首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine hydrocarbon seeps are dynamic systems, which are typically reflected in complex lithologies of limestones forming at these sites. In order to test if seep limestones with their multiple generations of carbonate phases reflect variable redox conditions, the rare earth element (REE) patterns of limestones from five ancient hydrocarbon-seep localities, Hollard Mound (Middle Devonian), Iberg (Mississippian), Beauvoisin (Oxfordian), Canyon and Satsop River (Oligocene), and Marmorito (Miocene) have been investigated. The total REE contents vary widely (0.3–43.7 p.p.m.). Early microcrystalline phases tend to show higher contents than spatially associated later phases (microspar, sparite, and blocky cement). The shale-normalized REE patterns of the carbonates show both negative and positive Ce anomalies even for individual deposits, suggesting that the redox conditions varied significantly. It is apparent that in addition to anoxic conditions, oxic conditions were common in some ancient seep environments. Intermittent oxygenation is presumed to have resulted from abrupt changes in fluid flow.  相似文献   

2.
Three vertical sections through the Zagrad deposit of Jurassic karst bauxite in central Montenegro have provided knowledge of the vertical distribution of major and some selected trace elements, including rare earth elements (REE). Variations in the mineralogy, particularly those hosting REE, have been studied. This has revealed the presence of authigenic mineral phases such as xenotime, mottramite and monazite (best proved using Raman microprobe analysis) as well as residual phases such as zircon, titanite and monazite. The mobility of the elements during bauxitization processes has been studied to show that the REE minerals ensure progressive concentration of these elements during removal of major elements through weathering. The similarity of normalized REE in the bauxite to the typical Post-Archean Australian Shales (PAAS) and Upper Continental Crust (UCC) profile, and the preserved Eu anomaly, are evidence that the bauxite was not derived from carbonates and represents alteration of shale, marly limestone and volcanogenic or proximal igneous sourced detritus that accumulated in the original karst landform. Mass change during bauxitization, using Ti as “index” element and compared to PAAS composition, revealed almost 100% depletion of Si and weak enrichment in Al. Deeper parts of the deposit with authigenic minerals exhibit very strong enrichment in all REE. The bauxite ores have high ΣREE contents (693.5–6953.4 ppm), especially ΣLREE contents (582.8–4882.9 ppm), while ΣHREE contents (106.6–2070.5 ppm) are much lower.  相似文献   

3.
The Mombi bauxite deposit is located in 165 km northwest of Dehdasht city, southwestern Iran. The deposit is situated in the Zagros Simply Fold Belt and developed as discontinuous stratified layers in Upper Cretaceous carbonates (Sarvak Formation). Outcrops of the bauxitic horizons occur in NW-SE trending Bangestan anticline and are situated between the marine neritic limestones of the Ilam and Sarvak Formations. From the bottom to top, the deposit is generally consisting of brown, gray, pink, pisolitic, red, and yellow bauxite horizons. Boehmite, diaspore, kaolinite, and hematite are the major mineral components, while gibbsite, goethite, anatase, rutile, pyrite, chlorite, quartz, as well as feldspar occur to a lesser extent. The Eh–pH conditions during bauxitization in the Mombi bauxite deposit show oxidizing to reducing conditions during the Upper Cretaceous. This feature seems to be general and had a significant effect on the mineral composition of Cretaceous bauxite deposits in the Zagros fold belt. Geochemical data show that Al2O3, SiO2, Fe2O3 and TiO2 are the main components in the bauxite ores at Mombi and immobile elements like Al, Ti, Nb, Zr, Hf, Cr, Ta, Y, and Th were enriched while Rb, Ba, K, Sr, and P were depleted during the bauxitization process. Chondrite-normalized REE pattern in the bauxite ores indicate REE enrichment (ΣREE = 162.8–755.28 ppm, ave. ∼399.36 ppm) relative to argillic limestone (ΣREE = 76.26–84.03 ppm, ave. ∼80.145 ppm) and Sarvak Formation (ΣREE = 40.15 ppm). The REE patterns also reflect enrichment in LREE relative to HREE. Both positive and negative Ce anomalies (0.48–2.0) are observed in the Mombi bauxite horizons. These anomalies are related to the change of oxidation state of Ce (from Ce3+ to Ce4+), ionic potential, and complexation of Ce4+ with carbonate compounds in the studied horizons. It seems that the variations in the chemistry of ore-forming solutions (e.g., Eh and pH), function of carbonate host rock as a geochemical barrier, and leaching degree of lanthanide-bearing minerals are the most important controlling factors in the distribution and concentration of REEs. Several lines of evidences such as Zr/Hf and Nb/Ta ratios as well as similarity in REE patterns indicate that the underlying marly limestone (Sarvak Formation) could be considered as the source of bauxite horizons. Based on mineralogical and geochemical data, it could be inferred that the Mombi deposit has been formed in a karstic environment during karstification and weathering of the Sarvak limy Formation.  相似文献   

4.
A first study of REE + Y distribution in a variety of Neoproterozoic (Cryogenian and Ediacaran) carbonates from different settings in the Saldania, Gariep, Damara and West Congo Belts in southwestern and central Africa revealed systematic differences that can be explained by varying palaeoenvironmental factors. The majority of samples display relatively unfractionated, flat shale-normalised REE + Y patterns that cannot be ascribed solely to shale contamination but are interpreted as resulting from the incorporation of near-shore colloids, possibly related to Fe-oxihydroxide scavenging. Only few carbonate units yielded trace element distributions that conform to a typical seawater composition. Those carbonates that were affected by stratiform, syn-sedimentary hydrothermal mineralisation are distinguished by Eu anomalies. Considering the similarity in residence time between REE and carbon, the strong influence of river-born particles on the REE + Y distribution in the analysed carbonates casts considerable doubt over the usefulness of these carbonates for stratigraphic correlation of Neoproterozoic sediment successions based on carbon isotopes.  相似文献   

5.
Rare-earth elements abundance in black shales of the Upper Jurassic (Tithonian Stage)–Lower Cretaceous (Berriassian Stage) Bazhenov Formation is discussed. This formation is the principal oil source rocks of West Siberia. The deposits within the formation can be subdivided into two main marine groups: (a) moderately hemipelagic deposits (clayey-siliceous, including phosphatic and carbonate rocks) and low-density distal clayey turbidites (argillites), both are considered as normal and (b) silty argillites and clayey-silt rocks, which are channel deposits and considered as anomalous. The hemipelagic rocks of normal sections, which are enriched in the rare-earth elements (REE), accumulated under both slow rates of sedimentation (clayey-siliceous rocks) and faster rates of sedimentation (argillites). The channel deposits of anomalous sections, which are impoverished in the REE, accumulated exclusively under fast rates of sedimentation.Within the hemipelagic group the rate of sedimentation of the argillites was faster than of the clayey-siliceous rocks, but the REE concentration in the former rocks (140.4 ppm) is higher than in the latter group (97.4 ppm). The argillites are more than twice enriched in clayey material than clayey-siliceous rocks. It is likely that the clay fraction was the main carrier of REE in these rocks. In the channel group of rocks, the REE abundance in clayey-silt rocks (21.2 ppm) is lower than in the silty argillite (84.6 ppm), in which the clay content is elevated.With respect to redox potential the Bazhenov Formation rocks can be subdivided further into three groups, based on the degree of pyritization index (DOP): (1) the highly reducing clayey-siliceous rocks of normal sections, with high DOP; (2) the substantially reducing argillites and carbonate rocks of normal sections, with intermediate DOP; (3) the moderately reducing rocks of anomalous sections with low DOP. The rocks with the high DOP (group 1) are characterized by ΣLREE/Σ(M+H)REE ratios between 7.37 and 7.5, whereas the rocks with the lower DOP (group 2 and 3) are characterized by ΣLREE/Σ(M+H)REE ratios between 12.8 and 13.5. Negative Ce anomalies are either small or absent in all deposits, which is typical for reducing conditions.Thus, the Bazhenov Formation exemplifies the complex depositional conditions that influence the REE concentration in black shale. However, it is this very complexity that has contributed to the development of six separate depositional models (REE contents in ppm are given in brackets). (1) Phosphatic clayey-siliceous rocks of normal sections (367.95); (2) argillites of normal sections (130.73); (3) clayey-siliceous rocks of normal sections (85.97); (4) carbonate rocks, largely dolomites of normal sections (23.23); (5) silty argillites of anomalous sections (78.7) and (6) clayey-silt rocks of anomalous sections (19.66).  相似文献   

6.
The Tumen molybdenite–fluorite vein system is hosted by carbonate rocks of the Neoproterozoic Luanchuan Group, located on the southern margin of the North China Craton (NCC) in central China. Previous studies divided the mineralization into four stages according to the crosscutting relationships between veinlets and their mineral assemblages. In this contribution, two distinctive types of fluorite mineralization are recognized: 1) the first type (Type 1) includes colourless, white or green fluorite grains present in Stage 1 veins; and 2) the second type includes Type 2a purple fluorite present in Stage 2 veins and does not coexist with sulfides, and Type 2b purple fluorite crystals associated with sulfides in Stage 2 veins. The rare earth element (REE) content in the fluorite ranges between 13.8 and 27.9 ppm in Type 1, 16.9 and 27.2 ppm in Type 2a, and 42.5 and 75.1 ppm in Type 2b, which suggests that the fluorite was precipitated from acidic fluids (given that REEs are mobile in saline HCl-bearing fluids at high temperature (~ 400 °C)). Comparing the REE chemistry of the Stage 1 against Stage 2 fluorite, the LREE/HREE ratios decrease from 9.8 to 4.0, La/Yb ratios decrease from 16.0 to 6.9 and La/Ho ratios decrease from 10.2 to 3.0, indicating that the hydrothermal process was at high-T and low-pH conditions. The Eu/Eu* ratios in the fluorite decrease from 1.11 ± 0.35 for Type 1 through 0.89 ± 0.19 for Type 2a to 0.75 ± 0.17 for Type 2b, suggesting a gradual increase in oxygen fugacity (fO2) and pH of the mineralising fluid. The Tb/Ca, Tb/La and Y/Ho ratios of the fluorite types indicate that they were formed from the interaction between magmatic fluids and carbonate wallrocks. The fluorite samples show similar REE + Y (REY) patterns to those of dolostone units in the Luanchuan Group and the nearby Neoproterozoic syenite, suggesting that the REY in the fluorite was mainly sourced from the host-rocks, although the syenite could be an additional minor source.  相似文献   

7.
The Silius vein system, located in SE Sardinia (Italy) is analogous to other late- to post-Hercynian mineral systems of this type in Europe. The Silius system consists of two main veins, characterized by several generations of fluorite, calcite and quartz, with initial ribbon-like geometries, followed by breccias and cockade-like textures. In this study, aimed at investigating the REE concentrations in the Silius vein system, a REE average of ~ 800 ppm (locally ΣREE > 1500 ppm) has been observed in the carbonate gangue of the fluorite orebody. These amounts are related to the presence of the REE-bearing minerals synchysite-(Ce) and xenotime-(Y). The chemical composition of synchysite-(Ce) has been obtained by wavelength dispersive spectrometry (WDS). The average synchysite-(Ce) formula, built on the basis of (CO3)2F and 5 negative charges, is Ca1.07(La0.19,Ce0.36,Pr0.04,Nd0.15,Sm0.03,Gd0.03,Y0.13)(CO3)2F. From their geochemical characteristics, and their textural relationships with other gangue phases, it is likely that synchysite-(Ce) and xenotime-(Y) formed at the same P-T-X conditions as the other minerals of the Silius fluorite mineralization. Synchysite-(Ce) and xenotime-(Y) at Silius could be related to a local circulation phenomenon, where the REE are derived from a REE-bearing source rock in the basement of southeastern Sardinia, which has been leached by the same fluids precipitating the fluorite/calcite mineralization. REE concentrations contained in the carbonate gangue of still unexploited parts of the Silius vein deposit, as well as in dumps and tailings accumulated during past fluorite processing, could possibly represent a sub-economic by-product of the fluorite exploitation.  相似文献   

8.
Bauxite deposits, traditionally the main source of aluminum, have been recently targeted for their remarkable contents in rare earth elements (REE). With ∑REE (lanthanoids + Sc + Y) concentrations systematically higher than ∼1400 ppm (av. = 1530 ppm), the Las Mercedes karstic bauxites in the Dominican Republic rank as one of the REE-richest deposits of its style.The bauxitic ore in the Las Mercedes deposit is mostly unlithified and has a homogeneous-massive lithostructure, with only local cross-stratification and graded bedding. The dominant arenaceous and round-grained texture is composed of bauxite particles and subordinate ooids, pisoids and carbonate clasts. Mineralogically, the bauxite ore is composed mostly of gibbsite and lesser amounts of kaolinite, hematite, boehmite, anatase, goethite, chromian spinel and zircon. Identified REE-minerals include cerianite and monazite-Ce, whose composition accounts for the steady enrichment in light- relative to medium- and heavy-REE of the studied bauxites.Considering the paleo-geomorphology of the study area, we propose that bauxites in the Las Mercedes deposit are the product of the erosion and deposition of lithified bauxites located at higher elevations in the Bahoruco ranges. Based on the available data, we suggest a mixed lithological source for the bauxite deposits at the district scale: bedrock carbonates and an igneous source of likely mafic composition.  相似文献   

9.
In common with the remarkable variation in the bulk rock Zr content of distinct meteorite groups, ranging from <1 ppm to >800 ppm, the occurrence and abundance of accessory zircon is also highly diverse and limited to certain meteorite classes. A detailed literature study on the occurrence of meteoritic zircon, along with other Zr-bearing phases reveals that lunar rocks, eucrites and mesosiderites are the prime sources of meteoritic zircon. Rare zircon grains occur in chondrites, silicate-bearing iron meteorites and Martian meteorites, with grain sizes of >5 μm allowing chemical and chronological studies at high spatial resolution using secondary ion mass spectrometry (SIMS) technique. Grain sizes, crystal habits, structural and chemical characteristics of zircon grains derived from various meteorite types, including their REE abundances, minor element concentrations, and Zr/Hf values is diverse. Superchondritic Zr/Hf values (47 ± 8; s.d. with n = 97), i.e., typical for zircon in eucrites and mesosiderites, indicate crystallization from a fractionated, incompatible-element-rich (residual) melt. Differences in REE abundances, occurrence or absence of Ce- and Eu-anomalies, and overall REE patterns that are often fractionated with a depletion in LREE, might be primarily controlled by variable formation conditions of individual grains and/or differences in the residual melt compositions on a small, local scale within single samples. Subsequent fractionation/modification of the chemical fingerprint of meteoritic zircon can involve high-temperature annealing processes during thermal metamorphic reactions and/or impact events along with mixing of lithic fragments since many samples are breccias.  相似文献   

10.
The ΣREE and shale-normalized (PAAS) REESN values of modern brachiopods (biogenic low-Mg calcite: bLMC) represented by several species from high- to low latitudes, from shallow- to deep waters and from warm- and cold-water environments, define three distinct average ‘seawater’ trends. The warm- and cold-water brachiopods define two indistinguishable (p < 0.050) groups that mimic open-ocean seawater REE chemistry, exhibiting the typical LREE enrichment with a slightly positive to negative Ce anomaly followed by an otherwise invariant series. Other recent brachiopods from an essentially siliciclastic seabed environment are distinct in both ΣREE and REESN trends from the previous two populations, showing a slight enrichment in the MREEs and an increasing trend in the HREEs. Other groups of modern brachiopods are characterized by elevated REESN trends relative to the ‘normal’ groups as well as by complexity of the series trends. The most characteristic feature is the decrease in the HREEs in these brachiopods from areas of unusual productivity (i.e., such as upwelling currents, fluvial input and aerosol dust deposition). Preserved brachiopods from the Eocene and Silurian exhibit REESN trends and Ce anomalies similar to that of the ‘open-ocean’ modern brachiopods, although, their enriched ΣREE concentrations suggest precipitation of bLMC influenced by extrinsic environmental conditions.Preservation of the bLMC was tested by comparing the ΣREE and REESN trends of preserved Eocene brachiopods to those of Oligocene brachiopods that were altered in an open diagenetic system in the presence of phreatic meteoric-water. The altered bLMC is enriched by approximately one order of magnitude in both ΣREE and REESN trends relative to that in bLMC of their preserved counterparts. Similarly, the ΣREE and REESN of preserved Silurian brachiopod bLMC were compared to those of their enclosing altered lime mudstone, which exhibits features of partly closed system, phreatic meteoric-water diagenesis. Despite these differences in the diagenetic alteration systems and processes, the ΣREEs and REESN trends of the bLMC of altered brachiopods and of originally mixed mineralogy lime mudstones (now diagenetic low-Mg calcite) are enriched by about one order of magnitude relative to those observed in the coeval and preserved bLMC.In contrast to the changes in ΣREE and REESN of carbonates exposed to phreatic meteoric-water diagenesis, are the REE compositions of late burial calcite cements precipitated in diagenetically open systems from burial fluids. The ΣREE and REESN trends of the burial cements mimic those of their host lime mudstone, with all showing slight LREE enrichment and slight HREE depletion, exhibiting a ‘chevron’ pattern of the REESN trends. The overall enrichment or depletion of the cement REESN trends relative to that of their respective host rock material reflects not only the openness of the diagenetic system, but also strong differences in the elemental and REE compositions of the burial fluids. Evaluation of the (Ce/Ce*)SN and La = (Pr/Pr*)SN anomalies suggests precipitation of the burial calcite cements essentially in equilibrium with their source fluids.  相似文献   

11.
Over one hundred samples, representing mainly clayey-organic- and carbonate-rich shales (Kupferschiefer) but also other members of different ore sections, including hangingwall dolomites (Z1 Werra) and footwall Weissliegend sandstone (Lower Permian), have been collected in different mines of the Lubin–Głogów mining district, mainly near the contact (transitional zone) between the copper-mineralized zone and secondarily oxidized (Rote Fäule = RF) zone. In general, the Polish Kupferschiefer shales are enriched in MREE in comparison to NASC. In a typical copper-rich ore section the REE amounts and patterns depend on lithologies, being generally similar in shales and dolomite. ∑REE vary among sandstones, shales and dolomites (average 73, 143 and 85 ppm, respectively), probably reflecting mainly their clay contents. Sandstones have strongly convex REE patterns with positive Eu and negative Gd anomalies and depletion in LREE and enrichment in MREE relative to HREE. The REE patterns of shale and dolomite are similar to one another and rather flat, with strong negative Eu anomalies, and a small positive Gd anomaly in the case of shales.The REE patterns of shales from the mineralized Cu-zone are generally convex (MREE enriched) and have negative Eu anomalies. However, in a section with Cu-, Zn- and Pb-shales the REE pattern of Pb-bearing shales shows a positive Eu anomaly, in contrast to other shales and overlying dolomite. More oxidizing conditions of deposition can be assumed for Pb-shales.No significant differences between REE distributions in transitional and oxidized zones have been observed. Their REE patterns are more convex and are much higher (av. 247 ppm) than those in the mineralized zone and they do not show Eu anomalies. The strongly convex pattern may suggest either enrichment in MREE or relative depletion in LREE due to localized precipitation of light REE minerals, both in shales and in the uppermost part of the sandstones.Two unique sections, one Cu-rich and one Cu-lean (partly oxidized), comprising three shale beds interbedded with dolomites have been compared. Generally ∑REE contents are similar in these two sections. Also similar are changes in contents of REE between beds in both sections, which decrease significantly upwards (from 157–171 ppm to 54–60 ppm). The REE patterns of the lowermost beds (directly overlying sandstones) are ramp-like, with LREE enrichments. The upper beds have concave REE patterns. Comparison between sections shows generally stronger negative Eu and positive Gd anomalies in the highly-mineralized section.There is a highly significant positive relationship between Cu and ∑ REE contents in Cu-rich shales and slightly less significant negative relationship for their concentration in oxidized and transitional shales. There is a moderate significant positive correlation between P2O5 and ∑ REE contents in Cu-rich shales.The observed differences in REE contents cannot be provenance dependent but have been caused by diagenetic processes, possibly related to mineralization and oxidation processes. Europium anomalies, generally reflecting different Eh conditions in the deposit, can be eliminated by the prolonged oxidation. Strong enrichment of the RF zones in REE may result from their desorption from large volumes of oxidizing, including mineralizing, solutions which probably emerged from the underlying molasse lithologies into the Rote Fäule areas. Higher contents of REE in the lowermost shales suggest upward movement of solutions from the underlying sandstones also far away from the RF areas.  相似文献   

12.
The present work is a first comprehensive study of the trace-element composition and zoning in clinopyroxene- and amphibole-group minerals from carbonatites, incorporating samples from 14 localities worldwide (Afrikanda, Aley, Alnö, Blue River, Eden Lake, Huayangchuan, Murun, Oka, Ozernaya Varaka, Ozernyi, Paint Lake, Pinghe, Prairie Lake, Turiy Mys). The new electron-microprobe data presented here significantly extend the known compositional range of clinopyroxenes and amphiboles from carbonatites. These data confirm that calcic and sodic clinopyroxenes from carbonatites are not separated by a compositional gap, instead forming an arcuate trend from nearly pure diopside through intermediate aegirine–augite compositions confined to a limited range of CaFeSi2O6 contents (15–45 mol%) to aegirine with < 25 mol% of CaMgSi2O6 and a negligible proportion of CaFeSi2O6. A large set of LA-ICPMS data shows that the clinopyroxenes of different composition are characterized by relatively low levels of Cr, Co and Ni (≤ 40 ppm) and manifold variations in the concentration of trivalent lithophile and some incompatible elements (1–150 ppm Sc, 26–6870 ppm V, 5–550 ppm Sr, 90–2360 ppm Zr, and nil to 150 ppm REE), recorded in some cases within a single crystal. The relative contribution of clinopyroxenes to the whole-rock Rb, Nb, Ta, Th and U budget is negligible. The major-element compositional range of amphiboles spans from alkali- and Al-poor members (tremolite) to Na–Al-rich Mg- or, less commonly, Fe-dominant members (magnesiohastingsite, hastingsite and pargasite), to calcic–sodic, sodic and potassic–sodic compositions intermediate between magnesio-ferrikatophorite, richterite, magnesioriebeckite, ferri-nyböite and (potassic-)magnesio-arfvedsonite. In comparison with the clinopyroxenes, the amphiboles contain similar levels of tetravalent high-field-strength elements (Ti, Zr and Hf) and compatible transition elements (Cr, Co and Ni), but are capable of incorporating much higher concentrations of Sc and incompatible elements (up to 500 ppm Sc, 43 ppm Rb, 1470 ppm Sr, 1230 ppm Ba, 80 ppm Pb, 1070 ppm REE, 140 ppm Y, and 180 ppm Nb). In some carbonatites, amphiboles contribute as much as 25% of the Zr + Hf, 15% of the Sr and 35% of the Rb + Ba whole-rock budget. Both clinopyroxenes and amphiboles may also host a significant share (~ 10%) of the bulk heavy-REE content. Our trace-element data show that the partitioning of REE between clinopyroxene (and, in some samples, amphibole) and the melt is clearly bimodal and requires a revision of the existing models assuming single-site REE partitioning. Clinopyroxenes and amphiboles from carbonatites exhibit a diversity of zoning patterns that cannot be explained exclusively on the basis of crystal chemistry and relative compatibility of different trace-element in these minerals. Paragenetic analysis indicates that in most cases, the observed zoning patterns develop in response to removal of selected trace elements by phases co-precipitating with clinopyroxene and amphibole (especially magnetite, fluorapatite, phlogopite and pyrochlore). With the exception of magnesiohastingsite–richterite sample from Afrikanda, the invariability of trace-element ratios in the majority of zoned clinopyroxene and amphibole crystals implies that fluids are not involved in the development of zoning in these minerals. The implications of the new trace-element data for mineral exploration targeting REE, Nb and other types of carbonatite-hosted rare-metal mineralization are discussed.  相似文献   

13.
Phosphorites in Egypt occur in the Eastern Desert, the Nile Valley and the Western Desert at Abu Tartur area and present in Duwi Formation as a part of the Middle Eastern to North African phosphogenic province of Late Cretaceous to Paleogene age (Campanian–Maastrichtian). The Maghrabi-Liffiya phosphorite sector is considered as the most important phosphorite deposits in the Abu Tartur area due to its large reserve thickness and high-grade of lower phosphorite bed beside high content of REE. Back scattered electron (BSE) images show framboidal pyrite filling the pores of the phosphatic grains, suggesting diagenetic reducing conditions during phosphorites formation.Electron Probe Micro Analyzer (EPMA) chemical mapping was conducted to examine the variation and distributions of selected elements (P, F, La, Fe, Yb, Si, Ce, W, Eu, S, Ca, Y and Er) within the shark teeth, coprolites and bone fragments. In the teeth W, S, Fe are concentrated along the axis of the teeth, the bone fragments show high concentration of W, Yb, Er and Eu, whereas coprolites are nearly homogenous in composition contains S, Er with some Si as micro-inclusions. Fluorapatite is considered as main phosphate mineral whereas pyrite occurs as pore-filling within the phosphatic grains and cement materials. Maghrabi-Liffiya samples show a wide range in the P2O5 content, between 19.8 wt.% and 29.8 wt.% with an average of 24.6 wt.% and shows low U content ranging from 15 ppm to 34 ppm with an average of 22 ppm. The total REE content in nine samples representing the Maghrabi-Liffiya ranges from 519 to 1139 ppm with an average of about 879 ppm. The calculation of LREE (La–Gd) show indeed a marked enrichment relative to the HREE (Tb–Lu) where LREE/HREE ratio attains 8.4 indicating a strong fractionation between the LREE and HREE. Chondrite-normalized REE patterns of the studied phosphorite samples show a negative Eu anomaly.  相似文献   

14.
Banded iron-formations (BIFs) form an important part of the Archaean to Proterozoic greenstone belts in the Southern Cameroon. In this study, major, trace and REE chemistry of the banded iron-formation are utilized to explore the source of metals and to constraint the origin and depositional environment of these BIFs. The studied BIF belongs to the oxide facies iron formations composed mainly of iron oxide (mainly magnetite) mesobands alternating with quartz mesobands. The mineralogy of the BIF sample consists of magnetite and quartz with lesser amount of secondary martite, goethite and trace of gibbsite and smectite. The major element chemistry of these iron-formations is remarkably simple with the main constituents being SiO2 and Fe2O3 which constitute 95.6–99.5% of the bulk rock. Low Al2O3, TiO2, and HFSE concentrations show that they are relatively detritus-free chemical sediments. The Pearson’s correlation matrix of major element reveals that there is a strong positive correlation (r = 0.99) of Al with Ti and no to weak negative correlation of Ti with Mn, Ca and weak positive correlation of Si with Ca, suggesting the null to very minor contribution of detrital material to chemical sediment. The trace elements with minor enrichments are transition metals such as Zn, Cr, Sr, V and Pb. This is an indicator of direct volcanogenic hydrothermal input in chemical precipitates. The studied BIF have a low ΣREE content, ranging between 0.41 and 3.22 ppm with an average of 0.87 ppm, similar to that of pure chemical sediments. The shale-normalized patterns show depletion in light REE, slightly enrichment in heavy REE and exhibit weak positive europium anomalies. These geochemical characteristics indicate that the source of Fe and Si was the result of deep ocean hydrothermal activity admixed with sea water. The absence of a large positive Eu anomaly in the studied BIF indicates an important role of low-temperature hydrothermal solutions. The chondrite-normalized REE patterns are characterized by LREE-enriched (Mean LaCN/YbCN = 8.01) and HREE depletion (Mean TbCN/YbCN = 1.61) patterns and show positive Ce anomalies. With the exception of one sample (LBR133), all of the BIF samples analyzed during this study have positive Ce anomalies on both chondrite- and PASS-normalized plots. This may indicate that the BIFs within the Elom area were formed within a redox stratified ocean. The positive Ce anomalies in the studied samples likely suggest that the basin in which Fe formations were deposited was reducing with respect to Ce, probably in the suboxic or anoxic seawaters.  相似文献   

15.
The Bayan Obo Fe-REE-Nb deposit in northern China is the world's largest light REE deposit, and also contains considerable amounts of iron and niobium metals. Although there are numerous studies on the REE mineralization, the origin of the Fe mineralization is not well known. Laser ablation (LA) ICP-MS is used to obtain trace elements of Fe oxides in order to better understand the process involved in the formation of magnetite and hematite associated with the formation of the giant REE deposit. There are banded, disseminated and massive Fe ores with variable amounts of magnetite and hematite at Bayan Obo. Magnetite and hematite from the same ores show similar REE patterns and have similar Mg, Ti, V, Mn, Co, Ni, Zn, Ga, Sn, and Ba contents, indicating a similar origin. Magnetite grains from the banded ores have Al + Mn and Ti + V contents similar to those of banded iron formations (BIF), whereas those from the disseminated and massive ores have Al + Mn and Ti + V contents similar to those of skarn deposits and other types of magmatic-hydrothermal deposits. Magnetite grains from the banded ores with a major gangue mineral of barite have the highest REE contents and show slight moderate REE enrichment, whereas those from other types of ores show light REE enrichment, indicating two stages of REE mineralization associated with Fe mineralization. The Bayan Obo deposit had multiple sources for Fe and REEs. It is likely that sedimentary carbonates provided original REEs and were metasomatized by REE-rich hydrothermal fluids to form the giant REE deposit.  相似文献   

16.
The Eocene (ca. 55–38 Ma) Bear Lodge alkaline complex in the northern Black Hills region of northeastern Wyoming (USA) is host to stockwork-style carbonatite dikes and veins with high concentrations of rare earth elements (e.g., La: 4140–21000 ppm, Ce: 9220–35800 ppm, Nd: 4800–13900 ppm). The central carbonatite dike swarm is characterized by zones of variable REE content, with peripheral zones enriched in HREE including yttrium. The principle REE-bearing phases in unoxidized carbonatite are ancylite and carbocernaite, with subordinate monazite, fluorapatite, burbankite, and Ca-REE fluorocarbonates. In oxidized carbonatite, REE are hosted primarily by Ca-REE fluorocarbonates (bastnäsite, parisite, synchysite, and mixed varieties), with lesser REE phosphates (rhabdophane and monazite), fluorapatite, and cerianite. REE abundances were substantially upgraded (e.g., La: 54500–66800 ppm, Ce: 11500–92100 ppm, Nd: 4740–31200 ppm) in carbonatite that was altered by oxidizing hydrothermal and supergene processes. Vertical, near surface increases in REE concentrations correlate with replacement of REE(±Sr,Ca,Na,Ba) carbonate minerals by Ca-REE fluorocarbonate minerals, dissolution of matrix calcite, development of Fe- and Mn-rich gossan, crystallization of cerianite and accompanying negative Ce anomalies in secondary fluorocarbonates and phosphates, and increasing δ18O values. These vertical changes demonstrate the importance of oxidizing meteoric water during the most recent modifications to the carbonatite stockwork. Scanning electron microscopy, energy dispersive spectroscopy, and electron probe microanalysis were used to investigate variations in mineral chemistry controlling the lateral complex-wide geochemical heterogeneity. HREE-enrichment in some peripheral zones can be attributed to an increase in the abundance of secondary REE phosphates (rhabdophane group, monazite, and fluorapatite), while HREE-enrichment in other zones is a result of HREE substitution in the otherwise LREE-selective fluorocarbonate minerals. Microprobe analyses show that HREE substitution is most pronounced in Ca-rich fluorocarbonates (parisite, synchysite, and mixed syntaxial varieties). Peripheral, late-stage HREE-enrichment is attributed to: 1) fractionation during early crystallization of LREE selective minerals, such as ancylite, carbocernaite, and Ca-REE fluorocarbonates in the central Bull Hill dike swarm, 2) REE liberated during breakdown of primary calcite and apatite with higher HREE/LREE ratios, and 3) differential transport of REE in fluids with higher PO43−/CO32− and F/CO32− ratios, leading to phosphate and pseudomorphic fluorocarbonate mineralization. Supergene weathering processes were important at the stratigraphically highest peripheral REE occurrence, which consists of fine, acicular monazite, jarosite, rutile/pseudorutile, barite, and plumbopyrochlore, an assemblage mineralogically similar to carbonatite laterites in tropical regions.  相似文献   

17.
The Dalucao deposit, located in western Sichuan Province, southwestern China, in the western part of the Yangtze Craton, is one of the largest and most extensive rare earth element (REE) deposits in the Himalayan Mianning–Dechang REE belt. Moreover, the Dalucao deposit is the only deposit identified in the southern part of the belt. The Dalucao deposit contains the No. 1, 2, and 3 orebodies; the No. 1 and 3 orebodies are both hosted in two breccia pipes, located in syenite–carbonatite host rocks. Both pipes have elliptical cross-sections at the surface, with long-axis diameters of 200–400 m and short-axis diameters of 180–200 m; the pipes extend downwards for > 450 m. No. 1 and No. 3 have total thickness varying between 55 and 175 m and 14 to 58 m respectively. The REE mineralization is associated with four brecciation events, which are recorded in each of the pipes. The ore grades in the No. 1 and 3 orebodies are similar, and consist of 1.0%–4.5% rare earth oxides (REOs). The No. 1 orebody is characterized by a Type I mineral assemblage (fluorite + barite + celestite + bastnäsite), whereas the No. 3 orebody is characterized by a Type II assemblage (fluorite + celestite + pyrite + muscovite + bastnäsite + strontianite). Argon (40Ar/39Ar) dating of hydrothermal muscovite intergrown with REE minerals in typical ores from the No. 1 and 3 orebodies yielded similar ages of 12.69 ± 0.13 and 12.23 ± 0.21 Ma, respectively, which suggest that both mineral assemblages formed coevally, rather than in paragenetic stages. Both ages are also similar to the timing of intrusion of the syenite–carbonatite complex (12.13 ± 0.19 Ma). The ore-mineral assemblages occur in breccias, veinlets, and in narrow veins. The ore veinlets, which usually show a transition to mineralized breccia or brecciated ores, are commonly enveloped by narrow veins and stringer zones with comparable mineral assemblages. The brecciated ores form 95% of the volume of the deposit, whereas brecciated ores are only a minor constituent of other deposits in the Mianning–Dechang REE belt. The carbonatite in the syenite–carbonatite complexes contains high concentrations of S (0.07–2.32 wt.%), Sr (16,500–20,700 ppm), Ba (3600–8400 ppm), and light REEs (LREE) (2848–10,768 ppm), but is depleted in high-field-strength elements (HFSE) (Nb, Ta, P, Zr, Hf, and Ti). The syenite is moderately enriched in large-ion lithophile elements (LILE), Sr (155–277 ppm), and Ba (440–755 ppm). The mineralized, altered, and fresh syenites and carbonatites exhibit similar trace element compositions and REE patterns. Brecciation events, and the Dalucao Fault and its secondary faults around the deposit, contributed to the REE mineralization by facilitating the circulation of ore-forming fluids and providing space for REE precipitation. Some hydrothermal veins composed of coarse-grained fluorite and quartz are distributed in the syenite–carbonatite complex. The oxygen isotope compositions of ore-forming fluids in equilibrium with quartz at 215 °C are − 4.95‰ to − 7.45‰, and the hydrogen isotope compositions of fluid inclusions in coarse-grained quartz are − 88.4‰ to − 105.1‰. The syenite–carbonatite complex and carbonatite are main contributors to the mineralization in the geological occurrence. Thus, the main components of the ore-forming fluids were magmatic water, meteoric water, and CO2 derived from the decarbonation of carbonatite. According to the petrographic studies, bastnäsite mineralization developed during later stages of hydrothermal evolution and overprinted the formation of the brecciated fluorite–quartz hydrothermal veins. As low-temperature isotope exchange between carbonates of the carbonatite and water-rich magmatic fluids will lead to positive shifts in δ18O values of the carbonates, C–O isotopic compositions from the bulk primary carbonatite to hydrothermal calcite and bastnäsite changed (δ18OV-SMOW from 8.0‰ to 11.6‰, and δ13C V-PDB from − 6.1 to − 8.7‰). According to the chemical composition of syenite and carbonatite, REE chloride species are the primary complexes for the transport of the REEs in the hydrothermal fluids, and the presence of bastnäsite and parisite means the REE were precipitated as fluorocarbonates. High contents of Sr, Ba and S in the syenite–carbonatite complex led to the deposition of large amount of barite and celestite.  相似文献   

18.
The giant sediment-hosted Jinding zinc-lead deposit is located in the Lanping Basin, northwestern Yunnan Province, China. The genesis of the deposit has long been debated and the sources of the ore-forming fluids and metals are controversial. This study presents rare earth element (REE) and noble gas isotope data that constrain the origins of the ore fluids and the heat source driving the hydrothermal circulation. The early-stage sulfides are enriched in light REEs and have high ∑REE values (30.8–94.8 ppm) and weakly negative Eu (δEu 0.85–0.89) and Ce anomalies (δCe 0.84–0.95), suggesting that the fluids were likely derived from dissolution of Upper Triassic marine carbonates with input of REEs from aluminosilicate rocks in the basin. In contrast, the late-stage sulfides have irregular REE patterns, generally low ∑REE values (0.24–10.8 ppm) and positive Eu (δEu 1.22–10.9) and weakly negative Ce anomalies (δCe 0.53–0.90), which suggest that the ore-forming fluids interacted with evaporite minerals. The 3He/4He (0.01–0.04 Ra) and 40Ar/36Ar values (301–340) of the ore-forming fluids indicate crustal and atmospheric origins for these noble gases. These findings are in agreement with the published fluid inclusion microthermometry data and the results of H, O, C, S, Pb and Sr isotope studies. Our data, in combination with published results, support a two-stage hydrothermal mineralization model, involving early-stage basinal brines and late-stage meteoric water that acquired metals and heat from crustal sources.  相似文献   

19.
The Vergenoeg fluorite deposit in the Bushveld Complex in South Africa is hosted by a volcanic pipe-like body. The distribution characteristics, composition and formation conditions of high-field-strength element (HFSE)-rich minerals in different lithological units of the deposit were investigated by optical and cathodoluminescence microscopy, scanning electron microscopy, X-ray fluorescence, inductively-coupled plasma mass-spectrometry and electron-probe microanalysis. The Vergenoeg host rocks comprise a diverse silica-undersaturated assemblage of fayalite–magnetite–fluorite with variably subordinate apatite and mineral phases enriched in rare-earth elements (REEs). The Sm–Nd isotope systematics of the fluorite from the various lithological units of the pipe support the model that the HFSE budget of the Vergenoeg pipe was likely derived from a Lebowa-type granitic magma. Isotopically, there is no evidence for other REE sources. Formation of the pipe, including development of the fluorite mineralization, occurred within the same time frame as the emplacement of other magmatic rock units of the Bushveld Complex (Sm–Nd isochron age for fluorite separates: 2040 ± 46 Ma). Hydrothermal alteration is manifested in strongly disturbed Rb–Sr isotope systematics of the Vergenoeg deposit, but did not affect its HFSE and REE budget. Whole-rock chondrite-normalized REE + Y distribution patterns of two types were observed: (i) flat patterns characteristic of magnetite–fluorite unit, gossan, metallurgical-grade fluorite (“metspar”) plugs and siderite lenses, and (ii) U-shaped patterns showing enrichment towards the heaviest REE (Tm–Lu) observed in the fayalite-rich units. Common HFSE minerals are complex Nb-rich oxides (samarskite, fergusonite), REE phosphates and fluorocarbonates. Additionally, fluocerite and REE silicates, whose identification requires further work, were found. Most of the HFSE-rich minerals are spatially associated with Fe-rich phases (e.g., pyrite, magnetite, greenalite and hematite). To a smaller extent, they are found finely disseminated or healing micro-fractures in fluorite. The whole-rock REE + Y distribution patterns of the individual lithological units are mainly controlled by the distribution of Yb-rich and Y-rich xenotime in these rocks. The common occurrence of bastnäsite-(Ce) in the gossan, “metspar” plugs and especially in the rhyolitic carapace at the pipe–wall-rock contact, controls the REE + Y distribution patterns of these rocks. HFSE minerals in the Vergenoeg pipe rocks have formed in several stages. Samarskite and coarse fluorapatite belong to the primary mineral assemblage. Fergusonite and Yb-rich xenotime formed during high- to moderate-temperature hydrothermal activity. Significant remobilization of the HFSE from the early-crystallized minerals (breakdown of fluorapatite and possibly allanite with release of REE + Y) and subsequent partial redistribution of these elements into near surface rocks are inferred. The late-stage assemblages are characterized by the presence of fine-grained REE fluorocarbonates, monazite-(Ce), monazite-(La) and xenotime-(Y).  相似文献   

20.
The F–(Ba–Pb–Zn) ore deposits of the Zaghouan District, located in NE Tunisia, occur as open space fillings or stratabound orebodies, hosted in Jurassic, Cretaceous and Tertiary layers. The chondrite-normalized rare earth element (REE) patterns may be split into three groups: (i) “Normal marine” patterns characterizing the wallrock carbonates; (ii) light REE (LREE) enriched (slide-shaped) patterns with respect to heavy REE (HREE), with small negative Ce and Eu anomalies, characteristic of the early ore stages; (iii) Bell-shaped REE patterns displaying LREE depletion, as well as weak negative Ce and Eu anomalies, characterizing residual fluids of subsequent stages. The 87Sr/86Sr ratios (0.707654–0.708127 ± 8), show that the Sr of the epigenetic carbonates (dolomite, calcite) and ore minerals (fluorite, celestite) are more radiogenic than those of the country (Triassic, Jurassic, Cretaceous, lower Miocene) sedimentary rocks. The uniformity of this ratio, throughout the District, provides evidence for the isotopic homogeneity and, consequently, the identity of the source of the mineralizing fluids. This signature strongly suggests that the radiogenic Sr is carried by Upper Paleozoic basinal fluids.The δ34S values of barite, associated to mineralizations, are close to those of the Triassic sea water (17‰). The δ34S values of sulfide minerals range from − 13.6‰ to + 11.4‰, suggesting two sulfur-reduced end members (BSR/TSR) with a dominant BSR process.Taking account of the homogeneity in the Pb-isotope composition of galenas (18.833–18.954 ± 0.001, 15.679–15.700 ± 0.001 and 38.690–38.880 ± 0.004, for the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios respectively), a single upper crustal source for base-metals is accepted. The Late Paleozoic basement seems to be the more plausible source for F–Pb–Zn concentrated in the deposits. The genesis of the Zaghouan District ore deposits is considered as the result of the Zaghouan Fault reactivation during the Late Miocene period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号