首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
This systematic study was carried out with objective to delineate the various sources responsible for \(\hbox {NO}_{3}^{-}\) contamination and \(\hbox {F}^{-}\) enrichment by utilizing statistical and graphical methods. Since Central Ground Water Board, India, indicated susceptibility of \(\hbox {NO}_{3}^{-}\) contamination and \(\hbox {F}^{-}\) enrichment, in most of the groundwater, \(\hbox {NO}_{3}^{-}\) and \(\hbox {F}^{-}\) concentration primarily observed \({>}45\) and \({>}1.5~\hbox {mg/L}\), respectively, i.e., higher than the permissible limit for drinking water. Water Quality Index (WQI) indicates \({\sim }22.81\%\) groundwater are good-water, \({\sim }71.14\%\) groundwater poor-water, \({\sim }5.37\%\) very poor-water and 0.67% unsuitable for drinking purpose. Piper diagram indicates \({\sim }59.73\%\) groundwater hydrogeochemical facies are Ca–Mg–\(\hbox {HCO}_{3 }\) water-types, \({\sim }28.19\%\) Ca–Mg–\(\hbox {SO}_{4}\)–Cl water-types, \({\sim }8.72\%\) Na–K–\(\hbox {SO}_{4}\)–Cl water-types and 3.36% Na–K–\(\hbox {HCO}_{3 }\) water-types. This classification indicates dissolution and mixing are mainly controlling groundwater chemistry. Salinity diagram indicate \({\sim }44.30\%\) groundwater under in low sodium and medium salinity hazard, \({\sim }49.66\%\) groundwater fall under low sodium and high salinity hazard, \({\sim }3.36\%\) groundwater fall under very-high salinity hazard. Sodium adsorption ratio indicates \({\sim }97\%\) groundwater are in excellent condition for irrigation. The spatial distribution of \(\hbox {NO}_{3}^{-}\) indicates significant contribution of fertilizer from agriculture lands. Fluoride enrichment occurs in groundwater through the dissolution of fluoride-rich minerals. By reducing the consumption of fertilizer and stress over groundwater, the water quality can be improved.  相似文献   

2.
Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been cross-verified with hydrochemical signatures such as total dissolved solids (TDS), \(\hbox {Cl}^{-},\, \hbox {HCO}_{3}^{-},\, \hbox {SO}_{4}^{2-}\) and \(\hbox {Cl}^{-}/\hbox {HCO}_{3}^{-}\) molar ratios. The results show four zones of aquifer vulnerability (i.e., negligible, low, moderate and high) based on the variation of DRASTIC Vulnerability Index (DVI) between 39 and 132. About 57% area in the central part is found moderately and highly contaminated due to the 80 functional tannery disposals and is more prone to groundwater aquifer vulnerability. The high range values of TDS (2304–39,100 mg/l); \(\hbox {Na}^{+}\)(239– 6,046 mg/l) and \(\hbox {Cl}^{-}\) (532–13,652 mg/l) are well correlated with the observed high vulnerable zones. The values of \(\hbox {Cl}^{-}/\hbox {HCO}_{3}^{-}\) (molar ratios: 1.4–106.8) in the high vulnerable zone obviously indicate deterioration of the aquifer due to contamination. Further cumulative probability distributions of these parameters indicate several threshold values which are able to demarcate the diverse vulnerability zones in granitic terrain.  相似文献   

3.
Assessing sustainability of coastal groundwater is significant for groundwater management as coastal groundwater is vulnerable to over-exploitation and contamination. To address the issues of serious groundwater level drawdown and potential seawater intrusion risk of a multi-layered coastal aquifer system in Zhanjiang, China, this paper presents a numerical modelling study to research groundwater sustainability of this aquifer system. The transient modelling results show that the groundwater budget was negative (\(-3826\times 10^{4}\) to \(-4502\times 10^{4 }\,\hbox {m}^{3}/\hbox {a}\)) during the years 2008–2011, revealing that this aquifer system was over-exploited. Meanwhile, the groundwater sustainability was assessed by evaluating the negative hydraulic pressure area (NHPA) of the unconfined aquifer and the groundwater level dynamic and flow velocity of the offshore boundaries of the confined aquifers. The results demonstrate that the Nansan Island is most influenced by NHPA and that the local groundwater should not be exploited. The results also suggest that, with the current groundwater exploitation scheme, the sustainable yield should be \(1.784\times 10^{8}\, \hbox {m}^{3}/\hbox {a}\) (i.e., decreased by 20% from the current exploitation amount). To satisfy public water demands, the 20% decrease of the exploitation amount can be offset by the groundwater sourced from the Taiping groundwater resource field. These results provide valuable guidance for groundwater management of Zhanjiang.  相似文献   

4.
An empirical model is developed to predict the dissolution rate of calcite in saline solutions that are saturated with respect to dissolved \(\hbox {CO}_2\) over a broad range of both subcritical and supercritical conditions. The focus is on determining the rate of calcite dissolution within a temperature range of 50–100 \(^\circ \hbox {C}\) and pressures up to 600 bar, relevant for \(\hbox {CO}_2\) sequestration in saline aquifers. A general reaction kinetic model is used that is based on the extension of the standard Arrhenius equation with an added, solubility-dependent, pH term to account for the saturated concentration of dissolved \(\hbox {CO}_2\). On the basis of this kinetic model, a new rate equation is obtained using multi-parameter, nonlinear regression of experimental data to determine the dissolution of calcite as a function of temperature, pressure and salinity. Different models for the activity coefficient of \(\hbox {CO}_2\) dissolved in saline solutions are accounted for. The new rate equation helps us obtain good agreement with experimental data, and it is applied to study the geochemically induced alterations of fracture geometry due to calcite dissolution.  相似文献   

5.
In the present study, measurements of surface ozone (\(\hbox {O}_{3}\)) and its precursors (NO and \(\hbox {NO}_{2}\)) were carried out at a sub-urban site of Agra (\(27{^{\circ }}10'\hbox {N}\), \(78{^{\circ }}05'\hbox {E}\)), India during May 2012–May 2013. During the study period, average concentrations of \(\hbox {O}_{3}\), NO, and \(\hbox {NO}_{2}\) were \(39.6 \pm 25.3\), \(0.8 \pm 0.8\) and \(9.1 \pm 6.6 \, \hbox {ppb}\), respectively. \(\hbox {O}_{3}\) showed distinct seasonal variation in peak value of diurnal variation: summer \({>}\) post-monsoon \({>}\) winter \({>}\) monsoon. However, \(\hbox {NO}_{2}\) showed highest levels in winter and lowest in monsoon. The average positive rate of change of \(\hbox {O}_{3}\) (08:00–11:00 hr) was highest in April (16.3 ppb/hr) and lowest in August (1.1 ppb/hr), while average negative rate of change of \(\hbox {O}_{3}\) (17:00–19:00 hr) was highest in December (–13.2 ppb/hr) and lowest in July (–1.1 ppb/hr). An attempt was made to identify the \(\hbox {VOC--NO}_{\mathrm{x}}\) sensitivity of the site using \(\hbox {O}_{3}/\hbox {HNO}_{3}\) ratio as photochemical indicator. Most of the days this ratio was above the threshold value (12–16), which suggests \(\hbox {NO}_{\mathrm{x}}\) sensitivity of the site. The episodic event of ozone was characterized through meteorological parameters and precursors concentration. Fine particles (\(\hbox {PM}_{2.5}\)) cause loss of ozone through heterogeneous reactions on their surface and reduction in solar radiation. In the study, statistical analyses were used to estimate the amount of ozone loss.  相似文献   

6.
We calculated the phase diagram of \(\hbox {AlPO}_{4}\) up to 15 GPa and 2,000 K and investigated the thermodynamic properties of the high-pressure phases. The investigated phases include the berlinite, moganite-like, \(\hbox {AlVO}_{4},\, P2_1/c\), and \(\hbox {CrVO}_{4}\) phases. The computational methods used include density functional theory, density functional perturbation theory, and the quasiharmonic approximation. The investigated thermodynamic properties include the thermal equation of state, isothermal bulk modulus, thermal expansivity, and heat capacity. With increasing pressure, the ambient phase berlinite transforms to the moganite-like phase, and then to the \(\hbox {AlVO}_{4}\) and \(P2_1/c\) phases, and further to the \(\hbox {CrVO}_{4}\) phase. The stability fields of the \(\hbox {AlVO}_{4}\) and \(P2_1/c\) phases are similar in pressure but different in temperature, as the \(\hbox {AlVO}_{4}\) phase is stable at low temperatures, whereas the \(P2_1/c\) phase is stable at high temperatures. All of the phase relationships agree well with those obtained by quench experiments, and they support the stabilities of the moganite-like, \(\hbox {AlVO}_{4}\), and \(P2_1/c\) phases, which were not observed in room-temperature compression experiments.  相似文献   

7.
In this paper, we, for the first time, report geochemistry of sandstone from Somanpalli Group from Pomburna area in the Eastern Belt of Pranhita–Godavari (PG) Valley, central India and studied to infer their provenance, intensity of paleo-weathering and depositional tectonic setting. Petrographic study of sandstones show QFL modal composition of arenite. Chemical results show high \(\hbox {SiO}_{2}\) and CIA but lower \(\hbox {Al}_{2}\hbox {O}_{3}, \hbox {TiO}_{2}\), Rb, Sr, \(\hbox {K}_{2}\hbox {O}\) indicating mixed sources. Major elements chemistry parameters such as, \(\hbox {K}_{2}\hbox {O/Al}_{2}\hbox {O}_{3}\) ratio and positive correlation of Rb with \(\hbox {K}_{2}\hbox {O}\), reflects a warm and humid climate for study area. The tectonic discrimination plots (\(\hbox {SiO}_{2}/20\)\(\hbox {K}_{2}\hbox {O} + \hbox {Na}_{2}\hbox {O}\)\(\hbox {TiO}_{2} + \hbox {Fe}_{2}\hbox {O}_{3} + \hbox {MgO};\,\hbox {K}_{2}\hbox {O}/\hbox {Na}_{2}\hbox {O}\) vs. \(\hbox {SiO}_{2}\); Th–Sc–Zr/20) indicate dominantly passive margin and slight active tectonic setting. Concentrations of Zr, Nb, Y, and Th are higher compared to the UCC values and the trends in Th/Cr, Th/Co, La/Sc and Cr/Zr ratios support a felsic and mafic source for these sandstones and deposition in passive margin basin. Chondrite normalized REE pattern reflects LREE depletion, negative Eu anomaly and flat HREE similar to UCC, felsic components. ICV value (0.95) also supports tectonically quiescent passive margin settings. CIA values (74) indicate high degree of chemical weathering and warm and humid paleoclimatic condition.  相似文献   

8.
Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringe of the DVs over an area of \(\sim \)0.70 \(\hbox {km}^{2}\) along 13 parallel lines at 50 m spacing. The data was acquired at \(\sim \)25 \(\hbox {m}\) spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic intensity show the same trend as that of Bouguer gravity anomaly and total magnetic intensity anomaly map indicating towards shallow sources. The magnetic map in general follows the same pattern as that of gravity anomaly maps. The map shows coincident high gravity and magnetic anomalies. These anomalies together with resistivity signatures confirm that the northern fringe of DVs hosts volcanogenic massive sulphide settings. The Euler depth solution delineated the lateral boundaries and nature of the source. It seems that the source is of spherical nature lying within a depth range of 25–40 m. The obtained lithological (vertical) units from RAPS are between Lower DVs, Upper DVs and Singhbhum Group Metapelites at depths of \(\sim \)15, \(~\sim \)25 and \(\sim \)40 \(\hbox {m}\), respectively. The metallogeny is associated with the Upper DVs and the corresponding delineated lithological (vertical) unit is indicative of the top of the ore body. Good agreement is observed with the geological succession from the drilling data and resistivity data. The findings suggest that the northern fringe of DVs could be a preferred target for drilling.  相似文献   

9.
Crystallochemical data on metamict davidite from albitites and albitised rocks from the Bichun area (Jaipur district, Rajasthan, India) of Banded Gneissic Complex (BGC) are provided. Davidite occurs as euhedral, subhedral to anhedral crystals in the form of disseminated grains and also as fracture filled veins. The crystals of davidite are up to 8 cm in length and 6 cm in width. The powder X-ray diffraction (XRD) pattern of the heat-treated davidite (at \(900{^{\circ }}\hbox {C}\)) reveals well-defined reflections of crystallographic planes. The calculated unit-cell parameters of the heat treated davidite are: \(\hbox {a}_{0} = \hbox {b}_{0} = 10.3556 \, \text {\AA }\) and \(\hbox {c}_{0} = 20.9067 \, \text {\AA }\), with unit-cell volume \(\hbox {(V)} = 1941.6385 \, \text {\AA }^{3}\); and \({\upalpha }={\upbeta }= 90^{\circ }\) and \({\upgamma }= 120^{\circ }\), which are in agreement with the values of davidite standard. Geochemical data reveals that the investigated davidite contains 51.5–52.6% \(\hbox {TiO}_{2}\), 14.8–15.1% \(\hbox {Fe}_{2} \hbox {O}_{3}\), 9.8–10.2% FeO, 6.97–7.12% \(\hbox {U}_{3} \hbox {O}_{8}\), 6.72–6.92% \(\hbox {RE}_{2} \hbox {O}_{3}\), 3.85–3.61% \(\hbox {K}_{2}\hbox {O}\), 0.9–1.4% \(\hbox {Al}_{2} \hbox {O}_{3}\), and 0.8–1.2% \(\hbox {SiO}_{2}\). The calculated structural formulae of the two davidite crystals are: D-1: \(\hbox {K}_{0.0044/0.004} \hbox {Ba}_{0.0044/0.005} \hbox {Ca}_{0.20/0.20} \hbox {Na}_{0.012/0.012} \hbox {Mn}_{0.053/0.053} \hbox {Mg}_{0.14/0.14} \hbox {Pb}_{0.0076/0.008} \hbox {Fe}_{2.675/2.675} \hbox {Fe}_{1.59/1.59} \hbox {Y}_{0.1175/0.118} \hbox {P}_{0.053/0.053} \hbox {Nb}_{0.008/0.008} \hbox {Sn}_{0.001/0.001} \hbox {Zr}_{0.033/0.033} \hbox {U}_{0.468/0.468} \hbox {Th}_{0.009/0.009} \,\,\hbox {REE}_{0.6829/0.683})_{6.05/6.05} (\hbox {Ti}_{12.15/12.15}\,\, \hbox {Fe}_{1.9022/1.903} \hbox {Si}_{0.372/0.372}\,\, \hbox {Al}_{0.517/0.517}\,\, \hbox {Cr}_{0.018/0.018} \hbox {Co}_{0.009/0.009} \hbox {Ni}_{0.027/0.027})_{15/15} \hbox {O}_{36/36} (\hbox {OH}_{0.319/0.319[]1.681/1.681})_{2/2}\) and D-2: \((\hbox {K}_{0.004/0.004} \hbox {Ba}_{0.005/0.005} \hbox {Ca}_{0.20/0.20} \hbox {Na}_{0.012/0.012} \hbox {Mn}_{0.05/0.05} \hbox {Mg}_{0.094/0.094} \hbox {Pb}_{0.007/0.007} \hbox {Fe}_{2.58/2.58} \hbox {Fe}_{1.71/1.71} \hbox {Y}_{0.112/0.112} \hbox {P}_{0.106/0.106} \hbox {Nb}_{0.006/0.006} \hbox {Sn}_{0.001/0.001} \hbox {Zr}_{0.03/0.03} \hbox {U}_{0.48/0.48} \hbox {Th}_{0.009/0.009} \hbox {REE}_{0.665/0.665})_{6.088/6.088} (\hbox {Ti}_{12.48/12.48} \hbox {Fe}_{1.87/1.87} \hbox {Si}_{0.249/0.249} \hbox {Al}_{0.334/0.334} \hbox {Cr}_{0.019/0.019} \hbox {Co}_{0.008/0.008} \hbox {Ni}_{0.04/0.04})_{15/15} \hbox {O}_{36/36} (\hbox {OH}_{0.098/0.098[]1.90/1.90})_{2/2}\). The calculated structural formulae are not fully stoichiometric, which could be due to metamict nature of davidite. The characteristic feature of distribution pattern of REE in davidite is unusually high concentration of LREE and HREE and substantially low content of MREE. It may be due to the occupation of REEs in two distinct crystallographic sites in davidite structure, i.e., M(1) and M(O) sites. Chondrite-normalised plot of davidite reveals a pronounced negative Eu-anomaly (\(\hbox {Eu}/\hbox {Eu}^{*} = 0.30{-}0.39\)), which suggests extremely fractionated nature of the metasomatising fluids from which davidite had crystallized. Metamict davidite-bearing U ores not only from Rajasthan, but also from other parts of India are likely to yield very high U leachability, thereby making them attractive sources of U, which otherwise are ignored by mineral engineers as uneconomic U ores.  相似文献   

10.
We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (\(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\)), differences of circular vertical and horizontal \(\sigma ^{\mathrm{o}} \, (\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}})\) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height (\({\hbox {RMS}}_{\mathrm{height}}\)). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., \(\sigma ^{\mathrm{o}}\). Near surface SM measurements were related to \(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\) derived using 5.35 GHz (C-band) image of RISAT-1 and \({\hbox {RMS}}_{\mathrm{height}}\). The roughness component derived in terms of \({\hbox {RMS}}_{\mathrm{height}}\) showed a good positive correlation with \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}} \, (R^{2} = 0.65)\). By considering all the major influencing factors (\(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\), and \({\hbox {RMS}}_{\mathrm{height}}\)), an SEM was developed where SM (volumetric) predicted values depend on \(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\), and \({\hbox {RMS}}_{\mathrm{height}}\). This SEM showed \(R^{2}\) of 0.87 and adjusted \(R^{2}\) of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement (\({\hbox {SM}}_{\mathrm{Observed}}\)) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash–Sutcliffe efficiency (NSE) = 0.91 (\({\approx } 1\)), index of agreement (d) = 1, coefficient of determination \((R^{2}) = 0.87\), mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences \(({\hbox {S}}_{\mathrm{d}}^{2}) = 0.004\). The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on \(\sigma ^{\mathrm{o}}\). By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.  相似文献   

11.
Seismic source parameters of small to moderate sized intraplate earthquakes that occurred during 2002–2009 in the tectonic blocks of Kachchh Rift Basin (KRB) and the Saurashtra Horst (SH), in the stable continental region of western peninsular India, are studied through spectral analysis of shear waves. The data of aftershock sequence of the 2001 Bhuj earthquake (\(M_{w}\) 7.7) in the KRB and the 2007 Talala earthquake (\(M_{w}\) 5.0) in the SH are used for this study. In the SH, the seismic moment (\(M_{o})\), corner frequency \((f_{c})\), stress drop (\(\varDelta \sigma \)) and source radius (r) vary from \(7.8\times 10^{11}\) to \(4.0\times \)10\(^{16}\) N-m, 1.0–8.9 Hz, 4.8–10.2 MPa and 195–1480 m, respectively. While in the KRB, these parameters vary from \(M_{o} \sim 1.24 \,\times \, 10^{11}\) to \(4.1 \times 10^{16}\) N-m, \(f_{c }\sim \) 1.6 to 13.1 Hz, \(\varDelta \sigma \sim 0.06\) to 16.62 MPa and \(r \sim 100\) to 840 m. The kappa (K) value in the KRB (0.025–0.03) is slightly larger than that in the SH region (0.02), probably due to thick sedimentary layers. The estimated stress drops of earthquakes in the KRB are relatively higher than those in SH, due to large crustal stress concentration associated with mafic/ultramafic rocks at the hypocentral depths. The results also suggest that the stress drop value of intraplate earthquakes is larger than the interplate earthquakes. In addition, it is observed that the strike-slip events in the SH have lower stress drops, compared to the thrust and strike-slip events.  相似文献   

12.
We present an extended finite element framework to numerically study competing hydraulic fracture propagation. The framework is capable of modeling fully coupled hydraulic fracturing processes including fracture propagation, elastoplastic bulk deformation and fluid flow inside both fractures and the wellbore. In particular, the framework incorporates the classical orifice equation to capture fluid pressure loss across perforation clusters linking the wellbore with fractures. Dynamic fluid partitioning among fractures during propagation is solved together with other coupled factors, such as wellbore pressure loss (\(\Delta p_w\)), perforation pressure loss (\(\Delta p\)), interaction stress (\(\sigma _\mathrm{int}\)) and fracture propagation. By numerical examples, we study the effects of perforation pressure loss and wellbore pressure loss on competing fracture propagation under plane-strain conditions. Two dimensionless parameters \(\Gamma = \sigma _\mathrm{int}/\Delta p\) and \(\Lambda = \Delta p_w/\Delta p\) are used to describe the transition from uniform fracture propagation to preferential fracture propagation. The numerical examples demonstrate the dimensionless parameter \(\Gamma \) also works in the elastoplastic media.  相似文献   

13.
This article formulates the experimentally substantiated physical principle that the natural stress condition of the Earth’s crust is formed due to the superposition of stress fields, which is caused by the gravitational forces of the Earth and by tectonic and astrophysical forces that are produced by physical processes in space. The natural stress field is represented by the stress tensor regulatory components: \(\sigma _{z}^{{\text{N}}}\) = \( - \gamma H + {{\sigma }_{{zT}}} + {{\sigma }_{{z{\text{AF}}}}}\), \(\sigma _{x}^{{\text{N}}}\) = \( - \lambda \gamma H + {{\sigma }_{{xT}}} + {{\sigma }_{{x{\text{AF}}}}}\), \(\sigma _{y}^{{\text{N}}}\) = \( - \lambda \gamma H + {{\sigma }_{{yT}}} + {{\sigma }_{{y{\text{AF}}}}}\).  相似文献   

14.
Strain responses of frozen clay with thermal gradient under triaxial creep   总被引:1,自引:1,他引:0  
Thermal gradient is one of the main features for the temperature distribution in artificial frozen shaft lining (FSL). The time-dependent strain responses and the corresponding heterogeneity characteristics of frozen soils with thermal gradient are of potential significance for stability assessment and prediction of FSL, especially of the FSL embedded in thick alluvium. A series of triaxial creep tests were carried out on frozen saturated clay under various thermal gradients and creep stresses. The experimental results indicated that the triaxial creep curves for frozen clay with thermal gradient exhibit viscous characteristics, and the creep rate \(\Delta \varepsilon_{\text{a}} /\Delta t\) decreases with the increase in creep time \(t\) and decrease in thermal gradient. The stress–strain curve under different \(t\) showed that the creep stress has a marked growth when axial strain \(\varepsilon_{\text{a}} \le 1\,\%\). However, when \(\varepsilon_{\text{a}} \ge 1\,\%\), the growth rate decreases gradually. The deviation between measured radial strain \(\varepsilon_{\text{r}}^{\text{m}}\) under the middle specimen section height SSH and the calculated radial strain \(\varepsilon_{\text{r}}^{\text{c}}\) from the volumetric strain increases following a unified equation with the increase in axial strain. The radial strain \(\varepsilon_{\text{r}}^{\text{f}}\) for frozen clay with thermal gradient after experiment increases with the increase in SSH, and the slope of \( \varepsilon_{\text{r}}^{\text{f}} - {\text{SSH}} \) curve is significantly dependent on the thermal gradient and creep stress. The variation of \(\varepsilon_{\text{r}}^{\text{m}} - \varepsilon_{\text{r}}^{\text{c }}\) during experiment and \(\varepsilon_{\text{r}}^{\text{f}}\) distribution after experiment are the macro-responses of internal micro-heterogeneities in frozen soils induced from thermal gradient, and are closely related to strain rate and its variation. These observations and findings provide an insight into the creep mechanism and the estimation method of creep deformation for frozen soils with thermal gradient.  相似文献   

15.
The purpose of this study is to assess the groundwater quality and identify the processes that control the groundwater chemistry in a crystalline aquifer. A total of 72 groundwater samples were collected during pre- and post-monsoon seasons in the year 2014 in a semi-arid region of Gooty Mandal, Anantapur district, Andhra Pradesh, India. The study utilized chemometric analysis like basic statistics, Pearson’s correlation coefficient (r), principal component analysis (PCA), Gibbs ratio, and index of base exchange to understand the mechanism of controlling the groundwater chemistry in the study area. The results reveal that groundwater in the study area is neutral to slightly alkaline in nature. The order of dominance of cations is Na+ > Ca2+ > Mg2+ > K+ while for anions, it is \( {\mathrm{HCO}}_3^{-}>{\mathrm{Cl}}^{-} \)>\( {\mathrm{NO}}_3^{-} \)>\( {\mathrm{SO}}_4^{2-} \)>\( {\mathrm{CO}}_3^{2-}>{\mathrm{F}}^{-} \) in both seasons. Based on the Piper classification, most of the groundwater samples are identified as of sodium bicarbonate (\( {\mathrm{Na}}^{+}-{\mathrm{HCO}}_3^{-}\Big) \) type. According to the results of the principal component analysis (PCA), three factors and two factors were identified pre and post monsoon, respectively. The present study indicates that the groundwater chemistry is mostly controlled by geogenic processes (weathering, dissolution, and ion exchange) and some extent of anthropogenic activities.  相似文献   

16.
The eddy covariance method is a powerful technique for quantification of \(\hbox {CO}_{2},\) \(\hbox {H}_{2}\)O and energy fluxes in natural ecosystems. Leaf area index (LAI) and its changes are significant drivers of \(\hbox {CO}_{2}\) and \(\hbox {H}_{2}\)O exchange in a forest ecosystem due to their role in photosynthesis. The present study reports the seasonal variation of \(\hbox {CO}_{2}\) and energy fluxes and their relationship with other meteorological parameters of a semi-evergreen primary forest of Kaziranga National Park, Assam, India during February 2016–January 2017. The diurnal pattern of half hourly average \(\hbox {CO}_{2 }\) fluxes over the forest was found to be mostly dominated by the incident photosynthetically active radiation. During the period of study, diurnal variations of \(\hbox {CO}_{2}\) flux showed a maximum value of \(-9.97\,\upmu \)mol \(\hbox {m}^{-2}\hbox {s}^{-1}\) in the month of June during summer which is also the beginning of the monsoon season. The monthly averaged diurnal \(\hbox {CO}_{2}\) flux and variation in LAI of the forest canopy closely followed each other. The annual net ecosystem exchange of the forest estimated from the \(\hbox {CO}_{2}\) flux data above the canopy is 84.21 g C \(\hbox {m}^{-2}\,\hbox {yr}^{-1}\). Further studies are in progress to confirm these findings. The estimated average annual evapotranspiration of the semi-evergreen forest is 2.8 ± 0.19 mm \(\hbox {day}^{-1}\). The study of partitioning of energy fluxes showed the dominance of latent heat fluxes over sensible heat fluxes. The energy balance closure was found to increase with an increase in instability and the highest closure of around 83% was noted under neutral conditions.  相似文献   

17.
The structural and spectroscopic characteristics of phosphatic ferruginous shale samples from the Bijawar Group rocks from Sagar District of Madhya Pradesh (India) have been probed for identification of uranium species. Fluorapatite (\(\hbox {Ca}_{5}\hbox {(PO}_{4})_{3}\hbox {F}\), FAP) and haematite (\(\upalpha \)-\(\hbox {Fe}_{2}\hbox {O}_{3}\)) were identified as the main phases in the separated mineral concentrates. The photoluminescence (PL) and X-ray absorption near edge spectroscopy (XANES) studies pointed to a strong experimental evidence of both U(IV) and U(VI) oxidation states in the mineral concentrate portion obtained from the same parent host rock. The PL spectrum has confirmed the charge transfer (f–d) transition bands in UV and near-UV regions with emission peaks at ca. 290, 313, 336, 399 and 416 nm, which has been attributed to the substitution of \(\hbox {Ca}^{2+}\) ions by U(IV) in FAP and broad structureless emission due to stabilisation of U(VI) as \(\hbox {UO}_{6}^{6-}\) in haematite. Time-resolved spectroscopy studies have revealed biexponential decay components lasting 2–5 ns for U(IV) species and \(10\,\upmu \hbox {s}\) for U(VI) species. These characterisations revealed the fundamental information about the oxidation state and form of uranium in this region. Remediation measures for the Bijawar region are also suggested.  相似文献   

18.
Occurrences of arsenic (As) in the Bengal Basin of Bangladesh show close relationships with depositional environments and sediment textures. Hydrochemical data from three sites with varying physiography and sedimentation history show marked variations in redox status and dissolved As concentrations. Arsenic concentration in groundwater of the Ganges Flood Plain (GFP) is characteristically low, where high Mn concentrations indicate redox buffering by reduction of Mn(IV)-oxyhydroxides. Low DOC, \( {\text{HCO}}^{ - }_{3} \), \( {\text{NH}}^{ + }_{4} \) and high \( {\text{NO}}^{ - }_{3} \) and \( {\text{SO}}^{{2 - }}_{4} \) concentrations reflect an elevated redox status in GFP aquifers. In contrast, As concentration in the Ganges Delta Plain (GDP) is very high along with high Fe and low Mn. In the Meghna Flood Plain (MFP), moderate to high As and Fe concentrations and low Mn are detected. Degradation of organic matter probably drives redox reactions in the aquifers, particularly in MFP and GDP, thereby mobilising dissolved As. Speciation calculations indicate supersaturation with respect to siderite and vivianite in the groundwater samples at MFP and GDP, but groundwater in the GFP wells is generally supersaturated with respect to rhodochrosite. Values of log PCO2 at MFP and GDP sites are generally higher than at the GFP site. This is consistent with Mn(IV)-redox buffering suggested at the GFP site compared to Fe(III)-redox buffering at MFP and GDP sites.  相似文献   

19.
We perform a micromechanical analysis of general isotropic non-cohesive particulate materials idealized as three-dimensional random assemblies of uniform spheres with a simple linear elastic inter-particle contact force law and inter-particle Coulomb friction law. We obtain analytical relationships between the inter-particle friction coefficient \(\mu\) (or inter-particle friction angle \(\phi _\mu = \tan ^{-1} \mu\)) on the microscale and the material friction angle \(\phi\) on the macroscale. Our micromechanical analysis directly employs force and moment equilibrium (together with compatibility and the contact constitutive assumptions noted) rather than energy methods, and thus can account for the effects of particle rotation, and in particular the effects of mechanisms or zero-energy modes due to particle rotation. To explore the effects of particle rotation, we perform analyses with particle rotation either allowed or prohibited. To validate the analytical results obtained here, we compare the \(\phi\) versus \(\phi _\mu\) curves determined theoretically to those obtained by the discrete element method (DEM) for six randomly packed specimens of 3430–29, 660 uniform spherical elements with uniform inter-element Coulomb friction in Fleischmann et al. in Geotech Geol Eng 32(4):1081–1100, (2014). The \(\phi\) versus \(\phi _\mu\) curves derived here show remarkable agreement with those obtained via DEM simulations in Fleischmann et al. in Geotech Geol Eng 32(4):1081–1100, (2014), especially for the case in which particle rotation is not artificially restrained.  相似文献   

20.
The phonon dispersion and thermodynamic properties of pyrope (\(\hbox {Mg}_3\hbox {Al}_2\hbox {Si}_3\hbox {O}_{12}\)) and grossular (\(\hbox {Ca}_3\hbox {Al}_2\hbox {Si}_3\hbox {O}_{12}\) ) have been computed by using an ab initio quantum mechanical approach, an all-electron variational Gaussian-type basis set and the B3LYP hybrid functional, as implemented in the Crystal program. Dispersion effects in the phonon bands have been simulated by using supercells of increasing size, containing 80, 160, 320, 640, 1280 and 2160 atoms, corresponding to 1, 2, 4, 8, 16 and 27 \(\mathbf {k}\) points in the first Brillouin zone. Phonon band structures, density of states and corresponding inelastic neutron scattering spectra are reported. Full convergence of the various thermodynamic properties, in particular entropy (S) and specific heat at constant volume (\(C_\mathrm{{V}}\)), with the number of \(\mathbf {k}\) points is achieved with 27 \(\mathbf {k}\) points. The very regular behavior of the S(T) and \(C_\mathrm{{V}}(T)\) curves as a function of the number of \(\mathbf {k}\) points, determined by high numerical stability of the code, permits extrapolation to an infinite number of \(\mathbf {k}\) points. The limiting value differs from the 27-\(\mathbf {k}\) case by only 0.40 % at 100 K for S (the difference decreasing to 0.11 % at 1000 K) and by 0.29 % (0.05 % at 1000 K) for \(C_\mathrm{{V}}\). The agreement with the experimental data is rather satisfactory. We also address the problem of the relative entropy of pyrope and grossular, a still debated question. Our lattice dynamical calculations correctly describe the larger entropy of pyrope than grossular by taking into account merely vibrational contributions and without invoking “static disorder” of the Mg ions in dodecahedral sites. However, as the computed entropy difference is found to be larger than the experimental one by a factor of 2–3, present calculations cannot exclude possible thermally induced structural changes, which could lead to further conformational contributions to the entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号