首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
The Qinling Orogen, central China, was constructed during the Mesozoic collision between the North China and Yangtze continental plates. The orogen includes four tectonic units, from north to south, the Huaxiong Block (reactivated southern margin of the North China Craton), North Qinling Accretion Belt, South Qinling Fold Belt (or block) and Songpan Fold Belt, evolved from the northernmost Paleo-Tethys Ocean separating the Gondwana and Laurentia supercontinents. Here we employ detrital zircons from the Early Cretaceous alluvial sediments within the Qinling Orogen to trace the tectonic evolution of the orogen. The U–Pb ages of the detrital zircon grains from the Early Cretaceous Donghe Group sediments in the South Qinling Fold Belt cluster around 2600–2300 Ma, 2050–1800 Ma, 1200–700 Ma, 650–400 Ma and 350–200 Ma, corresponding to the global Kenorland, Columbia, Rodinia, Gondwana and Pangaea supercontinent events, respectively. The distributions of ages and εHf(t) values of zircon grains show that the Donghe Group sediments have a complex source comprising components mainly recycled from the North Qinling Accretion Belt and the North China Craton, suggesting that the South Qinling Fold Belt was a part of the united Qinling–North China continental plate, rather than an isolated microcontinent, during the Devonian–Triassic. The youngest age peak of 350–200 Ma reflects the magmatic event related to subduction and termination of the Mian-Lue oceanic plate, followed by the collision between the Yangtze Craton and the united Qinling–North China continent that came into existence at the Triassic–Jurassic transition. The interval of 208–145 Ma between the sedimentation of the Early Cretaceous Donghe Group and the youngest age of detrital zircons was coeval with the post-subduction collision between the Yangtze and the North China continental plates in Jurassic.  相似文献   

2.
Neoproterozoic magmatic rocks in the South Qinling Belt of China provide important clues for understanding the mechanism and timing of the amalgamation and breakup of the Rodinia supercontinent. Here we report new geochemical and high-precision LA-ICP-MS zircon U–Pb–Hf isotopic analyses on magmatic suites from the Liuba and Zhashui areas in the South Qinling Belt. Our data show that the crystallization ages of the granitic intrusions from Tiefodian and Tangjiagou in the Liuba area are 863 ± 22 Ma and 794 ± 11 Ma, respectively, whereas those of the dioritic and gabbroic intrusions at Chishuigou in the Zhashui area are 925 ± 28 Ma and 832.6 ± 4.0 Ma, respectively. The diorites at Chishuigou display arc-related geochemical affinity, characterized by strong depletion in Nb, Ta, P and Ti, and enrichment in large-ion lithophile elements (i.e., Rb, Ba, Th and U), indicating a subduction-related arc setting at ca. 925 Ma. The Tiefodian granitic rocks have high SiO2 (68.46–70.98 wt.%), Na2O (3.87–4.51 wt.%), and low K2O (1.34–2.61 wt.%) contents with TTG affinity. However, their Cr, and Ni contents and Cr/Ni, Nb/Ta ratios are similar to those of continental crust, and together with high negative εHf(t) values (− 4.87 to − 14.84), suggesting a continental margin arc at ca. 863 Ma. The gabbros at Chishuigou have high TiO2 content (2.74–3.14 wt.%), Zr/Y (3.93–4.24), Ta/Yb (0.19–0.25) ratios and low Zr/Nb ratios (11.37–13.17), similar to the features of within-plate basalts, indicating an intra-continental rift setting at ca. 833 Ma. The granitoids at Tangjiagou exhibit enrichment of LREE, K and Pb, and depletion of Nb, Ta, P and Ti, suggesting an extensional tectonic environment at ca. 794 Ma.The results indicate that Neoproterozoic magmatic rocks in the South Qinling Belt formed before ca. 833 Ma and might represent the amalgamation of the Rodinia supercontinent in an arc-related subduction environment, whereas the magmatic events with the peak ages at ~ 740 Ma during ca. 833–680 Ma represent the breakup of Rodinia. Integrating our new data with those from previous works, we propose a new tectonic model for the evolutionary history of the South Qinling Belt in the Neoproterozoic, including four key stages: 1) an ocean that separated the South Qinling Belt and the Yangtze Block in the Early Neoproterozoic (ca.1000–956 Ma); 2) bidirectional subduction of the oceanic lithosphere during ca. 956–870 Ma; 3) subduction and collision between the South Qinling Belt and the Yangtze Block during ca. 870–833 Ma, thus suggesting that the South Qinling Belt was as a part of the Yangtze Block from this period; and 4) intra-continental rifting during ca. 833–680 Ma, although the blocks were not entirely rifted apart.  相似文献   

3.
《Chemical Geology》2007,236(1-2):112-133
The Cida A-type granitic stock (∼ 4 km2) and Ailanghe I-type granite batholith (∼ 100 km2) in the Pan-Xi (Panzhihua-Xichang) area, SW China, are two important examples of granites formed during an episode of magmatism associated with the Permian Emeishan mantle plume activity. This is a classic setting of plume-related, anorogenic magmatism exhibiting the typical association of mantle-derived mafic and alkaline rocks along with silicic units. SHRIMP zircon U–Pb data reveal that the Cida granitic pluton (261 ± 4 Ma) was emplaced shortly before the Ailanghe granites (251 ± 6 Ma). The Cida granitoids display mineralogical and geochemical characteristics of A-type granites including high FeO/MgO ratios, elevated high-field-strength elements (HFSE) contents and high Ga/Al ratios, which are much higher than those of the Ailanghe granites. All the granitic rocks show significant negative Eu anomalies and demonstrate the characteristic negative anomalies in Ba, Sr, and Ti in the spidergrams. It can be concluded that the Cida granitic rocks are highly fractionated A-type granitoids whereas the Ailanghe granitic rocks belong to highly evolved I-type granites.The Cida granitoids and enclaves have Nd and Sr isotopic initial ratios (εNd(t) =  0.25 to + 1.35 and (87Sr/86Sr)i = 0.7023 to 0.7053) close to those of the associated mafic intrusions and Emeishan basalts, indicating the involvement of a major mantle plume component. The Ailanghe granites exhibit prominent negative Nb and Ta anomalies and weakly positive Pb anomalies in the spidergram and have nonradiogenic εNd(t) ratios (− 6.34 to − 6.26) and high (87Sr/86Sr)i values (0.7102 to 0.7111), which indicate a significant contribution from crustal material. These observations combined with geochemical modeling suggest that the Cida A-type granitoids were produced by extensive fractional crystallization from basaltic parental magmas. In contrast, the Ailanghe I-type granites most probably originated by partial melting of the mid-upper crustal, metasedimentary–metavolcanic rocks from the Paleo-Mesoproterozoic Huili group and newly underplated basaltic rocks.In the present study, it is proposed that petrogenetic distinctions between A-type and I-type granites may not be as clear-cut as previously supposed, and that many compositional and genetically different granites of the A- and I-types can be produced in the plume-related setting. Their ultimate nature depends more importantly on the type and proportion of mantle and crustal material involved and melting conditions. Significant melt production and possible underplating and/or intrusion into the lower crust, may play an important role in generating the juvenile mafic lower crust (average 20 km) in the central part of the Emeishan mantle plume.  相似文献   

4.
To constrain the provenance of the Ordos Basin and the evolution history of the Qinling Orogen Belt from the Triassic to the Jurassic, 10 samples from the Dongsheng area and 28 samples from the Yan’an area were analyzed for U–Pb ages and Lu–Hf and Sm–Nd isotopic compositions. The results indicate that Middle Jurassic sediments in the Dongsheng area were derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane. Mesozoic sediments in the Yan’an area consist of two parts. One part is derived from the North China Craton (NCC), which has U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga, and Hf model ages of ∼2.8 Ga. The other part is derived from the Qilian–Qinling Orogenic Belt, which has U–Pb age groups of 600–1500 Ma and 100–500 Ma, and Nd and Hf isotopic model ages of less than 2.2 Ga. Combining the U–Pb ages with the Hf and Nd isotopic model ages, Mesozoic detrital zircons with U–Pb age groups of ∼1.8 Ga and ∼2.5 Ga in the Yan’an area are found to also be derived from the Khondalite Belt, Langshan Mountain and the Yinshan Terrane, not from the Trans-China Orogen Belt. From the late–Late Triassic sediments of the Yan’an area, the low average values of the Hf (2.03 Ga) and Nd (2.03 Ga) model ages and the characteristic age population of 600–1500 Ma reveal that the main collision or continental subduction between the NCC and the South China Craton (SCC) occurred in the late–Late Triassic. After the main collision or continental subduction, the proportion of sediments from the Qinling–Qilian Orogenic Belt began to decrease (recorded in the early Jurassic samples), which may be in response to the gradual slowing of the uplift speed of the Qinling Orogenic Belt. In the early-middle Jurassic, the sediments have a main U–Pb age population of 100–500 Ma, low detrital zircon Hf model ages (average value is 1.17 Ga) and low whole rock Nd model ages (average value is 1.13 Ga), which suggests that the Qilian–Qinling Orogenic Belt may have a fast uplift history in the early-middle Jurassic.  相似文献   

5.
The Qinling Orogenic Belt marks the link between the South China and North China Blocks and is an important region to understand the geological evolution of the Chinese mainland as well as the Asian tectonic collage. However, the tectonic affinity and geodynamic evolution of the South Qinling Tectonic Belt (SQTB), a main unit of the Qinling Orogenic Belt, remains debated. Here we present detailed geological, geochemical and zircon U–Pb–Hf isotopic studies on the Zhangjiaba, Xinyuan, Jiangjiaping, Guangtoushan and Huoshaodian plutons from the Guangtoushan granitoid suite (GGS) in the western segment of the SQTB. Combining geology, geochronology and whole-rock geochemistry, we identify four distinct episodes of magmatism as: (1) ~ 230–228 Ma quartz diorites and granodiorites, (2) ~ 224 Ma fine-grained granodiorites and monzogranites, (3) ~ 218 Ma porphyritic monzogranites and (4) ~ 215 Ma high-Mg# quartz diorites and granodiorites as well as coeval muscovite monzogranites. The ~ 230–228 Ma quartz diorites and granodiorites were generated by magma mixing between a mafic melt from mantle source and a granodioritic melt derived from partial melting of Neoproterozoic rocks in the lower continental crust related to a continental arc regime. The ~ 224 Ma fine-grained granodiorites and monzogranites were formed through partial melting of a transitional source with interlayers of basaltic rocks and greywackes in the deep zones of the continental arc. The ~ 218 Ma porphyritic monzogranites originated from partial melting of metamorphosed greywackes in lower crustal levels, suggesting underthrusting of middle or upper crustal materials into lower crustal depths. The ~ 215 Ma high-Mg# quartz diorites and granodiorites (with Mg# values higher than 60) were derived from an enriched mantle altered by sediment-derived melts. Injection of hot mantle-derived magmas led to the emergence of the ~ 215 Ma S-type granites at the final stage.Integrating our studies with previous data, we propose that the Mianlue oceanic crust was still subducting beneath the SQTB during ~ 248–224 Ma, and final closure of the Mianlue oceanic basin occurred between ~ 223 Ma and ~ 218 Ma. After continental collision between the South China Block and the SQTB, slab break-off occurred, following which the SQTB transformed into post-collisional extension setting.  相似文献   

6.
The Qinling Orogen separating the North China plate from the Yangtze plate is a key area for understanding the timing and process of aggregation between the two plates. Two competing and highly contrasting tectonic models currently exist to explain the timing and nature of collision; one advocates a Devonian continental collision while the other favors a Triassic collision. The Wuguan Complex, between the early Paleozoic North Qinling and the Mesozoic South Qinling terranes, can provide important constraints on the late Paleozoic evolutionary processes of the Qinling Orogen. Metamorphosed sedimentary rock of the Wuguan Complex have a detrital zircon age spectrum with two major peaks at 453 Ma and 800 Ma, several minor age populations of 350–430 Ma and 1000–2868 Ma, and a youngest weighted mean age of 358 ± 3 Ma, indicating a mixed source from the North Qinling terrane. The recrystallized zircons yield a weighted mean age of 333 ± 2 Ma, representing the metamorphic age. Geochemical analyses imply that the sedimentary rocks were originally deposited in an active continental margin dominated by an acidic-arc source with a subordinate mafic-ultramafic source. The youngest population of detrital zircons (358 Ma) suggests that the Wuguan Complex developed as forearc basin along the southern accreted margin of the North Qinling terrane during the early Carboniferous, whereas the ca. 520–460 Ma mafic rocks with E-MORB, N-MORB, OIB or island arc basalt signatures probably derived from the Danfeng Group. In combination with regional data, we suggest that the depositional age of the Wuguan Complex is ca. 389–330 Ma, but it was subsequently incorporated into tectonic mélange by the northward subduction of the Paleo-Qinling Ocean. A long-lived southward-facing subduction-accretionary system in front of the North Qinling terrane probably lasted until at least the early Carboniferous.  相似文献   

7.
The petrology, geochemistry, geochronology, and Sr–Nd–Hf isotopes of the backarc granitoids from the central part of the Qilian block are studied in the present work. Both S- and I-type granitoids are present. In petrographic classification, they are granite, alkali feldspar granite, felsic granite, diorite, quartz diorite, granodiorite, and albite syenite. The SHRIMP ages are 402–447 Ma for the S-type and 419–451 Ma for the I-type granitoids. They are mostly high-K calc-alkaline granitoids. The S-type granitoids are weakly to strongly peraluminous and are characterized by negative Eu anomalies (Eu/Eu* = 0.18–0.79). The I-type granitoids are metaluminous to weakly peraluminous and are characterized mostly by small negative to small positive Eu anomalies (Eu/Eu* = 0.71–1.16). The initial (87Sr/86Sr) values are 0.708848–0.713651 for the S-type and 0.704230–0.718108 for the I-type granitoids. The εNd(450 Ma) values are − 8.9–−4.1 and − 9.7–+ 1.9 for the S-type and I-type granitoids, respectively. The TDM values are 1.5–2.4 Ga for the S-type and 1.0–2.3 Ga for the I-type granitoids. For the Qilian block, the backarc granitoid magmatism took place approximately 60 million years after the onset of the southward subduction of the north Qilian oceanic lithosphere and lasted approximately 50 million years. Partial melting of the source rocks consisting of the Neoproterozoic metasedimentary rocks of the Huangyuan Group and the intruding lower Paleozoic basaltic rocks could produce the S-type granitoid magmas. Partial melting of basaltic rocks mixed with lower continental crustal materials could produce the I-type granitoid magmas. Major crustal growth occurred in the late Archean and Meso-Paleoproterozoic time for the Qilian block. The magma generation was primarily remelting of the crustal rocks with only little addition of the mantle materials after 1.0 Ga for the Qilian block.  相似文献   

8.
《Gondwana Research》2014,25(2):797-819
A suite of Paleozoic granitoids in Central Tianshan was studied for both geochemistry and geochronology in an effort to constrain their origin and tectonic setting. We combined LA-ICP-MS dating of zircon, standard geochemical analyses and Hf-isotopic studies of zircon to develop our tectonic model. Based on our analysis, the granitoids formed in three distinctive stages: ~ 450–400 Ma, ~ 370–350 Ma and ca. 340 Ma. The first stage (450–400 Ma) granitoids exhibit metaluminous, magnesian, high-K to shoshonitic characteristics of I-type granitoids (arc-setting), that are enriched in LREE relative to HREE with high (La/Yb)CN values, show negative Eu anomaly and are depleted in Nb, Ta and Ti. This phase of granitoid emplacement was most likely related to the southward subduction of the Paleo-Tianshan Ocean beneath the Tarim block and the subsequent Central Tianshan arc. In contrast, the second stage granitoids (370–350 Ma) are distinctly different and are classified as calc-alkaline or shoshonitic plutons with a weak positive Eu anomaly. Within the second stage granitoids, it appears that the earlier (~ 365 Ma) granitoids fit within the A-type field whereas the younger (~ 352 Ma) granitoids plot within the post-collisional potassic field. These granitoids formed during collisions between Central Tianshan and the Tuha terrane that occurred along the northern margin of Central Tianshan. Lastly, the ca. 340 Ma granitoids are typical of volcanic arc granitoids again that probably formed during the northward subduction of the South Tianshan Ocean beneath the Central Tianshan landmass or the subsequent southward subduction of the residual Paleo-Tianshan Ocean.The Hf isotopic data of zircons from all the studied granitoids were pooled and yielded three prominent Hf TDMC model age populations: ca. 2400 Ma, ca. 1400 Ma and ca. 1100 Ma. The Hf-data shows a significant input of juvenile crust in addition to crustal recycling. We interpret these three phases of juvenile crustal addition to phases of global growth of continental crust (~ 2400 Ma), the addition of juvenile crust during the breakup of the Columbia supercontinent (~ 1400 Ma) and the assembly of Rodinia (~ 1100 Ma).  相似文献   

9.
We present new data on the highly fractionated Late Triassic I-type Liyuantang granite, which is located in the middle segment of the South Qinling Subzone of central China and is associated with molybdenum mineralization. Zircon U–Pb dating indicates that the granite was emplaced at 210.1 ± 1.9 Ma, with a single zircon containing an inherited core that yielded an age of 449.8 ± 7.1 Ma. Magmatic zircons from the granite have εHf(t) values of − 4.0 to + 1.5, whereas the inherited zircon core has a εHf(t) value of − 5.3. Calculated Hf model ages of crust formation are indicative of substantial contributions from melting of Proterozoic crust that ranges in age from 1501 to 1155 Ma. The granite contains high concentrations of Si, Al, Na, and K, is enriched in Rb, Th, and U, has elevated Rb/Sr and Ga/Al ratios, and is depleted in Ti, Fe, Mn, Mg, Ca, and P, with significantly negative Eu anomalies (δEu = 0.33–0.50), similar to other highly fractionated I-type granites. These data indicate that the magmas that formed the Liyuantang pluton were produced during partial melting of Proterozoic garnet-absent quartz amphibolites. The magmas then fractionated apatite, feldspar, Ti-bearing phases, biotite, and hornblende prior to emplacement.Re–Os isotope analysis of molybdenite from the study area yields a mineralization age of 200.9 ± 6.2 Ma, suggesting that the Liyuantang molybdenum deposit formed during a previously unrecognized mineralization event. The present results, together with previous data, demonstrate that highly fractionated I-type granites associated with the second pulse of magmatism in the South Qinling subzone should be considered highly prospective for mineral exploration, focusing on Triassic–Early Jurassic granitoids.  相似文献   

10.
Metamorphic and magmatic rocks are present in the northwestern part of the Schwaner Mountains of West Kalimantan. This area was previously assigned to SW Borneo (SWB) and interpreted as an Australian-origin block. Predominantly Cretaceous U-Pb zircon ages (c. 80–130 Ma) have been obtained from metapelites and I-type granitoids in the North Schwaner Zone of the SWB but a Triassic metatonalite discovered in West Kalimantan near Pontianak is inconsistent with a SWB origin. The distribution and significance of Triassic rocks was not known so the few exposures in the Pontianak area were sampled and geochemical analyses and zircon U-Pb ages were obtained from two meta-igneous rocks and three granitoids and diorites. Triassic and Jurassic magmatic and metamorphic zircons obtained from the meta-igneous rocks are interpreted to have formed at the Mesozoic Paleo-Pacific margin where there was subduction beneath the Indochina–East Malaya block. Geochemically similar rocks of Triassic age exposed in the Embuoi Complex to the north and the Jagoi Granodiorite in West Sarawak are suggested to have formed part of the southeastern margin of Triassic Sundaland. One granitoid (118.6 ± 1.1 Ma) has an S-type character and contains inherited Carboniferous, Triassic and Jurassic zircons which indicate that it intruded Sundaland basement. Two I-type granitoids and diorites yielded latest Early and Late Cretaceous weighted mean ages of 101.5 ± 0.6 and 81.1 ± 1.1 Ma. All three magmatic rocks are in close proximity to the meta-igneous rocks and are interpreted to record Cretaceous magmatism at the Paleo-Pacific subduction margin. Cretaceous zircons of metamorphic origin indicate recrystallisation at c. 90 Ma possibly related to the collision of the Argo block with Sundaland. Subduction ceased at that time, followed by post-collisional magmatism in the Pueh (77.2 ± 0.8 Ma) and Gading Intrusions (79.7 ± 1.0 Ma) of West Sarawak.  相似文献   

11.
The newly-discovered Shiyaogou molybdenum deposit is located in the eastern Qinling metallogenic belt in central China. The deposit contains at least 152,000 t of Mo metal and bears typical porphyry-type features in terms of its concentric alteration zonation, quartz vein-hosted Mo mineralization, veining sequence and the spatial association with concealed granite porphyries. Re–Os isotope analyses of molybdenite from the deposit yield an ore-forming age of 132.3 ± 2.8 Ma. LA-ICP-MS U–Pb zircon dating of ore-related porphyries yields crystallization ages from 135 Ma to 132 Ma, indicating a temporal link between granitic magmatism and Mo mineralization. A population of captured magmatic zircons indicates another pulse of magmatism at ~ 143 Ma. A barren granite intrusion near the deposit gives a zircon U–Pb age of 148.1 ± 1.1 Ma. These magmatic activities were concurrent with the emplacement of the nearby Heyu granitic batholith, a largely ore-barren intrusive complex formed from ~ 148 Ma to ~ 127 Ma. Zircon Ce4 +/Ce3 + ratios of ore-related porphyries are obviously higher than those of contemporaneous barren granitoids, implying an affinity between Mo mineralization and highly oxidized magmas. Moreover, zircons from these granitoids overall have decreasing Ce4 +/Ce3 + ratios from 148 Ma to 132 Ma, reflecting decreasing oxygen fugacities during magma evolution. Available geological, radiometric and stable isotopic evidence suggests that the decrease of magma oxygen fugacity was probably associated with an increase of mantle contribution to granitic magmatism and metallogenesis, which probably gave rise to successive mineralization of Mo and Au in the eastern Qinling. The intense magmatic–metallogenic events in the eastern Qinling during Late Jurassic to Early Cretaceous times are interpreted as a response to the large-scale lithosphere thinning and subsequent asthenosphere upwelling beneath the eastern part of the North China Craton.  相似文献   

12.
East Qinling is the largest porphyry molybdenum province in the world; these Mo deposits have been well documented. In West Qinling, however, few Mo deposits have been discovered although granitic rocks are widespread. Recently, the Wenquan porphyry Mo deposit has been discovered in Gansu province, which provides an insight into Mo mineralization in West Qinling. In this paper we report Pb isotope compositions for K-feldspar and sulfides, S isotope ratios for sulfides, the results obtained from petrochemical study and from in situ LA-ICP-MS zircon U-Pb dating and Hf isotopes. The granitoids are enriched in LILE and LREE, with REE and trace element patterns similar to continental crust, suggesting a crustal origin. The Mg# (40.05 to 56.34) and Cr and Ni contents are high, indicating a source of refractory mafic lower crust. The εHf(t) values of zircon grains from porphyritic monzogranite range from ? 2.9 to 0.6, and from granitic porphyry vary from ? 3.3 to 1.9. The zircons have TDM2 of 1014 to 1196 Ma for the porphyritic monzogranite and 954 to 1224 Ma for the granitic porphyry, implying that these granitoids were likely derived from partial melting of a Late Mesoproterozoic juvenile lower crust. The Pb isotope compositions of the granitoids are similar to granites in South China, showing that the magma was sourced from the middle–lower crust in the southern Qinling tectonic unit. The Pb isotopic contrast between the Mo-bearing granitoids and ores shows that the Pb in the ore-forming solution was derived from fractionation of a Triassic magmatic system. δ34S values of sulfides are between 5.02 and 5.66‰, similar to those associated with magmatic-hydrothermal systems. LA-ICP-MS zircon U-Pb dating yields crystallization ages of 216.2 ± 1.7 and 217.2 ± 2.0 Ma for the granitoids, consistent with a previously reported molybdenite Re-Os isochron age of 214.4 ± 7.1 Ma. This suggests that the Mo mineralization is related to the late Triassic magmatism in the West Qinling orogenic belt. In view of these geochemical results and known regional geology, we propose that both granitoid emplacement and Mo mineralization in the Wenquan deposit resulted from the Triassic collision between the South Qinling and the South China Block, along the Mianlue suture. Since Triassic granitoid plutons commonly occur along the Qinling orogenic belt, the Triassic Wenquan Mo-bearing granitoids highlight the importance of the Triassic tectono-magmatic belt for Mo exploration. In order to apply this metallogenic model to the whole Qinling orogen, further study is needed to compare the Wenquan deposit with other deposits.  相似文献   

13.
The North China Craton (NCC) preserves the history of crustal growth and craton formation during the early Precambrian followed by extensive lithospheric thinning and craton destruction in the Mesozoic. Here we present evidence for magma mixing and mingling associated with the Mesozoic tectonic processes from the Central NCC, along the Trans-North China Orogen, a paleo suture along which the Eastern and Western Blocks were amalgamated at end of Paleoproterozoic. Our investigations focus on two granitoids – the Chiwawu and the Mapeng plutons. Typical signatures for the interaction of mafic and felsic magmas are observed in these plutons such as: (1) the presence of diorite enclaves; (2) flow structures; (3) schlierens; (4) varying degrees of hybridization; and (5) macro-, and micro-textures. Porphyritic feldspar crystals show numerous mineral inclusions as well as rapakivi and anti-rapakivi textures. We present bulk chemistry, zircon U–Pb geochronology and REE data, and Lu–Hf isotopes on the granitoids, diorite enclaves, and surrounding basement rocks to constrain the timing of intraplate magmatism and processes of interaction between felsic and mafic magmas. Our LA-ICP-MS zircon U–Pb data show that the pophyritic granodiorite was emplaced at 129.7 ± 1.0 Ma. The diorite enclaves within this granodiorite show identical ages (128.2 ± 1.5 Ma). The basement TTG (tonalite–trondhjemite–granodiorite) gneisses formed at ca. 2.5 Ga coinciding with the major period of crustal accretion in the NCC. The 1.85 Ga age from zircons in the gabbro with positive Hf isotope signature may be related to mantle magmatism during post-collisional extension following the assembly of the Western and Eastern Blocks of the NCC along the Trans-North China Orogen. Our Hf isotope data indicate that the Neoarchean–Paleoproterozoic basement rocks were derived from complex sources of both juvenile magmas and reworked ancient crust, whereas the magma source for the Mesozoic units are dominantly reworked basement rocks. Our study provides a window to intraplate magmatism triggered by mantle upwelling beneath a paleosuture in the North China Craton.  相似文献   

14.
The Bafoussam area in western Cameroon is part of the Central African Orogenic Belt. It is dominated by granitoids which belong to the Pan-African syn- to post-collisional post-650 Ma group. Syenogranites are predominant, but alkali-feldspar granite, monzogranite, quartz-monzonite and quartz-monzodiorite occur as well. Four granitoid suites, biotite granitoids and deformed biotite granitoids with amphibole, megafeldspar granitoids with megacrysts and two-mica granitoids with primary muscovite and igneous garnet are distinguished. The granites can be assigned to high-K calc-alkalic to shoshonitic series. The partly shoshonitic biotite granitoids are metaluminous to weakly peraluminous and can be labelled as a highly fractionated I-type suite. The megafeldspar granitoids are weakly peraluminous with I-type character whereas the two-mica granitoids are weakly to strongly peraluminous and belong to an S-type suite. Emplacement ages at 558–564 Ma for the two-mica granitoids have been dated from monazite by the EMP Th–U–Pb method.The REE in the biotite granitoids are moderately fractionated with (La/Lu)N = 23–38. Enrichment of Nb and Ta varies by one order of magnitude. The megafeldspar granitoids show homogeneous and strongly fractionated REE patterns with (La/Lu)N = 27–42. The primitive mantle-normalized element patterns are homogeneous with marked negative Ba, Nb, Ta, Sr, Eu and Ti anomalies. The two-mica granitoids are characterized by low to moderate total REE contents with strongly fractionated REE expressed by (La/Lu)N ranging from 7 to 59. The negative Nb and Ta anomalies are less significant. Nd and Sr whole-rock isotope data confirm different sources for the granitoid suites. The source of the I-type biotite granitoids was probably a juvenile mantle which has been variably metasomatized. The source of the I-type megafeldspar granitoids is characterized by juvenile mantle and lower crust components. Anatectic melts of the upper continental crust with variable contribution of lower continental crust or mantle melts can explain the heterogeneous isotopic signatures of the S-type two-mica granitoids. It is suggested that the melting of these sources was successively initiated by the rising isotherms during a syn- to post-collisional setting which followed a subduction.  相似文献   

15.
Whole rock major and trace element data from granitoids adjacent to the Kalahari Craton–Mozambique–Maud Belt boundary are described. The data from ~1140 Ma old granodioritic and ~1110 Ma old granitic bodies in the Mozambique Belt show that they are typical of calc-alkaline and A-type granitoids respectively. Radiogenic Rb/Sr and Sm/Nd isotope data from the two granitoid bodies suggest significant older crustal contributions during their genesis. The granodioritic gneisses show TDM model ages of ~2100–3500 Ma whereas megacrystic granitic gneisses have TDM model ages of ~1600–3100 Ma. Granite from the Archaean-age Kalahari Craton has TDM model ages of ~3000–3500 Ma.The data from Mozambique are compared with whole rock major and trace element chemistry and U/Pb zircon SHRIMP data from the Maud Belt in western Dronning Maud Land. These show that ~1140 Ma old granodioritic gneisses in Sverdrupfjella and Kirwanveggan have similar ages and chemical compositions to similar rocks in central Mozambique. Radiogenic isotope characteristics of the gneisses from central Mozambique and Sverdrupfjella are similar and suggest older crustal contributions in contrast to the juvenile nature of the gneisses from Kirwanveggan.Similarly, ~1090 Ma old granitic gneisses from central Mozambique, Sverdrupfjella and Kirwanveggan have similar ages and A-type chemical compositions. In contrast the radiogenic isotope compositions from Kirwanveggan are juvenile whereas those from central Mozambique show a significant older crustal contribution.The whole rock radiogenic isotope data can be interpreted to suggest that the Mesoproterozoic Mozambique Belt rocks were generated by partial melting which probably involved mixing of Archaean/Paleoproterozoic crust and younger Mesoproterozoic juvenile magma at ~1100 Ma and suggest that the Kalahari Craton probably extends eastwards at depths for more than 30 km from its exposure at surface.The data support correlations between the Mozambique Belt and the Maud Belt in Antarctica in general and more specifically show similarities between the Kalahari Craton boundary and the Mozambique–Maud Belt in lithologies immediately adjacent to that boundary.Two episodes of anatectic migmatisation are recognized in rocks from the Mozambique Belt in central Mozambique. These show an earlier migmatitic vein phase oriented parallel to the planar foliation in the granitic and tonalitic gneisses and a later discordant vein phase which is oriented parallel to localized but intense N–S oriented shearing along the Kalahari Craton/Mozambique Belt boundary zone. SHRIMP zircon data from the younger migmatitic vein phase suggests a crystallization age of 997 ± 4 Ma. Small numbers of inherited zircons have ages of ~2700 Ma and ~1100–1200 Ma. Younger discordant analyses suggesting metamorphic disturbance between ~400 Ma and 550 Ma are seen. The data imply the high strain along the eastern margin of the Kalahari Craton in the Manica area, occurred at ~1000 Ma and not at ~450 Ma as was previously thought. The data suggest the Pan African deformation and metamorphism in the area involved minor reworking. The undeformed to weakly deformed Tchinadzandze Granodiorite intruded into the Kalahari Craton has an age of 2617 ± 16 Ma.  相似文献   

16.
The Qinling Orogenic Belt (QOB) located between the North China Craton (NCC) and the Yangtze Craton (YZC) is composed of the North Qinling Belt (NQB), the South Qinling Belt (SQB) and the northern margin of the YZC. Detailed geological and geochronological investigations have revealed distinct Neoproterozoic blocks of various scales in the middle and western segments of the SQB, including the Madao block (MDB), Mihunzhen intrusion (MHI), Zhenggou block (ZGB), and Lengshuigou block (LSB) which constitute an east-west trending Neoproterozoic uplift zone of the basement continental blocks. These blocks are mainly composed of four lithological groups. Group #1 consists mainly of diorites in the LSB, the zircons from which yield a weighted mean 206Pb/ 238U age of ca. 941 Ma. Group #2 is chiefly composed of hornblende gabbros and diorites in the MHI and LSB, which were formed at ca. 885 Ma. Group #3 comprises massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites in the MDB, MHI, ZGB and LSB, which were emplaced during ca. 785–740 Ma. Group #4 is composed of hornblende gabbros with an emplacement age of ca. 667 Ma in the ZGB.Detailed whole-rock geochemical and zircon Hf isotopic studies reveal the following: (1) The diorites of Group #1 were produced by partial melting of depleted mantle which was enriched by slab-derived melts, with the parental magmas contaminated by crustal materials. (2) The gabbros of Group #2 were derived from the partial melting of depleted mantle enriched by slab-derived melts and the diorites are the fractional crystallization products of the gabbroic magmas. (3) Group #3 which can be further sub-divided based on lithological assemblages and zircon Hf isotopic features into two subgroups, one representing massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites (DTGMs) and the other composed of gneissic quartz diorites and granodiorites. Among these, the DTGMs were derived through magma mixing between melts derived from the depleted mantle wedge altered by slab-derived fluids and melts from juvenile sources, which subsequently underwent amphibole-dominated fractionation, whereas the gneissic granitoids formed through partial melting of thickened lower crust contaminated by depleted mantle melts. (4) The gabbros of Group #4 originated from a depleted lithospheric mantle that was enriched by slab-derived melts and fluids with contribution of asthenospheric mantle-derived materials. In conjunction with data from previous studies on the Neoproterozoic blocks in the SQB and basement blocks in the northern margin of the YZC, our new geological, geochronological and geochemical data suggest a large Neoproterozoic uplift zone in the SQB, which was destructed by Paleozoic to Mesozoic magmatism and deformation. The Neoproterozoic uplift zone of the SQB might have been separated from the northern margin of the YZC during the formation of the Mianlue Ocean, and might have evolved under an active continental margin setting and subsequent continental rift setting accompanied by significant crustal growth. The magmatism also resulted in the formation of important Neoproterozoic ore deposits and supplied the material sources for some of the major Mesozoic ore deposits.  相似文献   

17.
Several metamorphic complexes in Southeast Asia have been interpreted as Precambrian basement, characterized by amphibolite to granulite facies metamorphism. In this paper, we re-evaluate the timing of this thermal event based on the large-scale geochronology and compositional variation of monazites from amphibolite to granulite facies metamorphic terranes in central Vietnam. Most of the samples in this study are from metamorphic rocks (n = 38) and granitoids (n = 11) in the Kontum Massif. Gneisses (n = 6) and granitoids (n = 5) from the Hai Van Migmatite Complex and the Truong Son Belt, located to the north of the massif, were also studied. Two distinct thermal episodes (245–230 Ma and 460–430 Ma) affected Kontum Massif gneisses, while a single dominant event at 240–220 Ma is recorded in the gneisses from the Hai Van Complex and the Truong Son Belt. Monazites from granitoids commonly yield an age of 240–220 Ma. Mesoproterozoic ages (1530–1340 Ma) were obtained only from monazite cores that are surrounded by c. 440 Ma overgrowths. Thermobarometric results, combined with concentrations of Y2O3, Ce2O3, and heavy rare earth elements in monazite, and recently reported pressure–temperature paths suggest that Triassic ages correspond to retrograde metamorphism following decompression from high- to medium-pressure/temperature conditions. Ordovician–Silurian ages reflect low-pressure/temperature metamorphism accompanied by isobaric heating during prograde metamorphism. Some samples were affected by both metamorphic events. We conclude that high-grade metamorphism observed in so-called Precambrian basement terranes in central Vietnam occurred during both the Permian–Triassic and the Ordovician–Silurian, while peraluminous granitoid magmatism is Triassic. Additionally, our preliminary analyses for U–Pb zircon age and whole-rock chemistry of granitic gneisses from the Truong Song Belt suggests the presence of the Ordovician–Silurian volcanic arc magmatism in the region. Based on the pressure–temperature–time–protolith evolutions, metamorphic rocks from central Vietnam provide a continuous record of subduction–accretion–collision tectonics between the South China and Indochina blocks: in the Ordovician–Silurian, the region was characterized by active continental margin tectonics, followed by continental collision during the Late Permian to Early Triassic and subsequent exhumation during the Late Triassic. The results also suggest that the timing of metamorphism and protolith formation as well as the geochemical features in other Southeast Asian terranes should be verified to achieve a better understanding of the Precambrian to Early Mesozoic tectonic history in Asia.  相似文献   

18.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

19.
The Yanshan Orogenic Belt is located in the northern part of the North China Craton (NCC), which lost ∼120 km of lithospheric mantle during Phanerozoic tectonic reactivation. Mesozoic magmatism in the Yanshan fold-and-thrust belt began at 195–185 Ma (Early Jurassic), with most of the granitic plutons being Cretaceous in age (138–113 Ma). Along with this magmatism, multi-phase deformational structures, including multiple generations of folds, thrust and reverse faults, extensional faults, and strike-slip faults are present in this belt. Previous investigations have mostly focused on geochemical and isotopic studies of these magmatic rocks, but not on the thermal history of the Mesozoic plutons. We have applied 40Ar/39Ar thermochronology to biotites and K-feldspars from several Lower Cretaceous granitic plutons to decipher the cooling and uplift history of the Yanshan region. The biotite 40Ar/39Ar ages of these plutons range from 107 to 123 Ma, indicating that they cooled through about 350 °C at that time. All the K-feldspar step-heating results modeled using multiple diffusion domain theory yield similarly rapid cooling trends, although beginning at different times. Two rapid cooling phases have been identified at ca. 120–105 and 100–90 Ma. The first phase of rapid cooling occurred synchronously with widespread extensional deformation characterized by the formation of metamorphic core complexes, A-type magmatism, large-scale normal faults, and the development of half-graben basins. This suggests rapid exhumation took place in an extensional regime and was a shallow-crustal-level response to lithospheric thinning of the NCC. The second phase of rapid cooling was probably related to the regional uplift and unroofing of the Yanshan Belt, which is consistent with the lack of Upper Cretaceous sediments in most of the Yanshan region.  相似文献   

20.
High-precision 40Ar/39Ar dating of lamprophyre dike swarms in the Western Province of New Zealand reveals that these dikes were emplaced into continental crust prior to, during and after opening of the Tasman Sea between Australia and New Zealand. Dike ages form distinct clusters concentrated in different areas. The oldest magmatism, 102–100 Ma, is concentrated in the South Westland region that represents the furthest inboard portion of New Zealand in a Gondwana setting. A later pulse of magmatism from ~ 92 Ma to ~ 84 Ma, concentrated in North Westland, ended when the first oceanic crust formed at the inception of opening of the Tasman Sea. Magmatic quiescence followed until ~ 72–68 Ma, when another swarm of dikes was emplaced. The composition of the dikes reveals a dramatic change in primary melt sources while continental extension and lithospheric thinning were ongoing. The 102–100 Ma South Westland dikes represent the last mafic calc-alkaline magmatism associated with a long-lived history of the area as Gondwana's active margin. The 92–84 Ma North and 72–68 Ma Central Westland dike swarms on the other hand have strongly alkaline compositions interpreted as melts from an intraplate source. These dikes represent the oldest Western Province representatives of alkaline magmatism in the greater New Zealand region that peaked in activity during the Cenozoic and has remained active up to the present day. Cretaceous alkaline dikes were emplaced parallel to predicted normal faults associated with dextral shear along the Alpine Fault. Furthermore, they temporally correspond to polyphase Cretaceous metamorphism of the once distal Alpine Schist. Dike emplacement and distal metamorphism could have been linked by a precursor to the Alpine Fault. Dike emplacement in the Western Province coupled to metamorphism of the Alpine Schist at 72–68 Ma indicates a period of possible reactivation of this proto Alpine Fault before it served as a zone of weakness during the opening of the oceanic Emerald Basin (at ~ 45 Ma) and eventually the formation of the present-day plate boundary (~ 25 Ma–recent).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号