拟能力。  相似文献   

11.
吴仁广  陈烈庭 《大气科学》1994,18(Z1):792-800
本文利用1973—1982年南极海冰北界资料,分析了南极海冰平均北界(海冰范围)的变化及其与南半球大气环流变化间的联系。1976年前,南极海冰平均北界偏北(海冰范围扩大),而1977年-1980年,南极海冰平均北界偏南(海冰范围缩小)。与此相对应,这两个时期的南半球大气环流具有明显不同的特点。在南极海冰平均北界偏北、海冰范围扩大时期,南极高压和绕极低压带偏弱,南半球中高纬度地区槽脊位置偏西,南印度洋和南大晒洋副热带高压偏弱,南太平洋副热带西凤减弱、中纬度西风加强,而南太平洋副热带高压和印度尼西亚低压带发展,南方涛动处于正位相阶段;在南极海冰平均北界偏南、海冰范围缩小时期,则相反。分析表明,南方涛动与南极海冰之间存在相互联系,并以南极海冰超前南方涛动约2个月时的关系最好,其次是南极海冰落后南方涛动4个月。  相似文献   

12.
By means of NCEP/NCAR reanalysis dataset,the origins of westerly wind anomalies at low level over equatorial western Pacific Ocean before and during the onset and initial development phase of ENSO are explored.Evidences show that westerly anomalies in the equatorial western Pacific(140-180°E) are characterized by two remarkable enhancements in the spring and summer of the year when El Nine emerges.The enhancements are not only.to some extem.due to the eastward propagation of low-level westerlies in equatorial Indian Ocean.but also predominantly resulting from Ihe intense convergence of the meridional wind from both hemispheres.The latitudinal convergence leads to the local intensification of zonal pressure gradient so as to cause the reinforcement and bursts of westerly wind over warm pool.Besides,by virtue of the effect of earth rotation,the northeasterlies(southeasterlies) from the Northern(Southern) Hemisphere turn into northwesterlies(southwesterlies) progressively in the near-equatorial zone.which directly strengthens the westerly velocity.Comparing the contributions of the meridional wind from both hemispheres to westerly wind bursts,is seems that southeasterlies from the Southern Hemisphere are much stronger and more stable than northwesterlies of Northern Hemisphere.It is evident that the southeasterlies to the east of Australia originate from the southern mid-and high latitudes and are in close association with the Southern Oscillation.  相似文献   

13.
基于1979—2020年逐日的NOAA向外长波辐射资料、NCEP/NCAR再分析风场资料,以及全球CMAP再分析降水资料,探讨了气候态亚洲热带夏季风涌的传播过程及与我国夏季相应的降水联系。分析结果表明,主汛期亚洲热带气候态夏季风季节内振荡(CISO)活动是亚洲夏季风活动的主要特征,随时间北传的亚洲热带夏季风CISO称为亚洲热带夏季风涌,主要有南亚夏季风涌和南海夏季风涌。亚洲热带夏季风涌的传播可分为四个阶段。在亚洲热带夏季风涌的发展阶段,印度洋区域低频气旋与对流活跃,孟加拉湾和南海热带区域被低频东风控制,我国大部分地区无降水发生,降水中心位于两广地区。当进入亚洲热带夏季风涌活跃阶段,孟加拉湾和南海热带地区低频气旋和对流活跃,东亚低频“PJ”波列显著,我国降水中心北移到长江以南的附近区域。亚洲热带夏季风涌减弱阶段,孟加拉湾与南海低频气旋消亡,对流减弱,低频西风加强,日本南部附近为低频反气旋控制,我国长江中下游低频南风活跃,降水中心也北移到长江中下游地区,而华南地区已基本无降水,此阶段的大气低频环流场与亚洲热带夏季风涌发展阶段基本相反。进入亚洲热带夏季风涌间歇阶段时,孟加拉湾和南海热带地区低频反气旋活跃,对流不显著,日本南部附近的低频反气旋北移减弱,我国东部基本在低频南风的控制下,降水中心也逐步北移到华北-朝鲜半岛一带,此时的大气低频环流场与亚洲季风涌活跃阶段基本相反。   相似文献   

14.
利用全球模式CCM3嵌套区域模式MM5的方法研究了末次盛冰期海陆分布、植被和大尺度环流背景场变化对末次盛冰期气候变化的作用。模式结果表明:与现代相比,末次盛冰期东亚地区海陆分布发生的变化造成这一地区冬季减温,夏季增温,这个变化对中国东部近海地区的温度和降水产生明显的影响,尤其是对降水的影响。它使得中国东部地区降水减少,由此造成的降水减少占末次盛冰期降水减少的25%—50%。海陆分布的变化对内陆和中国西部地区影响很小。末次盛冰期中国东部地区植被发生了明显的变化,温带和寒带植物南移,热带植物的覆盖范围减少。中国东部地区植被的巨大变化对温度产生了影响,使该地区冬季增温,夏季减温,年平均温度变化不大。末次盛冰期全球气候发生巨大的变化,即大尺度环流背景场变化。它使得中国地区的温度和降水产生显著变化,这个变化造成中国地区温度降低,并且决定了温度变化的主要分布和变化特征,东北地区是中国末次盛冰期降温最大的地区,青藏高原的降温超过同纬度的东部地区等。同时,大尺度背景场的变化还控制着降水的变化,末次盛冰期中国西部地区和东北地区降水的变化几乎完全是背景场变化引起的,其对华北和华东地区降水的影响大约为50%—75%。综合我们研究的影响末次盛冰期中国地区气候变化的因子,按影响程度由大到小排序为:大尺度环流背景场、海陆分布变化、植被变化、CO2浓度变化和地球轨道参数变化。  相似文献   

15.
A global, flux-corrected climate model is employed to predict the surface wind stress and associated wind-driven oceanic circulation for climate states corresponding to a doubling and quadrupling of the atmospheric CO2 concentration in a simple 1% per year CO2 increase scenario. The model indicates that in response to CO2 increase, the position of zero wind stress curl in the mid-latitudes of the Southern Hemisphere shifts poleward. In addition, the wind stress intensifies significantly in the mid-latitudes of the Southern Hemisphere. As a result, the rate of water circulation in the subpolar meridional overturning cell in the Southern Ocean increases by about 6 Sv (1 Sv=106 m3 s−1) for doubled CO2 and by 12 Sv for quadrupled CO2, implying an increase of deep water upwelling south of the circumpolar flow and an increase of Ekman pumping north of it. In addition, the changes in the wind stress and wind stress curl translate into changes in the horizontal mass transport, leading to a poleward expansion of the subtropical gyres in both hemispheres, and to strengthening of the Antarctic Circumpolar Current. Finally, the intensified near-surface winds over the Southern Ocean result in a substantial increase of mechanical energy supply to the ocean general circulation.  相似文献   

16.
The numerical simulation experiment of climate at Last Glacial Maximum (LGM.21 ka BP) in China is made by using an atmospheric general circulation model (AGCM) coupled with land surface processes (AGCM+SSiB) and earth orbital parameters and boundary forcing conditions at21 ka.The modeled climate features are compared with reconstructed conditions at 21 ka from paleo-lake data and pollen data.The results show that the simulated climate conditions at 21 ka in China are fairly comparable with paleo-climatological data.The climate features at 21 ka in China from the experiment are characterized by a drier in the east and a wetter in the west and in the Tibetan Plateau as well.According to the analysis of distribution of pressure and precipitation,as well as the intensity of atmospheric circulation at 21 ka,monsoon circulation in eastern Asia was significantly weak comparing with the present.In the Tibetan Plateau,the intensity of summer monsoon circulation was strengthened,and winter monsoon was a little stronger than the present.The simulation with given forcing boundary conditions,especially the different vegetation coverage,can reproduce the climate condition at the LGM in China,and therefore provides dynamical mechanisms on the climate changes at 21 ka.  相似文献   

17.
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative LGM climate response to changes of land-sea distribution, vegetation, and large-scale circulation background over China.Model results show that compared with the present climate, the fluctuations of sea-land distribution in eastern Asia during the LGM result in the temperature decrease in winter and increase in summer. It has significant impact on the temperature and precipitation in the east coastal region of China. The impact on precipitation in the east coastal region of China is the most significant one, with 25%-50% decrease in the total precipitation change during the LGM. On the other hand, the changes in sea-land distribution have less influence on the climate of inland and western part of China. During the LGM, significant changes in vegetation result in temperature alternating with winter increase and summer decrease, but differences in the annual mean temperature are minor. During the LGM, the global climate, i.e., the large-scale circulation background has changed signi cantly. These changes have signi cant influences on temperature and precipitation over China. They result in considerable temperature decreases in this area, and direct the primary patterns and characteristics of temperature changes. Results display that, northeastern China has the greatest temperature decrease, and the temperature decrease in the Tibetan Plateau is larger than in the eastern part of China located at the same latitude. Moreover, the change of large-scale circulation background also controls the pattern of precipitation change. Results also show that, most of the changes in precipitation over western and northeastern parts of China are the consequences of changing large-scale circulation background, of which 50%-75% of precipitation changes over northern and eastern China are the results of changes in large-scale circulation background. Over China, the LGM climate responses to di erent mechanisms in order of strength from strong to weak are, the large-scale circulation pattern, sealand distribution, vegetation, CO2 concentration, and earth orbital parameters.  相似文献   

18.
In this relatively unprecedented study, the effects of thirty-four leading teleconnection Patterns (indices) of atmospheric circulation- on regional-scale for the Middle East- along with precipitation over Iran have been investigated. Different types of data including teleconnection Indices from NOAA (NCEP/NCAR, BOM) and monthly precipitation data from thirty-six synoptic stations of Iran were applied. The data have been investigated with various types of statistical and synoptical methods. The results indicate that El Niño–Southern Oscillation (ENSO) is the most effective factor and it could possibly influence the spatiotemporal variation of precipitation on all types of climate regimes in Iran. ENSO (nino3.4), The Atlantic Multidecadal Oscillation (AMO) and The Arctic oscillation (AO) are known as the first three important indices, determined by Principal component analysis (PCA) method. The research has clarified that a combination of warm phase of ENSO and a predominant Southeastern (SE) wind over the Indian Ocean can result in a significant moisture transport from the Indian Ocean to the Middle East and to Iran; a combination of cold phase of ENSO and a predominant Northwestern (NW) wind over the Indian Ocean can be followed by a widespread drought over the Middle East and Iran. The results also indicate that a combination of the first three important above-mentioned indices and the Indian Ocean Dipole (IOD) can provide a much better explanation for spatial and temporal variation of precipitation of Iran. Finally, the results of this study will enable us to present a new approach and new graphical-conceptual modeling, called "Teleconnection-Synoptic Method (TSM)"to clarify the underlying mechanism that can explain the spatial and temporal variations of global atmospheric circulation and precipitation of Iran. According to the correlation of different patterns with precipitation, the strongest relationships are related to the Scandinavia Index (SCN), Pressure Change in East Pacific (dPEPac) and Trade Wind Index at the 850 hPa (TrdWnd850), respectively.  相似文献   

19.
Experiments with the coupled climate model CLIMBER-3α, which contains an oceanic general circulation model, show deep upwelling in the Southern Ocean to be proportional to the surface wind stress in the latitudinal band of Drake Passage. At the same time, the distribution of the Southern Ocean upwelling onto the oceanic basins is controlled by buoyancy distribution; the inflow into each basin being proportional to the respective meridional density difference. We observe approximately the same constant of proportionality for all basins, and demonstrate that it can be directly related to the flow geometry. For increased wind stress in the Southern Ocean, the overturning increases both in the Atlantic and the Indo-Pacific basin. For strongly reduced wind stress, the circulation enters a regime where Atlantic overturning is maintained through Pacific upwelling, in order to satisfy the transports set by the density differences. Previous results on surface buoyancy and wind stress forcing, obtained with different models, are reproduced within one model in order to distill a consistent picture. We propose that both Southern Ocean upwelling and meridional density differences set up a system of conditions that determine the global meridional overturning circulation.  相似文献   

20.
The numerical simulation experiment of climate at Last Glacial Maximum (LGM.21 ka BP)in China is made by using an atmospheric general circulation model (AGCM) coupled with landsurface processes (AGCM SSiB) and earth orbital parameters and boundary forcing conditions at21 ka.The modeled climate features are compared with reconstructed conditions at 21 ka frompaleo-lake data and pollen data.The results show that the simulated climate conditions at 21 ka inChina are fairly comparable with paleo-climatological data.The climate features at 21 ka in Chinafrom the experiment are characterized by a drier in the east and a wetter in the west and in theTibetan Plateau as well.According to the analysis of distribution of pressure and precipitation,aswell as the intensity of atmospheric circulation at 21 ka,monsoon circulation in eastern Asia wassignificantly weak comparing with the present.In the Tibetan Plateau,the intensity of summermonsoon circulation was strengthened,and winter monsoon was a little stronger than the present.The simulation with given forcing boundary conditions,especially the different vegetationcoverage,can reproduce the climate condition at the LGM in China,and therefore providesdynamical mechanisms on the climate changes at 21 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号