首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using a thermally stratified wind tunnel, we have successfullysimulated stably stratified boundary layers (SBL), in which the meantemperature increases upward almost linearly. We have investigated the flow structure and the effects of near-linearstable stratification on the transfer of momentum and heat. Thevertical profiles of turbulence quantities exhibit different behaviour in two distinct stability regimes of the SBLflows with weak and strong stability. For weak stability cases, theturbulent transfer of momentum and heat is basically similar to that for neutral turbulent boundary layers, although it is weakenedwith increasing stability. For strong stability cases, on the other hand,the time-mean transfer is almost zero over the whole boundary-layer depth.However, the instantaneous turbulent transfer frequently occurs in bothgradient and counter-gradient directions in the lower part of the boundary layer. This is due to the Kelvin–Helmholtz (K–H) shear instability and therolling up and breaking of K–H waves. Moreover, the internal gravity wavesare observed in the middle and upper parts of all stable boundary layers.  相似文献   

2.
An FM/CW radar sounding system designed and built by one of us (Richter, 1969) reveals atmospheric wave structure in unparalleled detail.The most outstanding features evident in the record are; internal gravity waves; features resembling Kelvin/Helmholtz instability structures; and multiple layering, often with lamina only a few meters thick.This paper shows a variety of atmospheric structural patterns and compares them with several hypothetical models of internal waves to obtain more insight into the atmospheric processes at work. Special attention is given to the distribution of the Richardson number in trapped and untrapped gravity waves. It is proposed that the multiple layers result from untrapped internal gravity waves whose propagation vector is directed nearly vertically within very stable height regions. It is argued that the layers are caused by dynamic instability resulting from reduction in the Richardson number due to wave induced shear and to some background wind shear when the amplitude-to-wavelength ratio grows during propagation into thermally stable height regions of the atmosphere.  相似文献   

3.
Internal waves incident on a sheared ocean pycnocline are studied using analytic and numerical methods. Linear analysis of the unstable modes of a sheared ocean pycnocline is used to demonstrate interactions between internal waves and shear instabilities. A new analytic solution for an asymmetric shear layer over a stratified layer is presented, illustrating modes which couple to internal waves, in addition to the well-known Holmboe modes. The robustness of these solutions is demonstrated using numerical methods for realistic shear profiles. Fully nonlinear numerical simulations illustrate the growth of these modes and demonstrate the excitation of shear instabilities by incident internal waves. The results may have implications for internal wave interactions with the ocean pycnocline and the local generation of internal solitary waves.  相似文献   

4.
Motivated by the mean current and stratification structure associated with the equatorial undercurrent (EUC), we examine the stability and wave propagation characteristics of a highly idealized model flow: the asymmetrically stratified jet. This is a parallel shear flow in which the depth-varying current has the sech2 form of a Bickley jet. The stratification has a step function structure: the buoyancy frequency takes uniform values above and below the center of the jet, with the larger value occurring below. The spectrum contains three classes of unstable normal modes. Two are extensions of the sinuous and varicose modes of the unstratified Bickley jet; the third has not been described previously. The asymmetric stratification structure allows instabilities to radiate gravity wave energy from the upper flank of the jet to the lower flank, where it encounters a critical layer. From here, wave energy may be reflected, absorbed or transmitted. Absorption results in wave saturation and momentum transfer to the mean flow, in close analogy with the breaking of orographic gravity waves in the middle atmosphere. Transmission beyond the lower flank may partly account for wave signals observed in the deep equatorial oceans. All of these processes exert zonal forces on the jet that alter its speed and shape. The wave structures and associated fluxes developed by the idealized model are compared with observations of the EUC.  相似文献   

5.
Formation and breaking of internal gravity waves contributing to a very significant increase in turbulence in the atmospheric surface layer over the Atlantic Ocean off Long Island, New York are reported. Contrary to the bursts that are characteristically of short duration, this increase in turbulence lasted for more than one hour and was typical of what one would observe during unstable atmospheric conditions. However, mean temperature profiles indicated strong stable conditions.This research was performed under the auspices of the United States Department of Energy Under Contract No. EY-76-C-02-0016.  相似文献   

6.
On the breakdown into turbulence of propagating internal waves   总被引:1,自引:0,他引:1  
The breakdown of propagating internal waves is studied using linear stability analysis and direct numerical simulations. Sinusoidal wave trains in a uniformly stratified, non-rotating environment are considered. Cases are addressed with differing wave amplitudes and directions of propagation. For large-amplitude waves it is found that the primary instabilities are both two- and three-dimensional. It is also found that there is no qualitative difference in the breakdown process for waves with amplitude slightly below or slightly above the amplitude of incipient overturning. For the parameter regimes considered, the breakdown process could not be attributed to convective or shear instability alone, but a combination of the two. Owing to the growth of instabilities, local patches of statically unstable fluid and also of intense shear form, leading ultimately to local patches of turbulence.  相似文献   

7.
A linearized instability analysis model with five unknowns was proposed to describe disturbance motions under general oceanic background conditions, including large-scale current shear, density stratification, frontal zone, and arbitrary topography. A unified linear theory of wavelike perturbations for surface gravity waves, internal gravity waves and inertial gravity waves was derived for the adiabatic case, and the solution was then found using Fourier integrals. In this theory, we discarded the assumptions widely accepted in the literature concerning derivations of wave motions such as the irrotationality assumption for surface gravity waves, the rigid-lid approximation for internal gravity waves, and the long-wave approximation for inertial gravity waves. Analytical solutions based on this theory indicate that the complex dispersion relationships between frequency and wave-number describing the propagation and development of the three types of wavelike perturbation motions include three components: complex dispersion relationships at the sea surface; vertical invariance of the complex frequency; and expressions of the vertical wave-number (phase). Classical results of both surface waves and internal waves were reproduced from the unified theory under idealized conditions. The unified wave theory can be applied in the dynamical explanation of the generation and propagation properties of internal waves that are visible in the satellite SAR images in the southern part of the China Seas. It can also serve as the theoretical basis for both a numerical internal-wave model and analytical estimation of the ocean fluxes transported by wavelike perturbations.  相似文献   

8.
本文根据Whitham和Lighthill等人的射线理论,研究了具有非均匀层结和流场切变的大气中惯性重力内波的传播和折射问题。定义了一个由背景场参数N2(静力稳定度)、ξa(惯性稳定度)和Ux(与斜压稳定性有关)的梯度组合而成的所谓“环境稳定度”矢量 ,它对重力波的折射有决定性的作用。结果表明:局地波导方向垂直于矢量 ;稳定度中心之间的过渡地带沿稳定度等值线方向为波能传播的有利通道。   相似文献   

9.
In this paper the influences of nonuniform stratification on the propagating paths of internal inertial-gravity and pure gravity wave energy are discussed by using the WKB approximation method.The conditions for conservation of wave energy,generalized wave action and wave enstrophy are obtained.The necessary condition of instability for internal gravity waves and the equation governing the refraction of wave rays are derived.Two types of critical levels are given.Finally,the wave rays for different distributions of stratification are calculated by using the fourth-order Runge-Kutta method.  相似文献   

10.
吕克利  徐亚梅 《气象学报》1994,52(3):332-341
文中利用WKB近似,讨论了非均匀层结对惯性重力内波和纯重力内波能量传播路径的影响,得到了波的能量密度,广义波作用密度,和广义拟能密度守恒的条件,导得了重力内波不稳定的必要条件,给出了在波的传播过程中控制波射线折射的方程,得到了两类不同的临界层,最后还利用四阶Runge-Kutta方法计算了不同层结分布下的波射线。  相似文献   

11.
Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (PIV) visualization technique. In the neutral stratification approach flow, the ascending draft induced by bottom heating is mainly located in the center of the valley in calm ambient wind. However~with ambient wind flow, the thermal convection is shifted leeward, and the descending draft is located on the leeward side of the valley, while the ascending draft is located on the windward side. The descending draft is minorly turbulent and organized, while the ascending draft is highly turbulent. With the increase of the towing speed, the descending and ascending drafts induced by the mechanical elevation begin to play a more dominant role in the valley flow, while the role of the thermal convection in the valley airflow becomes limited. In the stable stratification approach flow, the thermal convection is limited by the stable stratification and no distinct circulation is formed in calm ambient wind. With ambient wind, agravity wave appears in the upper layer in the valley. With the increase of the ambient wind speed, a gravity wave plays an important role in the valley flow, and the location and intensity of the thermal convection are also modulated by the gravity internal waves. The thermal convection has difficulty penetrating the upper stable layer. Its exchange is limited between the air in the upper layer and that in the lower layer in the valley, and it is adverse to the diffusion of pollutants in the valley.  相似文献   

12.
We have determined free Rossby waves in the North Pacific Current by numerical methods. We have found only two stable solutions — the barotropic and first-order baroclinic Rossby shear modes. The influence of the current on the dispersion features of these waves is small for the barotropic shear mode, but is significant for the baroclinic shear mode. An explicit comparison of the dispersion relations for the baroclinic wave in case of vanishing and non-vanishing current is given. We have found at most one unstable solution per wave number. The unstable wave with largest growth rate has an e-folding time of 1.1 year. We have calculated vertical profiles of the stream function and the temperature for the various shear modes at various wave numbers. The temperature shear modes have been calculated for later usage in a Rossby wave model to be fitted to observed temperature data from the North Pacific Current area.  相似文献   

13.
In this paper the influences of nonuniform stratification on the propagating paths of internal inertial-gravity andpure gravity wave energy are discussed by using the WKB approximation method.The conditions for conservation ofwave energy,generalized wave action and wave enstrophy are obtained.The necessary condition of instability for inter-nal gravity waves and the equation governing the refraction of wave rays are derived.Two types of critical levels are giv-en.Finally,the wave rays for different distributions of stratification are calculated by using the fourth-orderRunge-Kutta method.  相似文献   

14.
We advance our prior energy- and flux-budget (EFB) turbulence closure model for stably stratified atmospheric flow and extend it to account for an additional vertical flux of momentum and additional productions of turbulent kinetic energy (TKE), turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). For the stationary, homogeneous regime, the first version of the EFB model disregarding large-scale IGW yielded universal dependencies of the flux Richardson number, turbulent Prandtl number, energy ratios, and normalised vertical fluxes of momentum and heat on the gradient Richardson number, Ri. Due to the large-scale IGW, these dependencies lose their universality. The maximal value of the flux Richardson number (universal constant ≈0.2–0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. For heterogeneous stratification, when internal gravity waves propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. Internal gravity waves also reduce the anisotropy of turbulence: in contrast to the mean wind shear, which generates only horizontal TKE, internal gravity waves generate both horizontal and vertical TKE. Internal gravity waves also increase the share of TPE in the turbulent total energy (TTE = TKE + TPE). A well-known effect of internal gravity waves is their direct contribution to the vertical transport of momentum. Depending on the direction (downward or upward), internal gravity waves either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.  相似文献   

15.
The combined use of a stratified flow wind tunnel and of periodic sampling methods in low Reynolds number flows allows the recovery of the instantaneous dynamics of internal waves. Several detailed examples are given of the thermal structure of large propagating and breaking internal waves and Kelvin-Hemholtz waves. Preliminary measurements of the stability of finite waves as a function of Richardson number are also reported.  相似文献   

16.
Properties and stability of a meso-scale line-form disturbance   总被引:1,自引:0,他引:1  
By using the 3D dynamic equations for small- and meso-scale disturbances, an investigation is performed on the heterotropic instability (including symmetric instability and traversal-type instability) of a zonal line-like disturbance moving at any angle with respect to basic flow, arriving at the following results: (1) with linear shear available, the heterotropic instability of the disturbance will occur only when flow shearing happens in the direction of the line-like disturbance movement or in the direction perpendicular to the disturbance movement, with the heterotropic instability showing the instability of the internal inertial gravity wave; (2) in the presence of second-order non-linear shear, the disturbance of the heterotropic instability includes internal inertial gravity and vortex Rossby waves. For the zonal line-form disturbance under study, the vortex Rossby wave has its source in the second-order shear of meridional basic wind speed in the flow and propagates unidirectionally with respect to the meridional basic flow. As a mesoscale heterotropic instable disturbance, the vortex Rossby wave has its origin from the second shear of the flow in the direction perpendicular to the line-form disturbance and is independent of the condition in the direction parallel to the flow; (3) for general zonal line-like disturbances, if the second-order shear happens in the meridional wind speed, i.e., the second shear of the flow in the direction perpendicular to the line-form disturbance, then the heterotropic instability of the disturbance is likely to be the instability of a mixed Rossby–internal inertial gravity wave; (4) the symmetric instability is actually the instability of the internal inertial gravity wave. The second-order shear in the flow represents an instable factor for a symmetric-type disturbance; (5) the instability of a traversal-type disturbance is the instability of the internal inertial gravity wave when the basic flow is constant or only linearly sheared. With a second or nonlinear vertical shear of the basic flow taken into account, the instability of a traversal-type disturbance may be the instability of a mixed vortex Rossby – gravity wave.  相似文献   

17.
基于不可压缩流体运动方程组研究了急流附近重力惯性波及其不稳定,结合飞机风速变化方程,分析指出重力波失稳破碎为湍流是飞机颠簸产生的可能机制。斜压大气在急流轴北侧气旋切变区是惯性稳定的,当满足条件σ=f[f-/y] N2m2/n2<0时,由于天气尺度对流不稳定发展而引起重力惯性波不稳定破碎为湍流,可能是急流北侧气旋切变区对流性天气引起飞机颠簸产生的一种机制。但是在急流轴南侧反气旋切变区是惯性不稳定的,当满足条件σ=f[f-/y] N2m2/n2<0时,可能由于惯性不稳定的作用,急流重力波不稳定发展破碎为湍流,可能是急流南侧反气旋气流中晴空湍流和飞机颠簸产生和发展的一种机制。揭示了急流附近晴空湍流和飞机颠簸产生的物理本质,有利于增强航空飞行颠簸的预测能力。  相似文献   

18.
A class of non-linear instabilities of a vertically sheared zonal flow is discussed. This is a type of baroclinic instability that lies outside the purview of a linear eigenmode analysis of baroclinic instability problems. The form taken by the instability is that of an ensemble of three neutral Rossby waves whose amplitudes are slowly modified by their mutual non-linear interactions. For a triad of small amplitude, these interactions introduce a weak, vertical variation of phase to the structure of the individual waves. This allows the generation of rectified heat fluxes and an exchange of energy with the mean flow.This instability exhibits explosive growth and spans a range of horizontal wavenumbers that exceeds the range that is unstable in the corresponding linear model. It is shown that the type of instability discussed can only occur when the model used admits unstable eigenmodes as well as neutral Rossby waves.The mechanism for the non-linear instability discussed here is believed to be fairly general and should exist also in the context of a horizontally sheared flow where it would take the form of a barotropic instability.  相似文献   

19.
The influence of an accelerating shear flow on the propagation of an internal gravity wave in a continuously stratified fluid is studied by means of two-dimensional numerical simulations. These are motivated by earlier laboratory experiments [Thorpe, S.A. 1978b. On internal gravity waves in an accelerating shear flow, Vol. 88. J. Fluid Mech. pp. 623–639]. In these experiments the mean flow is an accelerated Couette flow and the mean density profile is linear. The laboratory experiments revealed the striking effect of the unsteady shear flow in the evolution of an internal gravity wave leading to the wave focusing in a region where the flow is extremum. This phenomenon is associated with the growth of small scale density fluctuations. As a result density overturns are sometimes observed. This behaviour is well reproduced by the numerical simulations. We provide insights on the flow dynamics in particular on the possible occurrence of wavebreaking. We show that the dynamics is characterized by two competitive mechanisms that is a damping of the wave and a local enhancement of its steepness leading sometimes to density overturns. The budget for the energy of the wave reveals that the initial damping of the wave results from wave-mean flow interactions. These interactions lead to the development of a fine scale vertical density structure which is associated with high vertical shear. We find that in some cases wavebreaking occurs as a result of shear instability. The value of the acceleration of the mean flow is very likely to influence the onset of the instability. The scaling laws of the wave evolution, in particular the rate of decrease of its energy, are determined. From these laws the lifetime of the wave is found as a function of the acceleration of the shear. It may be expected that, in the ocean, this development will result in the largest fluctuations derived from wave-flow interactions occurring where the mean flow in the wave direction is greatest. Waves travelling normal to a two-dimensional shear flow will be unchanged. Waves travelling parallel will be damped. This may have particular application at the continental shelf where flow, mainly parallel to the isobaths, will damp waves travelling along-slope, but allows waves travelling normal to the isobaths (e.g., directly across the shelf-break) to be transmitted without attenuation. Similar effects are expected for the evolution of a high frequency wave interacting with a lower frequency (e.g., near inertial) motion.  相似文献   

20.
Turbulence in stably stratified fluids: A review of laboratory experiments   总被引:1,自引:0,他引:1  
This is a review of laboratory studies of mixing in stably stratified fluids away from the direct intluence of boundary layers, and was written to introduce the session on laboratory experiments at the IUCRM Colloquium.Internal waves (Section 2) can lead to turbulence by creating regions of unstable density gradients through their mutual interactions, by individually breaking by forming rotors, and by reducing the local Richardson number until Kelvin-Helmholtz instability results. They may be important in radiating energy from turbulent or spreading regions. Critical-layer absorption of internal waves is not found to be a direct cause of turbulence in experiments with 15 Richardson number 5, although the modification of the vertical density profile may be significant.Turbulent-laminar interfaces without mean shear (Section 3) and with mean shear (Section 4) are described. The source of turbulence in these experiments is partly external, either generated by an oscillating grid or by a (relatively) moving boundary. The development of turbulence generated entirelywithin a stratified layer by Kelvin-Helmholtz instability, is described in detail in Section 5, and the results are compared with measurements in the ocean and in the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号