首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the 1st decade of the 21st century, the study area of Talala, Saurashtra of western India witnessed three damaging earthquakes of moderate magnitude, year 2007 [Mw 5.0; Mw 4.8] and in the year 2011 [Mw 5.1] that generated public panic in the region. The last damaging moderate earthquake of the 20th October 2011 in Talala region (21.09°N;70.45°E), located at about 200 km south to the devastating 2001 Bhuj (23.412°N, 70.232°E) mainshock (Mw 7.6), jolted the entire Saurashtra region of Gujarat. A long series of aftershocks followed hereafter, recorded at nine seismograph/accelerograph stations. Hypocenters of aftershocks were relocated accurately using absolute and relative travel time (double-difference) method. In this study, we, for the first time, determined 3-D tomographic images of the upper crust beneath the 2011 Talala earthquake source zone by inverting about 1135 P and 1125 S wave arrival time data. Estimates of seismic velocities (Vp, Vs) and Poisson’s ratio (σ) structures offer a reliable interpretation of crustal heterogeneities and their bearing on geneses of moderate earthquakes and their aftershock sequences beneath the source zone. It is found that the 2011 Talala mainshock hypocenter depth (6 km) is located near the boundary of the low and high velocity (Vp, Vs) and the source zone is associated with low-σ anomalies guarded by the prominent high-σ anomalies along the active fault zone having strike-slip motion beneath the earthquake source zone. The pattern of distribution of (Vp, Vs, σ) and its association with occurrences of aftershocks provide seismological evidence for the neo-tectonics in the region having left lateral strike-slip motion of the fault.  相似文献   

2.
To clarify the generating mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0) and the induced tsunami, we determined high-resolution tomographic images of the Northeast Japan forearc. Significant lateral variations of seismic velocity are visible in the megathrust zone, and most large interplate thrust earthquakes are found to occur in high-velocity (high-V) areas. These high-V zones may represent high-strength asperities at the plate interface where the subducting Pacific plate and the overriding Okhotsk plate are coupled strongly. A shallow high-V zone with large coseismic slip near the Japan Trench may account for the mainshock asperity of the 2011 Tohoku-oki earthquake. Because it is an isolated asperity surrounded by low-velocity patches, most stress on it was released in a short time and the plate interface became decoupled after the Mw 9.0 earthquake. Thus the overriding Okhotsk plate there was shot out toward the Japan Trench and caused the huge tsunami.  相似文献   

3.
Kii Peninsula is located in the forearc region of southwest Japan and has distinct structural and tectonic features characterized by high seismicity in the crust and the subducting Philippine Sea slab, high surface heat flow, high 3He/4He isotopic ratio, and a local change in the geometry of the subducting slab. We have tried to determine detailed 3-D P and S wave velocity structures of this region using a large number of high-quality arrival time data recorded by dense seismic networks on the Japan Islands. From the obtained seismic velocities, we further estimated 3-D distributions of Poisson ratio, crack density, saturation rate and porosity parameter in the study area. Our results show significant heterogeneities in the crust and upper mantle wedge characterized by low seismic velocities, high Poisson ratio, high values of crack density, saturation rate and porosity. These results suggest the existence of fluids in the crust and mantle wedge resulting from the dehydration of the subducting Philippine Sea slab, which can explain the observed geophysical and geochemical features in Kii Peninsula.  相似文献   

4.
Eastern Anatolia is a region in the early stages of continent–continent collision and so provides a unique opportunity to study the early development of continental plateau. Located within the Alpine–Himalayan fold-thrust fault belt, the Anatolian plateau is geologically very complex, with over half of the surface area covered with late Cenozoic volcanics of diverse composition. The plateau is also seismically active and is dissected by numerous seismogenic faults predominantly of strike-slip motion. In this study, we determine 3-D tomographic images of the crust beneath eastern Anatolia by inverting a large number of arrival time data of P- and S-waves. From the obtained P- and S-wave velocity models, we estimated the Poisson’s ratio structures for a more reliable interpretation of the obtained velocity anomalies. Our tomographic results are generally consistent with the major tectonic features of the region. High P- and S-wave velocity anomalies are recognized near the surface, while at deeper crustal layers, low seismic wave velocities are widely distributed. Poisson’s ratio exhibits significant structural heterogeneities compared to the imaged velocity structure. The seismic activity is intense along highly heterogeneous zones and is closely associated with pre-existing faults in the central and western parts of the study area. Results of the checkerboard resolution test indicate that the imaged anomalies are reliable features down to a depth of about 40 km. The low-velocity/high Poisson’s ratio zones in the middle to lower crust are consistent with many geophysical observations such as strong Sn attenuation, low Pn and Sn velocity, and the absence of mantle lid, implying the presence of partial melt in the uppermost mantle.  相似文献   

5.
In this paper, we extract 1500 P receiver functions in the Tengchong volcanic area from 211 teleseismic events recorded at nine digital seismic stations. A common conversion point stacking technique is used to improve the signal-to-noise ratio and to get the time delays of the Ps, PpPs, PsPs + PpSs phases within grids of 10 km × 10 km. Finally, the crustal thickness and Poisson’s ratio are calculated. The results show that the crustal thickness ranges from 28 to 40 km and the Poisson’s ratio ranges from 0.28 to 0.36. There exist two mantle-uplifting sites each with a horizontal scale of about 30 km × 30 km, one in Mazhan–Tengchong–Maanshan and the other in Wuhe–Longjiang–Tuantian. The high Poisson’s ratio is consistently located within these two sites. Recorded shocks with Ms > 2.0 reveal that most of the shocks are distributed around the two sites and few are located at the centers. The shocks, the geothermal distribution, and the crustal structure suggest that the magma is still active, and the two mantle-uplifting sites detected may be the positions of two magma chambers in the crust.  相似文献   

6.
We investigated the seismic shear-wave velocity structure of the crust beneath nine broadband seismological stations of the Shillong–Mikir plateau and its adjoining region using teleseismic P-wave receiver function analysis. The inverted shear wave velocity models show ∼34–38 km thick crust beneath the Shillong Plateau which increases to ∼37–38 km beneath the Brahmaputra valley and ∼46–48 km beneath the Himalayan foredeep region. The gradual increase of crustal thickness from the Shillong Plateau to Himalayan foredeep region is consistent with the underthrusting of Indian Plate beyond the surface collision boundary. A strong azimuthal variation is observed beneath SHL station. The modeling of receiver functions of teleseismic earthquakes arriving the SHL station from NE backazimuth (BAZ) shows a high velocity zone within depth range 2–8 km along with a low velocity zone within ∼8–13 km. In contrast, inversion of receiver functions from SE BAZ shows high velocity zone in the upper crust within depth range ∼10–18 km and low velocity zone within ∼18–36 km. The critical examination of ray piercing points at the depth of Moho shows that the rays from SE BAZ pierce mostly the southeast part of the plateau near Dauki fault zone. This observation suggests the effect of underthrusting Bengal sediments and the underlying oceanic crust in the south of the plateau facilitated by the EW-NE striking Dauki fault dipping 300 toward northwest.  相似文献   

7.
We propose a genetic algorithm (GA) search procedure for waveform modeling of local crustal earthquakes for optimal one-dimensional (1-D) crustal velocity model. Both waveforms and travel-time data are used for the structure determination. The use of travel times in model evaluation improves the waveform modeling performance in the sense of computation speed and accuracy. We applied this method to broadband waveforms of a local crustal earthquake (M 4.2) in Northeast Japan. P-wave velocities of the crustal model are found to be 4.95 ± 0.30, 5.9 ± 0.02, and 6.51 ± 0.20 km/s for a surface layer, upper crust and lower crust, respectively. The surface layer thickness and the Conrad and Moho depths are found to be 3.01 ± 0.8, 17.77 ± 0.4 and 34.59 ± 1.0 km, respectively. For epicentral distances <200 km, our synthetic waveforms match the observed ones generally well. Early arrivals are mainly observed at stations near the Pacific coast in the forearc area having a thinner crust. In contrast, delayed arrivals appear at stations near the volcanic front and back-arc areas where low-velocity anomalies exist due to the effect of the Pacific slab dehydration and the hot upwelling flows in the mantle wedge. In general, our results agree well with the main tectonic setting of the study area, which confirms the reliability of the proposed approach. Despite a 1-D velocity model is too simple to represent the complex crustal structure, it is still required for the conventional routine analysis of seismology, such as earthquake location and source parameter studies. The current approach is considered as a step toward the genetic full waveform modeling for the 3-D velocity model estimation.  相似文献   

8.
We here present the results of the inverse modeling of crustal S-phases recorded from a 400-km-long seismic profile, with azimuth nearly N30W, from Lianxian, near Hunan Province, to Gangkou Island, near Guangzhou City, Guangdong Province, in the southern margin of South China continent. The finding in this case is that many shot gathers provided by this wide-angle seismic experiment show relatively strong reflected and refracted S-phases, in particular some crustal refractions (Sg waves) and Moho reflections (SmS waves or simply Sm waves). The P-wave velocity structure of the crust and uppermost mantle was already obtained through the interpretation of vertical-component shot gathers. Now, with constraints introduced by the P-wave velocity architecture and after picking up S-wave traveltime data on the seismograms, we have obtained the S-velocity model of the crust by adjusting these traveltimes but keeping the geometry of the crustal reflectors. Our results demonstrate: (1) the average crustal S-velocity is about 3.64 km/s to the northwest of the Wuchuan-Sihui fault, and 3.62 km/s to the southeast of this fault; (2) relatively constant S-velocity of about 3.42 km/s for the upper crust, 3.55 km/s for the middle crust and laterally varying shear velocity around 3.82 km/s for the lower crust; (3) correspondingly, Vp/Vs ratio is 1.73 for the upper crust, 1.71 for the middle crust and 1.74 for the lower crust. Both shear velocities and Vp/Vs ratio correlate well with the major active faults that break the study area, and show significant changes especially in the upper crust. High Poisson’s ratio (1.8) is observed at shallow depth beneath the Minzhong depression to the southeast of the Wuchuan-Sihui fault and the Huiyuan depression in the southern margin of South China continent. In contrast, a very low Vp/Vs ratio (1.68) is observed between 8 and 14 km depth beneath Huiyuan. At deeper depth, a high Vp/Vs ratio (1.76) is observed in the lower crust beneath the Minzhong depression.  相似文献   

9.
The 2001 Bhuj earthquake (Mw 7.6) source zone is examined in the light of crack density (ε), saturation rate (ξ) and porosity parameter (ψ) using new data set derived from a large aftershock sequence recorded by the Gujarat seismic network (GSNet) during November, 2006–December, 2009. Processes of rupture initiations of the mainshock and its aftershock sequence are better understood by synthesizing the dynamic snapshots of the source zone using the new dataset. Pattern of crustal heterogeneities associated with high-ε, high-ξ and high-ψ anomalies at depths varying from 20 km to 25 km is similar to those of earlier study by Mishra and Zhao (2003). The anomalous zone is found extended distinctly by 50–60 km in the lateral direction, indicating the reinforcement of cracks and fractured volume of rock matrix due to long aftershock sequence since 2001 Bhuj earthquake in the source area. It is inferred that the presence of a fluid-filled fractured rock matrix with super saturation may have affected the structural and seismogenic strengths of the source zone and is still contributing significantly to the geneses of earthquakes in and around the source zone. Anomalous pattern of high-ε with wider distribution of high-ξ indicates the existence of micro-cracks in the lower crust, while high-ψ suggests the cementation of cracks through permeation of residual magma/metamorphic fluids into the hypocenter zone. The results suggest that the existence of residual fluids in the fractured rock matrix in the mid to lower crust might have played a key role in triggering the 2001 mainshock and is still responsible for its continued long aftershock sequences.  相似文献   

10.
We constructed the S-wave velocity structure of the crust and uppermost mantle (10–100 km) beneath the North China based on the teleseismic data recorded by 187 portable broadband stations deployed in this region. The traditional two-step inversion scheme was adopted. Firstly, we measured the interstation fundamental Rayleigh wave phase velocity of 10–60 s and imaged the phase velocity distributions using the Tarantola inversion method. Secondly, we inverted the 1-D S-wave velocity structure with a grid spacing of 0.25° × 0.25° and constructed the 3-D S-wave velocity structure of the North China. The 3-D S-wave velocity model provides valuable information about the destruction mechanism and geodynamics of the North China Craton (NCC). The S-wave velocity structures in the northwestern and southwestern sides of the North–South Gravity Lineament (NSGL) are obviously different. The southeastern side is high velocity (high-V) while the northeastern side is low velocity (low-V) at the depth of 60–80 km. The upwelling asthenosphere above the stagnated Pacific plate may cause the destruction of the Eastern Block and form the NSGL. A prominent low-V anomaly exists around Datong from 50 to 100 km, which may due to the upwelling asthenosphere originating from the mantle transition zone beneath the Western Block. The upwelling asthenosphere beneath the Datong may also contribute to the destruction of the Eastern Block. The Zhangjiakou-Penglai fault zone (ZPFZ) may cut through the lithosphere and act as a channel of the upwelling asthenosphere. A noticeable low-V zone also exists in the lower crust and upper mantle lid (30–50 km) beneath the Beijing–Tianjin–Tangshan (BTT) region, which may be caused by the upwelling asthenosphere through the ZPFZ.  相似文献   

11.
2-D velocity structure up to the basement is derived by travel-time inversion of the first arrival seismic refraction and wide-angle reflection data along the SW–NE trending Jhagadia–Rajpipla profile, located on the western part of Deccan syneclise in the Narmada–Tapti region. The study region is mostly covered by alluvium. Inversion of refraction and wide-angle reflection data reveals four layered velocity structure above the basement. The first two layers with P-wave velocities of 1.95–2.3 km s?1 and 2.7–3.05 km s?1 represent the Recent and Quaternary sediments respectively. The thickness of these sediments varies from 0.15 km to 3.4 km. The third layer with a P-wave velocity of 4.8–5.1 km s?1 corresponds to the Deccan volcanics, whose thickness varies from 0.5 km to 1.0 km. Presence of a low velocity zone (LVZ) below the high velocity volcanic rocks in the study area is inferred from the travel-time ‘skip’ and amplitude decay of the first arrival refraction data and the wide-angle reflection from top of the LVZ present immediately after the first arrival refraction from Deccan Trap layer. The thickness of the low velocity Mesozoic sediments varies from 0.3 km to 1.7 km. The basement with a P-wave velocity of 5.9–6.15 km s?1 lies at a depth of 4.9 km near Jhagadia and shallows to 1.2 km towards northeast near Rajpipla. The results indicate presence of low velocity Mesozoic sediments hidden below the Deccan Trap layer in the western part of the Deccan syneclise.  相似文献   

12.
We estimated the crustal thickness and velocity structure beneath the five stations comprising the Republic of Singapore’s seismic network. Our data set was composed of 697 teleseismic receiver functions and 7 months of broad-band data that was cross-correlated to produce inter-station Green’s functions. Surface wave group velocities were extracted from the Green’s functions to obtain dispersion data for a path from central Sumatra to Singapore in order to provide a complimentary data set to the receiver functions. Crustal thickness was estimated via an H  k stacking technique, and high-resolution 1D P-wave velocity profiles were generated beneath each station by jointly inverting receiver function stacks and the group velocity data using a linearised time-domain inversion scheme. Crustal thickness beneath four stations was found to be between 28.0 km and 32.0 km, while one station in the northeast of Singapore indicates 24.0 km thick crust. This implies a significant crustal thinning beneath Singapore over the lateral extent of 50.0 km. Inversion results exhibit several crustal features that are observable in the derived models at all five stations, indicating that they exist across Singapore as a whole. There appears to be an upper-crustal high-velocity zone beneath Singapore, underlain by a velocity inversion. Station NTU shows slower near-surface velocities than the other stations, consistent with its situation above the sedimentary Jurong formation. These results expand the available global velocity data set, as well as being useful for assessing the seismic hazard in Singapore.  相似文献   

13.
In this paper we show the seismicity and velocity structure of a segment of the Alpine retro-belt front along the continental collision margin of the Venetian Alps (NE Italy). Our goal is to gain insight on the buried structures and deep fault geometry in a “silent” area, i.e., an area with poor instrumental seismicity but high potential for future earthquakes, as indicated by historical earthquakes (1695 Me = 6.7 Asolo and 1936 Ms = 5.8 Bosco del Cansiglio). Local earthquakes recorded by a dense temporary seismic network are used to compute 3-D Vp and Vp/Vs tomographic images, yielding well resolved images of the upper crust underneath the south-Alpine front. We show the presence of two main distinct high Vp S-verging thrust units, the innermost coincides with the piedmont hill and the outermost is buried under a thick pile of sediments in the Po plain.Background seismicity and Vp/Vs anomalies, interpreted as cracked fluid-filled volumes, suggest that the NE portion of the outermost blind thrust and its oblique/lateral ramps may be a zone of high fluid pressure prone to future earthquakes.Three-dimensional focal mechanisms show compressive and transpressive solutions, in agreement with the tectonic setting, stress field maps and geodetic observations. The bulk of the microseismicity is clustered in two different areas, both in correspondence of inherited lateral ramps of the thrust system. Tomographic images highlight the influence of the paleogeographic setting in the tectonic style and seismic activity of the region.  相似文献   

14.
The shear velocity structure beneath the Virunga volcanic area was estimated by using an average solution in the time domain inversion of stacked teleseismic receiver functions provided by two seismic broadband stations KUNENE (KNN) and KIBUMBA (KBB). These two stations are 29 km apart and located at the eastern and western escarpment of the Western Rift Valley of Africa in the Virunga area, respectively. The velocity model was presented as P-wave velocity models. From these models, the crust mantle transition zone beneath the area sampled by KNN and KBB in the Virunga area was determined at depth from about 36 to 39 km and 30 to 41 km, respectively. A low velocity zone was observed below stations KNN and KBB at depths between 20–30 km and 18–28 km, respectively, and with average velocity 5.9 km/s and 6.0 km/s. This low velocity zone may probably related to a magma chamber or a melt-rich sill. The models show also high velocity material (6.8–7.4 km/s) lying beneath stations KNN and KBB at depths 3–20 km and 3–10 km, respectively, which is indicative of magma cumulates within the volcanic edifice. The result obtained in this study was applied to the determination of epicentres during the period prior to the 27 November 2006 Nyamuragira eruption. This eruption was preceded by a swarm of hybrid volcanic earthquakes with clear P-waves onset. Using the receiver function model was found to improve the location of events. The located events correlate well with the location of the eruptive site and data provided by the INSAR observations of surface deformation associated with eruption.  相似文献   

15.
To investigate subsurface structure and seismogenic layers, 3D velocity inversion was carried out in the source zone of 1905 Kangra earthquake (M8.0) in the northwestern Himalaya. P-wave and S-wave phase data of 159 earthquakes recorded by a network of 21 stations were used for this purpose. Inverted velocity tomograms up to a depth range of 18 km show significant variations of 14% in Vp and Vs and 6% in the Vp/Vs across the major tectonic zones in the region. Synthesis of seismicity pattern, velocity structure, distinctive focal mechanisms coupled with nature of stress distribution allows mapping of three different source regions that control regional seismotectonics. Accumulating strains are partly consumed by sliding of Chamba Nappe to the southwest through reverse-fault movements along Chamba/Panjal/Main Boundary Thrusts. This coupled with normal-fault type displacements along Chenab Normal Fault in the north account for low magnitude widespread seismicity in upper 8–10 km of the crust. At intermediate depths from 8 to 15 km, adjusting to residual compressive stresses, the detachment or lower end of the MBT slips to produce thrust dominated seismicity. Nucleation of secondary stresses in local NE–SW oriented structure interacts in complex manner with regional stresses to generate normal type earthquakes below the plane of detachment and therefore three seismic regimes at different depths produce intense seismicity in a block of 30 × 30 km2 centered NE to the epicenter of Kangra earthquake.  相似文献   

16.
Although orogeny tapers off in western Taiwan large and small earthquakes do occur in the Taiwan Strait, a region largely untouched in previous studies owing mostly to logistical reasons. But the overall crustal structure of this region is of particular interest as it may provide a hint of the proto-Taiwan before the orogeny.By combining time domain empirical Green’s function (TDEGF) from ambient seismic noise using station-pairs and traditional surface wave two-station method (TS) we are able to construct Rayleigh wave phase velocity dispersion curves between 5 and 120 s. Using Broadband Array in Taiwan for Seismology (BATS) stations in Taiwan and in and across the Strait we are able to derive average 1-D Vs structures in different parts of this region. The results show significant shear velocity differences in the upper 15 km crust as expected. In general, the highest Vs in the upper crust observed in the coastal area of Mainland China and the lowest Vs appears along the southwest offshore of the Taiwan Island; they differ by about 0.6–1.1 km/s. For different parts of the Strait, the upper crust Vs structures are lower in the middle by about 0.1–0.2 km/s relative to those in the northern and southern parts. The upper mantle Vs structure (Moho – 150 km) beneath the Taiwan Strait is about 0.1–0.3 km/s lower than the AK135 model. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island. The inversion of seismic velocity structures using shorter period band dispersion data in the sea areas with water depth deeper than 1000 m should take water layer into consideration except for the continental shelves.  相似文献   

17.
Some 455 events (mb  4.5) in the Indo-Myanmar subduction zone are compiled using the ISC/EHB/NEIC catalogues (1964–2011) for a systematic study of seismic precursors, b-value and swarm activity. Temporal variation of b-value is studied using the maximum likelihood method beside CUSUM algorithm. The b-values vary from 0.95 to 1.4 for the deeper (depth ⩾60 km) earthquakes, and from 0.85 to 1.3 for the shallower (depth <60 km) earthquakes. A sudden drop in the b-value, from 1.4 to 0.9, prior to the occurrence of larger earthquake(s) at the deeper depth is observed. It is also noted that the CUSUM gradient reversed before the occurrence of larger earthquakes. We further examined the seismicity pattern for the period 1988–1995 within a radius of 150 km around the epicentre (latitude: 24.96°N; longitude: 95.30°E) of a deeper event M 6.3 of May 6, 1995 in this subduction zone. A precursory swarm during January 1989 to July 1992 and quiescence during August 1992 to April 1995 are identified before this large earthquake. These observations are encouraging to monitor seismic precursors for the deeper events in this subduction zone.  相似文献   

18.
A high-resolution passive seismic experiment in the Kachchh rift zone of the western India has produced an excellent dataset of several thousands teleseismic events. From this network, 500 good teleseismic events recorded at 14 mobile broadband sites are used to estimate receiver functions (for the 30–310° back-azimuth ranges), which show a positive phase at 4.5–6.1 s delay time and a strong negative phase at 8.0–11.0 s. These phases have been modeled by a velocity increase at Moho (i.e. 34–43 km) and a velocity decrease at 62–92 km depth. The estimation of crustal and lithospheric thicknesses using the inversion of stacked radial receiver functions led to the delineation of a marked thinning of 3–7 km in crustal thickness and 6–14 km in lithospheric thickness beneath the central rift zone relative to the surrounding un-rifted parts of the Kachchh rift zone. On an average, the Kachchh region is characterized by a thin lithosphere of 75.9 ± 5.9 km. The marked velocity decrease associated with the lithosphere–asthenoshere boundary (LAB), observed over an area of 120 km × 80 km, and the isotropic study of xenoliths from Kachchh provides evidence for local asthenospheric updoming with pockets of partial melts of CO2 rich lherzolite beneath the Kachchh seismic zone that might have caused by rifting episode (at 88 Ma) and the associated Deccan thermal-plume interaction (at 65 Ma) episodes. Thus, the coincidence of the area of the major aftershock activity and the Moho as well as asthenospheric upwarping beneath the central Kachchh rift zone suggests that these pockets of CO2-rich lherzolite partial melts could perhaps provide a high input of volatiles containing CO2 into the lower crust, which might contribute significantly in the seismo-genesis of continued aftershock activity in the region. It is also inferred that large stresses in the denser and stronger lower crust (at 14–34 km depths) induced by ongoing Banni upliftment, crustal intrusive, marked lateral variation in crustal thickness and related sub-crustal thermal anomaly play a key role in nucleating the lower crustal earthquakes beneath the Kachchh seismic zone.  相似文献   

19.
We propose a model pertaining to the generation of 26th December 2004 off Sumatra mega-event in the backdrop of other similar type earthquakes along subduction zones around the world. Reconstructions of Benioff trajectories through the hypocenters of historical earthquakes including six mega-earthquakes indicate (i) confinement of hypocenters right within the descending lithosphere, and (ii) natural coincidence of foci of the mega-events around the zones of plate flexing. These observations are discussed in detail with special emphasis on the Sumatra margin considering the role of rheological anomaly across the cross-section of the descending lithosphere; yield strength envelope and residual stress accumulation through time. The intraplate origin of shallow mega-thrust earthquakes allowed us to advocate the ‘zone of flexing’ along the profiles of the subducting plates as nodal area for stress concentration. We propose here that at elevated confining pressure and temperature, loading of unidirectional cyclic stress on time-average bending stress enhanced the material yield strength (i.e., strain-hardening), and leads the semi-brittle portion of the lithosphere into near-brittle condition through rheological transformation. Under subsequent rise in neutral surface and increase in compressive stress field, non-coaxial deformation triggered shear failure on 26th December 2004 preferably at the rheological interface between strain-hardened near-brittle layer and deformed ductile layer within the sub-oceanic mantle.A two-stage fracture mechanism viz. a slow (~1.1 km/s) bilateral initiation in an essentially strain-hardened near-brittle domain and a follow-up very rapid progression (3.3 km/s) in the brittle, crustal domain was mainly involved in the generation of 2004 off Sumatra mega-event. Estimation shows an amount of 3.38 × 1022 to 4.50 × 1022 N m seismic moment (Mo) and 8.95–9.03 moment magnitude (Mw) for the southern part of the 1300 km extended rupture i.e. between the North Andaman to the north and the Sumatra at its south. The study necessitates the reassessment of other shallow-focus mega-thrust earthquakes along the subduction margins around the globe.  相似文献   

20.
The N–S oriented Coastal Cordillera of South Central Chile shows marked lithological contrasts along strike at ∼38°S. Here, the sinistral NW–SE-striking Lanalhue Fault Zone (nomen novum) juxtaposes Permo-Carboniferous magmatic arc granitoids and associated, frontally accreted metasediments (Eastern Series) in the northeast with a Late Carboniferous to Triassic basal-accretionary forearc wedge complex (Western Series) in the southwest. The fault is interpreted as an initially ductile deformation zone with divergent character, located in the eastern flank of the basally growing, upwarping, and exhuming Western Series. It was later transformed and reactivated as a semiductile to brittle sinistral transform fault. Rb–Sr data and fluid inclusion studies of late-stage fault-related mineralizations revealed Early Permian ages between 280 and 270 Ma for fault activity, with subsequent minor erosion. Regionally, crystallization of arc intrusives and related metamorphism occurred between ∼306 and ∼286 Ma, preceded by early increments of convergence-related deformation. Basal Western Series accretion started at >290 Ma and lasted to ∼250 Ma. North of the Lanalhue fault, Late Paleozoic magmatic arc granitoids are nearly 100 km closer to the present day Andean trench than further south. We hypothesize that this marked difference in paleo-forearc width is due to an Early Permian period of subduction erosion north of 38°S, contrasting with ongoing accretion further south, which kinematically triggered the evolution of the Lanalhue Fault Zone. Permo-Triassic margin segmentation was due to differential forearc accretion and denudation characteristics, and is now expressed in contrasting lithologies and metamorphic signatures in todays Andean forearc region north and south of the Lanalhue Fault Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号