首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The Marinoan glaciation (Neoproterozoic) in northeast Svalbard   总被引:4,自引:0,他引:4  
Two separate and distinct diamictite‐rich units occur in the mixed carbonate‐siliciclastic Polarisbreen Group, which comprises the top kilometer of >7 km of Neoproterozoic strata in the northeast of the Svalbard archipelago. The platformal succession accumulated on the windward, tropical to subtropical margin of Laurentia. The older Petrovbreen Member is a thin glacimarine diamictite that lacks a cap carbonate. It contains locally derived clasts and overlies a regional karstic disconformity that was directly preceded by a large (>10‰) negative δ13C anomaly in the underlying shallow‐marine carbonates. This anomaly is homologous to anomalies in Australia, Canada and Namibia that precede the Marinoan glaciation. The younger and thicker Wilsonbreen Formation comprises terrestrial ice‐contact deposits. It contains abundant extrabasinal clasts and is draped by a transgressive cap dolostone 3–18 m thick. The cap dolostone is replete with sedimentary features strongly associated with post‐Marinoan caps globally, and its isotopic profile is virtually identical to that of other Marinoan cap dolostones. From the inter‐regional perspective, the two diamictite‐rich units in the Polarisbreen Group should represent the first and final phases of the Marinoan glaciation. Above the Petrovbreen diamictite are ~200 m of finely laminated, dark olive‐coloured rhythmites (MacDonaldryggen Member) interpreted here to represent suspension deposits beneath shorefast, multi‐annual sea ice (sikussak). Above the suspension deposits and below the Wilsonbreen diamictites is a <30‐m‐thick regressive sequence (Slangen Member) composed of dolomite grainstone and evaporitic supratidal microbialaminite. We interpret this sabkha‐like lagoonal sequence as an oasis deposit that precipitated when local marine ice melted away under greenhouse forcing, but while the tropical ocean remained covered due to inflow of sea glaciers from higher latitudes. It appears that the Polarisbreen Group presents an unusually complete record of the Marinoan snowball glaciation.  相似文献   

2.
The easternmost extremity of the ice cap that developed in the Tasmanian Central Highlands during the time of most extensive Late Cainozoic glaciation lay on the doleritecapped Central Plateau east and north-east of Lake St Clair. During the Last Glacial Maximum (LGM), the more restricted ice cover included a small discrete ice cap (probably less than 250-300 m thick) that formed on the Central Plateau. The LGM ice limits on the southern part of the Central Plateau, including all five southern outlet valleys, are reported here. Earlier ice limits have been identified in two of these valleys, but on the plateau proper earlier glacial deposits have been generally extensively reworked beyond the LGM limit, such that confirmation of a glacial origin for diamictons on slopes is difficult. South of the plateau, the oldest deposits flooring lower reaches of two outlet valleys indicate that ice flowed southwards directly from the plateau, but later deposits indicate diffluent flow from the Derwent Glacier.  相似文献   

3.
Lake Winnipeg, the seventh largest lake in North America, is located at the boundary between the Interior Plains and the Canadian Shield in Manitoba, Canada. Seismic profiles were obtained in Lake Winnipeg on two geoscientific cruises in 1994 and 1996. These data indicate the morphology of the bedrock surface. In most cases, a clear distinction between low relief Paleozoic carbonate rock and high relief Precambrian rock can be made. In northern Lake Winnipeg, the eastern limit of Paleozoic rock is clearly demarcated 30 km west of the previous estimate of its position. In southern Lake Winnipeg, all or most of the Paleozoic sequence terminates at a prominent buried escarpment in the centre of the lake. This indicates that Paleozoic rock on the eastern shore, known from drilling and outcrops, is an outlier. Major moraines are apparent as abrupt, large ridges having a chaotic internal reflection pattern. These include the Pearson Reef Moraine, the George Island Moraine and the offshore extension of The Pas Moraine. Little evidence for extensive or thick till was observed. Instead, fine-grained sediments deposited in glacial Lake Agassiz rest directly on bedrock over most of the lake basin. Hence an episode of erosion to bedrock was associated with glaciation and/or deglaciation. The Agassiz Sequence sediments are well-stratified, drape underlying relief and in some areas are over 100 m thick. In places, stratification in these sediments is disrupted, perhaps by dewatering. Evidence of erosion of Agassiz Sequence sediments by recent currents was observed. The contact between the Agassiz Sequence and the overlying Winnipeg Sequence sediments is a marked angular unconformity. The Agassiz Unconformity indicates up to 10 m of erosion in places. The low-relief character of this unconformity precludes subaerial erosion and the lack of till, moraines, or extensive deformation precludes glacial erosion. Waves appear to be the most likely erosional agent, either in waning Lake Agassiz or early Lake Winnipeg time. Winnipeg Sequence sediments, in places very thin, mantle most of the lakefloor. These sediments were deposited in the present Lake Winnipeg and are faintly stratified to massive and reach about 10 m in thickness in deep water. On the surface of the Winnipeg Sequence, vigorous, episodic currents are thought to contribute to the construction of flow-transverse sand waves as much as 6 m high in a deep, narrow constriction in the lake.  相似文献   

4.
The study area in Mysliborz Lakeland (Western Pomerania), NW Poland, is located in the glaciomarginal zone of the Pomeranian Phase (Weichselian glaciation). Three subenvironments of deposits are exposed in the six analysed pits: glacial ice-contact subenvironment, transitional subenvironment and glaciofluvial subenvironment. The glacial ice-contact subenvironment is dominated by coarse-grained, massive and thick beds derived from debris flows and also horizontally laminated sand and gravel deposited by sheet flows. The transitional subenvironment represents deposits between end moraine and proximal outwash plain (sandur). The transitional subenvironment is dominated by coarse-grained diamicton derived from debris flows, horizontally laminated beds deposited by sheet flows, and additionally cross-stratified sediments from channel flows and massive sand from hyper-concentrated flows. The glaciofluvial subenvironment corresponds with the distal part of the glaciomarginal zone. The processes of sediment deposition in the glaciofluvial subenvironment are derived from shallow sheet flows and channelized flows. Architectural element analysis highlights the change in lithofacies associations from glacial ice-contact, through transitional to glaciofluvial subenvironments. This sedimentological zonation of the glaciomarginal zone may have been developed in other glaciomarginal belts and remains to be recognized.  相似文献   

5.
Glacial striae and other ice movement indicators such as roche moutonées, glacial erratics, till fabric and glaciotectonic deformation have been used to reconstruct the Late Weichselian ice movements in the region of eastern Svalbard and the northern Barents Sea. The ice movement pattern may be divided into three main phases: (1) a maximum phase when ice flowed out of a centre east or southeast of Kong Karls Land. At this time the southern part of Spitsbergen was overrun by glacial ice from the Barents Sea; (2) the phase of deglaciation of the Barents Sea Ice Sheet, when an ice cap was centred between Kong Karls Land and Nordaustlandet. At the same time ice flowed southwards along Storfjorden; and (3) the last phase of the Late Weichselian glaciation in eastern Svalbard is represented by local ice caps on Spitsbergen, Nordaustlandet, Barentsoya and Edgeøya.
The reconstructed ice flow pattern during maximum glaciation is compatible with a centre of uplift in the northern Barents Sea as shown by isobase reconstructions and suggested by isostatic modelling.  相似文献   

6.
This paper provides data on the landforms, soils, and sediments within a unique northern Michigan landscape known as the Grayling Fingers, and evaluates these data to develop various scenarios for the geomorphic development of this region. Composed of several large, flat-topped ridges that trend N–S, the physiography of the “Fingers” resembles a hand. Previously interpreted as “remnant moraines”, the Grayling Fingers are actually a Pleistocene constructional landscape that was later deeply incised by glacial meltwater. The sediments that comprise the Fingers form a generally planar assemblage, with thick (>100 m), sandy glacial outwash forming the lowest unit. Above the outwash are several meters of till that is remarkably similar in texture to the outwash below; thus, the region is best described as an incised ground moraine. Finally, a thin silty “cap” is preserved on the flattest, most stable uplands. This sediment package and the physiography of the Fingers are suggestive of geomorphic processes not previously envisioned for Michigan.Although precise dates are lacking, we nonetheless present possible sequences of geomorphic/sedimentologic processes for the Fingers. This area was probably a topographic high prior to the advance of marine isotope stage 2 (Woodfordian) ice. Much of the glacial outwash in the Fingers is probably associated with a stagnant, early Woodfordian ice margin, implying that this interlobate area remained ice-free and ice-marginal for long periods during stage 2. Woodfordian ice eventually covered the region and deposited 5–10 m of sandy basal till over the proglacial outwash plain. Small stream valleys on the outwash surface were palimpsested onto the till surface as the ice retreated, as kettle chains and as dry, upland valleys. The larger of these valleys were so deeply incised by meltwater that they formed the large, through-flowing Finger valleys. The silt cap that occupies stable uplands was probably imported into the region, while still glaciated. The Fingers region, a col on the ice surface, could have acted as a collection basin for silts brought in as loess or in superglacial meltwater. This sediment was let down as the ice melted and preserved only on certain geomorphically stable and fluvially isolated locations. This study demonstrates that the impact of Woodfordian ice in this region was mostly erosional, and suggests that Mississippi Valley loess may have indirectly impacted this region.  相似文献   

7.
Detailed geomorphological mapping provides evidence for at least three phases of glaciation in the Parque Natural Lago de Sanabria, in northwest Spain. The most extensive glaciation was characterised by a large plateau ice cap. A combination of geomorphological evidence and glacier modelling indicates that this ice cap covered an area of more than 440 km2, with a maximum ice thickness of c. 300 m and outlet glaciers reaching as low as 1000 m. This represents the largest ice mass in Iberia outside the Pyrenees and one of the largest in the mountains of southern Europe and the Mediterranean region. Radiocarbon dates from the base of lacustrine sequences appear to suggest that the most extensive phase of ice-cap glaciation occurred during the last cold stage (Weichselian) with deglaciation occurring before 14–15 ka 14C BP. A second phase of glaciation is recorded by the moraines of valley glaciers, which may have drained small plateau ice caps; whilst a final phase of glaciation is recorded by moraines in the highest cirques.  相似文献   

8.
Block fields have developed on gently graded uplands of granite and gneiss on central and southern Melville Peninsula. The location of block fields is not controlled by elevation, but rather by areas covered by cold–based ice during the last glaciation. Block fields consist either of angular boulders, sorted circles 3–4 m across having blocky rims and central areas of weathered grus, concentrations of openwork boulders, or in the southeast, of immature bouldery till. The block fields are primarily relict features predating the last glaciation, produced by weakening of bedrock by weathering along joints, followed by frost heave, although some block fields have been modified by meltwater from regional glacier down–wasting. Frost processes are active in the modern environment but the extent of riven bedrock and the size of recent patterned ground forms on postglacial surfaces are insufficient to account for the forms in the block fields.  相似文献   

9.
Open sections along Kongsfjodhallet, the north-western coast Kongsfjorden, Svalbard, exhibit marine and glacigenic sediments of Early to Late Plestocene age. Glaciatio, deglaciation and subsequent isostatic rebound caused the formation of three sedimentary successions (A, B and C) that comprise till grading upward into glaciomarine mud, followed by shell-bearing sand, and finally littoral sand and gravel. Six major lithostratigraphic units are recognized. Succession C comprises units 1 and 2, which were deposited during an Early Pleistocene glaciation, followed by deglaciation and subsequent beach progradation. Succession B is divisible into units 3 and 4 and reflects glaciation and eventual emergence as a result of isostatic response. The youngest succesion (A) comprises units 5 and 6, and reflects fiord glaciation followed by a regression during an Early Weichselian glaciation-deglaciation episode. Ice-free conditions may have prevailed untill the Late Weichselian, when a glaciation, confined to the fiord trough, covered parts of Kongsfjordhallet. Deglaciation and isostatic rebound are recorded by Holocene marine terraces up to ca 40 m a. s. l.
Marine and glacial events from Kongsfjordhallet are compared with stratigraphic evidence from adjacent regions and it is suggested that the Late Weichselian ice configuration was of a more restricted nature than proposed by previous authors. Glaciers. draining through the larger ford troughs reached the shelf break. while at the same time other parts of western Svalbard could have experienced restricted glaciation.  相似文献   

10.
The extent of Late Quaternary glaciation in the northwest Nelson region of New Zealand has traditionally been regarded as minor, with small‐scale valley glaciation in confined upland reaches. New geomorphological evidence, including moraines, kame terraces, till‐mantled bedrock and outwash terraces, indicate that greatly expanded valley glaciers flowed into the lowland valley system at the mouths of the Cobb‐Takaka and Anatoki drainages. The timing for this ice advance into lowland valleys is constrained by lowland landform characteristics and a single cosmogenic exposure age, suggesting Late and Middle Pleistocene ice expansion, respectively. Evidence for expanded upland ice on the Mount Arthur Tableland and adjacent areas includes trimlines, boulder trains and roche moutonées. Two cosmogenic exposure ages on upland bedrock surfaces suggest that major ice expansion occurred during MIS 3 and/or 4, while previously published exposure dating from Cobb Valley suggests large MIS 2 ice expansion as well. The inferred, markedly expanded ice left little or no clear geomorphic imprint on the Cobb–Takaka Gorge, and required temperature depression of 4–6°C with near‐modern precipitation levels.  相似文献   

11.
A ground truth study was performed on first year fast ice in Kongsfjorden, Svalbard, during spring 1997 and 1998. The survey included sea ice thickness monitoring as well as observation of surface albedo, attenuation of optical radiation in the ice, physical properties and texture of snow and sea ice. The average total sea ice thickness in May was about 0.9 m, including a 0.2 m thick snow layer on top. Within a few weeks in both years, the snow melted almost completely, whereas the ice thickness decreased by not more than 0.05 m. During spring, the lower part of the snow refroze into a solid layer. The sea ice became more porous. Temperatures in the sea ice increased and the measurable salinity of the sea ice decreased with time. Due to snow cover thinning and snow grain growth, maximum surface albedo decreased from 0.96 to 0.74. Texture analysis on cores showed columnar ice with large crystals (max. crystal lenght > 0.1 m) below a 0.11 m thick mixed surface layer of granular ice with smaller crystals. In both years, we observed sea ice algae at the bottom part of the ice. This layer has a significant effect on the radiation transmissivity.  相似文献   

12.
《极地研究》1992,3(2):56-68
The extension of ice sheet on King George Island during the last glaciation was an environment event since the last glaciation. At that time South Shedlands Islands were a large unified island and the ice mass on King George Island might come from the Antarctic Peninsula. The model of ice retreat and ice advance events in the Holocene show that the ice sheet was separated into three small ice caps and then dispeared gradually. At present the retreating velocity of glacier is about 1.3m each year. After the retreat of ice sheet the isostatic compensation appeared in the crust there, and then 5-6 steps of the uplifted marine terraces have been developed along the coast. The uplift rate of the crust may be 6-10mm/a.  相似文献   

13.
THE LAST GLACIATION OF SHETLAND, NORTH ATLANTIC   总被引:1,自引:0,他引:1  
Evidence relating to the extent, dynamics, and relative chronology of the last glaciation of the Shetland Islands, North Atlantic, is presented here, in an attempt to better illuminate some of the controversies that still surround the glacial history of the archipelago. We appraise previous interpretations and compare these earlier results with new evidence gleaned from the interpretation of a high resolution digital terrain model and from field reconnaissance. By employing a landsystems approach, we identify and describe three quite different assemblages of landscape features across the main islands of Mainland, Yell and Unst. Using the spatial interrelationship of these landsystems, an assessment of their constituent elements, and comparisons with similar features in other glaciated environments, we propose a simple model for the last glaciation of Shetland. During an early glacial phase, a coalescent British and Scandinavian ice sheet flowed approximately east to west across Shetland. The terrestrial land‐forms created by this ice sheet in the north of Shetland suggest that it had corridors of relatively fast‐flowing ice that were partially directed by bed topography, and that subsequent deglaciation was interrupted by at least one major stillstand. Evidence in the south of Shetland indicates the growth of a local ice cap of restricted extent that fed numerous radial outlet glaciers during, or after, ice‐sheet deglaciation. Whilst the absolute age of these three landsystems remains uncertain, these new geo‐morphological and palaeoglaciological insights reconcile many of the ideas of earlier workers, and allow wider speculation regarding the dynamics of the former British ice sheet.  相似文献   

14.
The development and age of the present geomorphology and superficial material of the Coloradofjella plateau, Spitsbergen, have been investigated through field surveying and laboratory sediment analyses. The focus was specifically on the role of glacial erosion and periglacial processes. The summit plain is deeply incised with large V-shaped valleys. Extensive networks of ice wedge polygons indicate that the fine-grained regolith is at least a few metres thick. An abundance of coarse-grained gabbroid erratics, clearly derived from sources further to the east, are distributed over parts of the summit plain. A vertical-walled dolerite dyke protruding up to 4 m above the adjacent surface shows no sign of glacial erosion. Our findings confirm that the present bedrock geomorphology and regolith in the summit plain survived at least the Late Weichselian glaciation. This is best explained by the ice sheet having been cold-based throughout its existence on the summit plain. Cold-based conditions imply that permafrost survived the last glacial cover. Based on the geomorphic evidence and estimates of Late Cenozoic erosion, we suggest that the present summit plains roughly represent the remains of a preglacial surface.  相似文献   

15.
In this paper the effect of a delayed onset of glaciation in the Barents Sea on glacial isostatic adjustment is investigated. The model calculations solve the sea-level equation governing the total mass redistributions associated with the last glaciation cycle on a spherically symmetric, linear, Maxwell viscoelastic earth for two different scenarios for the growth phase of the Barents Sea ice sheet. In the first ice model a linear growing history is used for the Barents Sea ice sheet, which closely relates its development to the build-up of other major Late Pleistocene ice sheets. In the second ice model the accumulation of the Barents Sea ice sheet is restricted to the last 6 ka prior to the last glacial maximum.
The calculations predict relative sea levels, present-day radial velocities, and gravity anomalies for the area formerly covered by the Weichselian ice sheet. The results show that observed relative sea levels in the Barents Sea are appropriate for distinguishing between the different glaciation histories. In particular, present-day observables such as the free-air gravity anomaly over the Barents Sea, and the present-day radial velocities are sensitive to changes in the glaciation history on this scale.
A palaeobathymetry derived from relative sea-level predictions before the last glacial maximum based on the second ice model essentially agrees with a palaeobathymetry derived by Lambeck (1995). The additional emerged areas provide centres for the build-up of an ice sheet and thus support the theory of Hald, Danielsen & Lorentzen (1990) and Mangerud et al. (1992) that the Barents Sea was an essentially marine environment shortly before the last glacial maximum.  相似文献   

16.
ABSTRACT. Geomorphological and sedimentological evidence of former glaciation in the Bizzle valley in the Cheviot Hills of northern England and southern Scotland was used to reconstruct the dimensions of a small topographically constrained glacier with an equilibrium line altitude (ELA) of 535 m. This was interpreted as having formed during Younger Dryas cooling; this is the only glacier to have been described from the area and is the most easterly site of Younger Dryas glaciation in the British Isles. Whilst glaciation at this time was extensive in the Lake District to the southwest, the restricted nature of Cheviot ice cover suggests that a steep west–east precipitation gradient existed in this region during the Younger Dryas.  相似文献   

17.
Eleven shallow cores display 315 m of the >700 m thick Lower and Middle Triasic successional of the Svalis Dome, a Salt diapir in the central south-western Barents Sea. The Svalis Dome was uplifted in the late Mesozoic. and Trisassic rocks suherop below Quaternary till around the Upper Palaeozoic core of the dome. Deposition of the Triassic succession took place in deep shelf to basinal environments below storm wave base. The succession is dated by macrofossils and palynomorphs and can be assigned to four formations. The basal beds of the shaly greenish grey Havert Formation (Griesbachian) occur above Permian bioclastic carbonate. The Klappmyss Formation (Smithian) in the lower part contains gravity flow sands deposited as submarine fans pussible triggered by tectonic movements along the adjacent ault zones overlian by silty claystones. An organic-rich dark shale unit is here formally defined as the Steinkobbe overlain by silty claystones. An organic-rich dark shale unit is here formally defined as the Steinkobbe Formation, and was deposited in a large bight by restricted water circulation. The Snadd Formation. on top, representes a marine shelf unit deposited in front of an emerging land area in the north-east. A minimum of six higher order transgressive-regressive sequences are recognized at the Svalis Dome and these are correlated with other Arctic areas.  相似文献   

18.
Glacier surge at Usherbreen, Svalbard   总被引:2,自引:0,他引:2  
Usherbreen started to surge in 1978, and the front has advanced 1.5 km and covered an area of 4.5 km2. During the first two years the front advanced more than 1 m/d, and the front was still advancing 0.15– 0.20m/d in 1985, seven years after the start. The mean gradient of the lower 7 km decreased from 3.3 grad. to 1.8 grad. during the surge. The volume of ice transported down the glacier from higher to lower parts during the surge was 815 x lO'm3. which is almost 20% of the total glacier volume. Old icecored ridges in front of the glacier were reactivated, and the whole ridge system was pushed forward, in the summer of 1985 at a speed of about 0.05 m/d. Parts of the ridge system were moved 200 m during this surge. New ridges were developed on the flat sandur in front of the old ridge system. This demonstrates that the glacier advanced further than in any previous surge.  相似文献   

19.
鄱阳湖滨沙岭地区的沙山由交替出现的砂层与粉砂层构成。对3个剖面的调查发现,该地区发育的网纹大体可分为3种类型,Ⅰ类网纹密集且粗大,为典型的网纹,位于剖面底部,Ⅱ类网纹较稀疏、细,位于Ⅰ类网纹之上,Ⅲ类网纹界线模糊,位于剖面上部。Ⅰ类、Ⅱ类网纹属于成熟的网纹,而Ⅲ类属于不成熟的网纹。对剖面中砂层的光释光测年表明,测量等效剂量时没有出现信号饱和的问题,年剂量也没有受风化作用的影响,因而OSL年龄可以视为砂层的沉积年龄。基于砂层的沉积年龄,我们判断成熟网纹层的沉积时代早于80 ka,不成熟网纹层的沉积时代略晚于71 ka,而早于29 ka。  相似文献   

20.
 六盘山作为青藏高原的东北构造边界,东西两侧有着明显的风成沉积差异。通过对陇西盆地六盘山西侧山麓剥蚀面上厚约223 m的断岘黄土-古土壤剖面的古地磁、磁化率和粒度分析,该剖面具有1.8 Ma BP以来完整的风成沉积旋回。主要应用砂粒百分含量(>63 μm)作为指示风成物质来源区沙漠范围和气候干旱的直接指标,初步发现腾格里沙漠自1.8 Ma BP以来至少有2次大的扩张与变化过程,分别发生在1.1和0.8 Ma BP前后。研究表明腾格里沙漠的扩张与变化可能同全球性的冰量增加和冬季风增强以及区域性的青藏高原隆升有成因上的联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号