首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
This systematic study was carried out with objective to delineate the various sources responsible for \(\hbox {NO}_{3}^{-}\) contamination and \(\hbox {F}^{-}\) enrichment by utilizing statistical and graphical methods. Since Central Ground Water Board, India, indicated susceptibility of \(\hbox {NO}_{3}^{-}\) contamination and \(\hbox {F}^{-}\) enrichment, in most of the groundwater, \(\hbox {NO}_{3}^{-}\) and \(\hbox {F}^{-}\) concentration primarily observed \({>}45\) and \({>}1.5~\hbox {mg/L}\), respectively, i.e., higher than the permissible limit for drinking water. Water Quality Index (WQI) indicates \({\sim }22.81\%\) groundwater are good-water, \({\sim }71.14\%\) groundwater poor-water, \({\sim }5.37\%\) very poor-water and 0.67% unsuitable for drinking purpose. Piper diagram indicates \({\sim }59.73\%\) groundwater hydrogeochemical facies are Ca–Mg–\(\hbox {HCO}_{3 }\) water-types, \({\sim }28.19\%\) Ca–Mg–\(\hbox {SO}_{4}\)–Cl water-types, \({\sim }8.72\%\) Na–K–\(\hbox {SO}_{4}\)–Cl water-types and 3.36% Na–K–\(\hbox {HCO}_{3 }\) water-types. This classification indicates dissolution and mixing are mainly controlling groundwater chemistry. Salinity diagram indicate \({\sim }44.30\%\) groundwater under in low sodium and medium salinity hazard, \({\sim }49.66\%\) groundwater fall under low sodium and high salinity hazard, \({\sim }3.36\%\) groundwater fall under very-high salinity hazard. Sodium adsorption ratio indicates \({\sim }97\%\) groundwater are in excellent condition for irrigation. The spatial distribution of \(\hbox {NO}_{3}^{-}\) indicates significant contribution of fertilizer from agriculture lands. Fluoride enrichment occurs in groundwater through the dissolution of fluoride-rich minerals. By reducing the consumption of fertilizer and stress over groundwater, the water quality can be improved.  相似文献   

2.
Here we report new paleomagnetic results and precise paleopole position of the extensional study on \(\sim \)2367 Ma mafic giant radiating dyke swarm in the Dharwar craton, southern India. We have sampled 29 sites on 12 dykes from NE–SW Karimnagar–Hyderabad dykes and Dhone–Gooty sector dykes, eastern Dharwar craton to provide unambiguous paleomagnetism evidence on the spectacular radiating dyke swarm and thereby strengthening the presence of single magmatic event at \(\sim \)2367 Ma. A total of 158 samples were subjected to detailed alternating field and thermal demagnetization techniques and the results are presented here along with previously reported data on the same dyke swarm. The remanent magnetic directions are showing two components, viz., seven sites representing four dykes show component (A) with mean declination of \(94{{}^{\circ }}\) and mean inclination of \(-\,70{{}^{\circ }}\) (\(\hbox {k}=87\), \(\upalpha _{95}=10{{}^{\circ }}\)) and corresponding paleopole at \(16{{}^{\circ }}\hbox {N}\), \(41{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=15{{}^{\circ }}\) and \(\hbox {dm}=17{{}^{\circ }}\)) and 22 sites representing 8 dykes yielded a component (B) with mean declination of \(41{{}^{\circ }}\) and mean inclination of \(-\,21{{}^{\circ }}\) (\(\hbox {k}=41\), \(\upalpha _{95}=9{{}^{\circ }}\)) with a paleopole at \(41{{}^{\circ }}\hbox {N}\), \(200{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=5{{}^{\circ }}\) and \(\hbox {dm}=10{{}^{\circ }}\)). Component (A) results are similar to the previously reported directions from the \(\sim \)2367 Ma dyke swarm, which have been confirmed fairly reliably to be of primary origin. The component (B) directions appear to be strongly overprinted by the 2080 Ma event. The grand mean for the primary component (A) combined with earlier reported studies gives mean declination of \(97{{}^{\circ }}\) and mean inclination of \(-\,79{{}^{\circ }}\) (\(\hbox {k}=55\), \(\upalpha _{95}=3{{}^{\circ }}\)) with a paleopole at \(15{{}^{\circ }}\hbox {N}\), \(57{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=5{{}^{\circ }}\), \(\hbox {dm}=6{{}^{\circ }}\)). Paleogeographical position for the Dharwar craton at \(\sim \)2367 Ma suggests that there may be a chance to possible spatial link between Dharwar dykes of Dharwar craton (India), Widgemooltha and Erayinia dykes of Yilgarn craton (Australia), Sebanga Poort Dykes of Zimbabwe craton (Africa) and Karelian dykes of Kola-Karelia craton (Baltica Shield).  相似文献   

3.
The effect of solar flare, sudden commencement of magnetic storm and of the disturbances ring current on the equatorial electrojet in the Eastern Brazil region, where the ground magnetic declination is as large as \(20^{^{\circ }}\hbox {W}\) is studied based on geomagnetic data with one minute resolution from Bacabal during November–December 1990. It is shown that the mean diurnal vector of the horizontal field was aligned along \(2{^{\circ }}\hbox {E}\) of north at Huancayo and \(30{^{\circ }}\hbox {W}\) of north at Bacabal during the month of December 1990. Number of solar flares that occurred on 30 December 1990 indicated the direction of solar flare related \(\Delta H\) vector to be aligned along \(5{^{\circ }}\hbox {E}\) of north at Huancayo and \(28{^{\circ }}\hbox {W}\) of north at Bacabal. This is expected as the solar flare effects are due to the enhanced conductivity in the ionosphere. The SC at 2230 UT on 26 November 1990 produced a positive impulse in \(\Delta X\) and negative impulse in \(\Delta Y\) at Bacabal with \(\Delta H\) vector aligned along \(27{^{\circ }}\hbox {W}\) of north. At Huancayo the \(\Delta H\) vector associated with SC is aligned along \(8{^{\circ }}\hbox {E}\) of north, few degrees east to the alignment of the diurnal vector of H. The magnetic storm that followed the SC had a minimum Dst index of –150 nT. The corresponding storm time disturbance in \(\Delta X\) at Huancayo as well as at Bacabal were about –250 nT but \(\Delta Y\) at Bacabal was about +70 nT and very small at Huancayo, that give the alignment of the H vector due to ring current about \(16{^{\circ }}\hbox {W}\) of north at Bacabal and almost along N–S at Huancayo. Thus alignment of the \(\Delta H\) vector due to ring current at Bacabal is \(14{^{\circ }}\hbox {E}\) of the mean direction of \(\Delta H\) vector during December 1990. This is consistent with the direction of ring current dependent on the dipole declination at the ring current altitude which is about \(5{^{\circ }}\hbox {W}\) of north over Bacabal and the deviation of declination due to the ring current during disturbed period given by the angle (\(\psi \)-D).  相似文献   

4.
Owing to the lack of consistent spatial time series data on actual evapotranspiration (ET), very few studies have been conducted on the long-term trend and variability in ET at a national scale over the Indian subcontinent. The present study uses biome specific ET data derived from NOAA satellite’s advanced very high resolution radiometer to investigate the trends and variability in ET over India from 1983 to 2006. Trend analysis using the non-parametric Mann–Kendall test showed that the domain average ET decreased during the period at a rate of \(0.22\,\hbox {mm year}^{-1}\). A strong decreasing trend (\(m = -1.75\, \hbox {mm year}^{-1}\), \(F = 17.41\), \(P\) 0.01) was observed in forest regions. Seasonal analyses indicated a decreasing trend during southwest summer monsoon (\(m= -0.320\, \hbox {mm season}^{-1}\,\hbox {year}^{-1})\) and post-monsoon period (\(m= -0.188\, \hbox {mm season}^{-1 }\,\hbox {year}^{-1})\). In contrast, an increasing trend was observed during northeast winter monsoon (\(m = 0.156 \,\hbox {mm season}^{-1 }\,\hbox {year}^{-1})\) and pre-monsoon (\(m = 0.068\, \hbox {mm season}^{-1 }\,\hbox {year}^{-1})\) periods. Despite an overall net decline in the country, a considerable increase ( \(4 \,\hbox {mm year}^{-1}\)) was observed over arid and semi-arid regions. Grid level correlation with various climatic parameters exhibited a strong positive correlation (\(r \!>\!0.5\)) of ET with soil moisture and precipitation over semi-arid and arid regions, whereas a negative correlation (\(r\) \(-0.5\)) occurred with temperature and insolation in dry regions of western India. The results of this analysis are useful for understanding regional ET dynamics and its relationship with various climatic parameters over India. Future studies on the effects of ET changes on the hydrological cycle, carbon cycle, and energy partitioning are needed to account for the feedbacks to the climate.  相似文献   

5.
The deglacial transition from the last glacial maximum at \(\sim \)20 kiloyears before present (ka) to the Holocene (11.7 ka to Present) was interrupted by millennial-scale cold reversals, viz., Antarctic Cold Reversal (\(\sim \)14.5–12.8 ka) and Greenland Younger Dryas (\(\sim \)12.8–11.8 ka) which had different timings and extent of cooling in each hemisphere. The cause of this synchronously initiated, but different hemispheric cooling during these cold reversals (Antarctic Cold Reversal \(\sim \)3\(^{\circ }\hbox {C}\) and Younger Dryas \(\sim \)10\(^{\circ }\hbox {C}\)) is elusive because \(\hbox {CO}_{2}\), the fundamental forcing for deglaciation, and Atlantic meridional overturning circulation, the driver of antiphased bipolar climate response, both fail to explain this asymmetry. We use centennial-resolution records of the local surface water \(\delta ^{18}\hbox {O}\) of the Eastern Arabian Sea, which constitutes a proxy for the precipitation associated with the Indian Summer Monsoon, and other tropical precipitation records to deduce the role of tropical forcing in the polar cold reversals. We hypothesize a mechanism for tropical forcing, via the Indian Summer Monsoons, of the polar cold reversals by migration of the Inter-Tropical Convergence Zone and the associated cross-equatorial heat transport.  相似文献   

6.
In the present study, measurements of surface ozone (\(\hbox {O}_{3}\)) and its precursors (NO and \(\hbox {NO}_{2}\)) were carried out at a sub-urban site of Agra (\(27{^{\circ }}10'\hbox {N}\), \(78{^{\circ }}05'\hbox {E}\)), India during May 2012–May 2013. During the study period, average concentrations of \(\hbox {O}_{3}\), NO, and \(\hbox {NO}_{2}\) were \(39.6 \pm 25.3\), \(0.8 \pm 0.8\) and \(9.1 \pm 6.6 \, \hbox {ppb}\), respectively. \(\hbox {O}_{3}\) showed distinct seasonal variation in peak value of diurnal variation: summer \({>}\) post-monsoon \({>}\) winter \({>}\) monsoon. However, \(\hbox {NO}_{2}\) showed highest levels in winter and lowest in monsoon. The average positive rate of change of \(\hbox {O}_{3}\) (08:00–11:00 hr) was highest in April (16.3 ppb/hr) and lowest in August (1.1 ppb/hr), while average negative rate of change of \(\hbox {O}_{3}\) (17:00–19:00 hr) was highest in December (–13.2 ppb/hr) and lowest in July (–1.1 ppb/hr). An attempt was made to identify the \(\hbox {VOC--NO}_{\mathrm{x}}\) sensitivity of the site using \(\hbox {O}_{3}/\hbox {HNO}_{3}\) ratio as photochemical indicator. Most of the days this ratio was above the threshold value (12–16), which suggests \(\hbox {NO}_{\mathrm{x}}\) sensitivity of the site. The episodic event of ozone was characterized through meteorological parameters and precursors concentration. Fine particles (\(\hbox {PM}_{2.5}\)) cause loss of ozone through heterogeneous reactions on their surface and reduction in solar radiation. In the study, statistical analyses were used to estimate the amount of ozone loss.  相似文献   

7.
We have studied the attenuation characteristics of eastern Himalaya and southern Tibet by using local earthquake data set that consists of 123 well-located events, recorded by the Himalayan Nepal Tibet Seismic Experiment operated during 2001–2003. We have used single backscattering model to calculate frequency-dependent values of coda Q (\(Q_\mathrm{c}\)). The estimation of \(Q_\mathrm{c}\) is made at central frequencies 2, 4, 8 and 12 Hz through five lapse time windows from 10 to 50 s starting at double the travel time of the S-wave. The observed \(Q_\mathrm{c}\) is found to be strongly frequency-dependent and follows a similar trend as observed in other tectonically active parts of the Himalaya. The trend of variation of \(Q_\mathrm{c}\) with lapse time and the corresponding apparent depths is also studied. Increase in \(Q_\mathrm{c}\) values with the lapse time suggests that the deeper part of the study region is less heterogeneous than the shallower part. The observed values of \(Q_0\) (\(Q_\mathrm{c}\) at 1 Hz) and frequency parameter n indicate that the medium beneath the study area is highly heterogeneous and tectonically very active. A regionalization of the estimated \(Q_0\) is carried out, and a contour map is prepared for the whole region. Some segments of Lesser Himalaya and Sub-Himalaya exhibit very low \(Q_0\) , while the whole Tethyan Himalaya and some parts of Greater Himalaya are characterized by low \(Q_0\) values. Our results are comparable with those obtained from tectonically active regions in the world.  相似文献   

8.
Earthquake source parameters and crustal \(Q_{0}\) values for the 138 selected local events of (\(\hbox {M}_{\mathrm{w}}{:}2.5{-}4.4\)) the 2001 Bhuj earthquake sequence have been computed through inversion modelling of S-waves from three-component broadband seismometer data. SEISAN software has been used to locate the identified local earthquakes, which were recorded at least three or more stations of the Kachchh seismological network. Three component spectra of S-wave are being inverted by using the Levenberg–Marquardt non-linear inversion technique, wherein the inversion scheme is formulated based on \(\omega ^{2}\) source model. SAC Software (seismic analysis code) is being utilized for calculating three-component displacement and velocity spectra of S-wave. The displacement spectra are used for estimating corner frequency (in Hz) and long period spectral level (in nm-s). These two parameters play a key role in estimating earthquake source parameters. The crustal \({Q}_{0}\) values have been computed simultaneously for each component of three-component broadband seismograph. The estimated seismic moment (\(M_{0}\)) and source radius (r) using S-wave spectra range from 7.03E+12 to 5.36E+15 N-m and 178.56 to 565.21 m, respectively. The corner frequencies for S-wave vary from 3.025 to 7.425 Hz. We also estimated the radiated energy (\(E_{S}\)) using velocity spectra, which is varying from 2.76E+06 to 4.07E+11 Joules. The estimated apparent stress drop and static stress drop values range from 0.01 to 2.56 and 0.53 to 36.79 MPa, respectively. Our study also reveals that estimated \(Q_{0}\) values vary from 119.0 to 7229.5, with an average \(Q_{0}\) value of 701. Another important parameter, by which the earthquake rupture process can be recognized, is Zuniga parameter. It suggests that most of the Kachchh events follow the frictional overshoot model. Our estimated static stress drop values are higher than the apparent stress drop values. And the stress drop values are quite larger for intraplate earthquakes than the interplate earthquakes.  相似文献   

9.
Oxygen isotope ratios (\(^{18}\hbox {O}/^{16}\hbox {O}\)) of surface seawater and rainwater samples from the Indian Ocean region (10°N–60°S) during austral summer collected onboard ORV Sagar Nidhi during 2011–2013 have been measured along with salinity, sea surface temperature and relative humidity. The rainwater is isotopically lighter (by \(4.6\pm 2.7\permille )\) compared to the equilibrium condensation of the vapour arising from the seawater at the ambient condition. The isotopic composition of the vapour at high altitude responsible for the rain formation at the sampling location is estimated from a global atmospheric water isotope model (IsoGSM2). The apparent deficit of \(\sim \)5\(\permille \) can be explained by invoking a high degree of rainout (on average, about 70% of the overhead atmospheric moisture) during transport of the source vapour to the sampling location undergoing a Rayleigh fractionation. The required rainout fraction is higher (\(\sim \)80%) in the latitude belt 40°–60°S compared to the equatorial belt (\(\sim \)60%). The pattern of variation in the rainout fraction with latitude is consistent with the well-known evaporation/precipitation processes in the Indian Ocean.  相似文献   

10.
This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and \(\hbox {O}_{2}\)(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (\(24.6^{\circ }\hbox {N}\), \(72.8^{\circ }\hbox {E}\)) since January 2013. NIRIS uses a diffraction grating of 1200 lines \(\hbox {mm}^{-1}\) and 1024\(\times \)1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of \(80^{\circ }\) along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, \(c_{z}\), is calculated and along with the coherent GW time period ‘\(\tau \)’, the vertical wavelength, \(\lambda _{z}\), is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, \(\lambda _{y}\), are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and \(\hbox {O}_{2}\) emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (\(\tau \), \(c_{z}\), \(\lambda _{z}\), and \(\lambda _{y})\), and results on the statistical study of MTIs that exist in the earth’s mesospheric altitudes.  相似文献   

11.
Fission-track dating was conducted on zircons and apatites from 11 cores of the upper Xiaganchaigou Formation and lower Shangganchaigou Formation (northwestern Qaidam Basin). The obtained apatite fission-track age is 3.1–61.9 Ma, and the zircon fission-track age is 49.2–123.5 Ma. Although the average apatite age is consistent with ages predicted from the stratigraphy, nine of the 11 apatite fission-track ages have \(\hbox {P}(\upchi ^{2}) < 5\%\), indicating that the grains experienced heterogeneous annealing after sedimentation. The average zircon age is greater than that indicated by stratigraphy, and all eight zircon fission ages have \(\hbox {P}(\upchi ^{2})>5\%\), exhibiting consistent characteristics and indicating that zircons retain provenance age information after burial. From the zircon and apatite ages, the fission-track length distribution, and the geological setting, the northwestern Qaidam Basin has experienced two tectonothermal events since the Late Mesozoic, at \(39.1 \pm 9.3\) to \(133.7\,\pm \,6.6\,\hbox {Ma}\) and \(1.2 \pm 0.6\) to \(32.0\,\pm \,3.0\,\hbox {Ma}\). The earlier (39.1–133.7 Ma) tectonothermal event resulted from the initial collision of the Indian and Eurasian plates. As a consequence of the collision, the Altyn Tagh fault, which forms the northwestern boundary of the Qaidam Basin, began to develop. Subsequently, uplift of the Altyn Tagh mountains began and the northwestern depression of the Qaidam Basin started to form. The later (1.2–32.0 Ma) tectonothermal event resulted from further collision of the Indian and Eurasian plates along the Yarlung Tsangpo suture zone. Strata in the Qaidam Basin were further deformed by transpression in this period and this period played a crucial role in petroleum accumulation.  相似文献   

12.
We present new partition coefficients for the REE, HFSE, Sn, In, Ga, Ba, Pt and Rh between clinopyroxene, olivine and basaltic melt as a function of crystal chemistry and melt composition at temperatures of 1190–1300 °C and 1-bar pressure. Two components, namely \(\mathrm {Al_2O_3}\) and \(\mathrm {Na_2O}\), were chosen to be investigated since they are known to affect the structure of silicate melts and especially clinopyroxene crystal chemistry. The amount of \(^{[4]}\mathrm{Al}\) in clinopyroxene will result in an increase of \(D_i^\mathrm{{cpx/melt}}\) even after applying a correction factor to account for the effect of melt polymerization. Moreover, the positive correlation between \(^{[4]}\mathrm{Al}\) and \(D_i^\mathrm{{cpx/melt}}\) is not restricted to the REE, but also applies for Sn, Ga, In, and Ba. The addition of up to 2.6 wt% \(\mathrm {Na_2O}\) to the silicate melt universally increases the \(D_i^\mathrm{{cpx/melt}}\) without any concomitant change in crystal chemistry or a significant effect in melt polymerization. This compositional effect is likely due to the ability of Na to break REE–Al complexes in the melt. Our results emphasize the importance of considering all variables that affect the behavior of trace elements in magmatic systems before applying the lattice strain model and derive meaningful results for the changes in the parameters of the crystallographic sites.  相似文献   

13.
The fluvial geochemistry of the Subarnarekha River and its major tributaries has been studied on a seasonal basis in order to assess the geochemical processes that explain the water composition and estimate solute fluxes. The analytical results show the mildly acidic to alkaline nature of the Subarnarekha River water and the dominance of \(\hbox {Ca}^{2+}\) and \(\hbox {Na}^{+}\) in cationic and \(\hbox {HCO}_{3}^{-}\) and \({\hbox {Cl}}^{-}\) in anionic composition. Minimum ionic concentration during the monsoon and maximum concentration in the pre-monsoon seasons reflect concentrating effects due to decrease in the river discharge and increase in the base flow contribution during the pre-monsoon and dilution effects of atmospheric precipitation in the monsoon season. The solute acquisition processes are mainly controlled by weathering of rocks, with minor contribution from marine and anthropogenic sources. Higher contribution of alkaline earth \((\hbox {Ca}^{2+}{+}\,\hbox {Mg}^{2+})\) to the total cations \((\hbox {TZ}^{+})\) and high \((\hbox {Na}^{+}+\hbox {K}^{+})/\hbox {Cl}^{-}\), \((\hbox {Na}^{+}+\hbox {K}^{+})/\hbox {TZ}^{+}\), \(\hbox {HCO}_{3}^{-}/(\hbox {SO}_{4}^{2-}+\hbox {Cl}^{-})\) and low \((\hbox {Ca}^{2+}+\hbox {Mg}^{2+})/(\hbox {Na}^{+}+\hbox {K}^{+})\) equivalent ratios suggest that the Subarnarekha River water is under the combined influence of carbonate and silicate weathering. The river water is undersaturated with respect to dolomite and calcite during the post-monsoon and monsoon seasons and oversaturated in the pre-monsoon season. The pH–log \(\hbox {H}_{4}\hbox {SiO}_{4}\) stability diagram demonstrates that the water chemistry is in equilibrium with the kaolinite. The Subarnarekha River annually delivered \(1.477\times 10^{6}\) ton of dissolved loads to the Bay of Bengal, with an estimated chemical denudation rate of \(77\hbox { ton km}^{-2}\hbox { yr}^{-1}\). Sodium adsorption ratio, residual sodium carbonate and per cent sodium values placed the studied river water in the ‘excellent to good quality’ category and it can be safely used for irrigation.  相似文献   

14.
We calculated the phase diagram of \(\hbox {AlPO}_{4}\) up to 15 GPa and 2,000 K and investigated the thermodynamic properties of the high-pressure phases. The investigated phases include the berlinite, moganite-like, \(\hbox {AlVO}_{4},\, P2_1/c\), and \(\hbox {CrVO}_{4}\) phases. The computational methods used include density functional theory, density functional perturbation theory, and the quasiharmonic approximation. The investigated thermodynamic properties include the thermal equation of state, isothermal bulk modulus, thermal expansivity, and heat capacity. With increasing pressure, the ambient phase berlinite transforms to the moganite-like phase, and then to the \(\hbox {AlVO}_{4}\) and \(P2_1/c\) phases, and further to the \(\hbox {CrVO}_{4}\) phase. The stability fields of the \(\hbox {AlVO}_{4}\) and \(P2_1/c\) phases are similar in pressure but different in temperature, as the \(\hbox {AlVO}_{4}\) phase is stable at low temperatures, whereas the \(P2_1/c\) phase is stable at high temperatures. All of the phase relationships agree well with those obtained by quench experiments, and they support the stabilities of the moganite-like, \(\hbox {AlVO}_{4}\), and \(P2_1/c\) phases, which were not observed in room-temperature compression experiments.  相似文献   

15.
A new method for obtaining the C factor (i.e., vegetation cover and management factor) of the RUSLE model is proposed. The method focuses on the derivation of the C factor based on the vegetation density to obtain a more reliable erosion prediction. Soil erosion that occurs on the hillslope along the highway is one of the major problems in Malaysia, which is exposed to a relatively high amount of annual rainfall due to the two different monsoon seasons. As vegetation cover is one of the important factors in the RUSLE model, a new method that accounts for a vegetation density is proposed in this study. A hillslope near the Guthrie Corridor Expressway (GCE), Malaysia, is chosen as an experimental site whereby eight square plots with the size of \(8\times 8\) and \(5\times 5\) m are set up. A vegetation density available on these plots is measured by analyzing the taken image followed by linking the C factor with the measured vegetation density using several established formulas. Finally, erosion prediction is computed based on the RUSLE model in the Geographical Information System (GIS) platform. The C factor obtained by the proposed method is compared with that of the soil erosion guideline Malaysia, thereby predicted erosion is determined by both the C values. Result shows that the C value from the proposed method varies from 0.0162 to 0.125, which is lower compared to the C value from the soil erosion guideline, i.e., 0.8. Meanwhile predicted erosion computed from the proposed C value is between 0.410 and \(3.925\, \hbox {t ha}^{-1 }\,\hbox {yr}^{-1}\) compared to 9.367 to \(34.496\, \hbox {t ha}^{-1}\,\hbox {yr}^{-1 }\) range based on the C value of 0.8. It can be concluded that the proposed method of obtaining a reasonable C value is acceptable as the computed predicted erosion is found to be classified as a very low zone, i.e. less than \(10\, \hbox {t ha}^{-1 }\,\hbox {yr}^{-1}\) whereas the predicted erosion based on the guideline has classified the study area as a low zone of erosion, i.e., between 10 and \(50\, \hbox {t ha}^{-1 }\,\hbox {yr}^{-1}\).  相似文献   

16.
Oxygen (\({\updelta }^{18}\hbox {O}\)) and hydrogen (\({\updelta }^{2}\hbox {H}\) and \(^{3}\hbox {H}\)) isotopes of water, along with their hydrochemistry, were used to identify the source of a newly emerged seepage water in the downstream of Lake Nainital, located in the Lesser Himalayan region of Uttarakhand, India. A total of 57 samples of water from 19 different sites, in and around the seepage site, were collected. Samples were analysed for chemical tracers like \(\hbox {Ca}^{++}\), \(\hbox {Mg}^{++}\), \(\hbox {Na}^{+}\), \(\hbox {K}^{+}\), \({\hbox {SO}_{4}}^{--}\) and \(\hbox {Cl}^{-}\) using an Ion Chromatograph (Dionex IC-5000). A Dual Inlet Isotope Ratio Mass Spectrometer (DIIRMS) and an Ultra-Low Level Liquid Scintillation Counter (ULLSC), were used in measurements of stable isotopes (\({\updelta }^{2}\hbox {H}\) and \({\updelta }^{18}\hbox {O}\)) and a radioisotope (\(^{3}\hbox {H}\)), respectively. Results obtained in this study repudiate the possibility of any likely connection between seepage water and the lake water, and indicate that the source of seepage water is mainly due to locally recharged groundwater. The study suggests that environmental isotopes (\({\updelta }^{2}\hbox {H}\), \({\updelta }^{18}\hbox {O}\) and \(^{3}\hbox {H}\)) can effectively be used as ‘tracers’ in the detection of the source of seepage water in conjunction with other hydrochemical tracers, and can help in water resource management and planning.  相似文献   

17.
Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringe of the DVs over an area of \(\sim \)0.70 \(\hbox {km}^{2}\) along 13 parallel lines at 50 m spacing. The data was acquired at \(\sim \)25 \(\hbox {m}\) spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic intensity show the same trend as that of Bouguer gravity anomaly and total magnetic intensity anomaly map indicating towards shallow sources. The magnetic map in general follows the same pattern as that of gravity anomaly maps. The map shows coincident high gravity and magnetic anomalies. These anomalies together with resistivity signatures confirm that the northern fringe of DVs hosts volcanogenic massive sulphide settings. The Euler depth solution delineated the lateral boundaries and nature of the source. It seems that the source is of spherical nature lying within a depth range of 25–40 m. The obtained lithological (vertical) units from RAPS are between Lower DVs, Upper DVs and Singhbhum Group Metapelites at depths of \(\sim \)15, \(~\sim \)25 and \(\sim \)40 \(\hbox {m}\), respectively. The metallogeny is associated with the Upper DVs and the corresponding delineated lithological (vertical) unit is indicative of the top of the ore body. Good agreement is observed with the geological succession from the drilling data and resistivity data. The findings suggest that the northern fringe of DVs could be a preferred target for drilling.  相似文献   

18.
We measured the ion conductivity of single-crystal alkali feldspar originating from two different locations in the Eifel/Germany, named Volkesfeld and Rockeskyller sanidine and having potassium site fractions \(C_\mathrm{K}\) of 0.83 and 0.71, respectively. The dc conductivities resulting from electrochemical impedance spectroscopy over the temperature range of 300–900 \(^{\circ }\hbox {C}\) show a weak composition dependence but pronounced differences between the b-direction [\(\perp (010)\)] and \(c^{*}\)-direction [\(\perp (001)\)] of the monoclinic feldspar structure. Conductivity activation energies obtained from the observed linear Arrhenius plots are close to 1.2 eV in all cases, which is closely similar to the activation energies of the \(^{22}\mathrm{Na}\) tracer diffusivity in the same crystals. Taking into account literature data on K tracer diffusion and diffusion correlation effects, the present results point to a predominance of the interstitialcy mechanism over the vacancy mechanism in mass and charge transport on the alkali sublattice in potassium-rich alkali feldspar.  相似文献   

19.
The compositional zoning of a garnet population contained within a garnet-grade metapelitic schist from the Lesser Himalayan Sequence of Sikkim (India) provides insight into the rates and kinetic controls of metamorphism, and the extent of chemical equilibration during porphyroblast crystallisation in the sample. Compositional profiles across centrally sectioned garnet crystals representative of the observed crystal size distribution indicate a strong correlation between garnet crystal size and core composition with respect to major end-member components. Systematic steepening of compositional gradients observed from large to small grains is interpreted to reflect a progressive decrease in the growth rate of relatively late-nucleated garnet as a result of an increase in interfacial energies during progressive crystallisation. Numerical simulation of garnet nucleation and growth using an equilibrium approach accounting for chemical fractionation associated with garnet crystallisation reproduces both the observed crystal size distribution and the chemical zoning of the entire garnet population. Simulation of multicomponent intracrystalline diffusion within the population indicates rapid heating along the pressure–temperature path, in excess of 100 \(^{\circ }\)C Myr\(^{-1}\). Radial garnet growth is correspondingly rapid, with minimum rates of 1.4 mm Myr\(^{-1}\). As a consequence of such rapid crystallisation, the sample analysed in this study provides a close to primary record of the integrated history of garnet nucleation and growth. Our model suggests that nucleation of garnet occurred continuously between incipient garnet crystallisation at \(\sim\)520 \(^{\circ }\)C, 4.5 kbar and peak metamorphic conditions at \(\sim\)565 \(^{\circ }\)C, 5.6 kbar. The good fit between the observed and predicted garnet growth zoning suggests that the departure from equilibrium associated with garnet nucleation and growth was negligible, despite the particularly fast rates of metamorphic heating. Consequently, rates of major element diffusion in the intergranular medium during garnet crystallisation are interpreted to have been correspondingly rapid. It is, therefore, possible to simulate the prograde metamorphic history of our sample as a succession of equilibrium states of a chemical system modified by chemical fractionation associated with garnet crystallisation.  相似文献   

20.
The eddy covariance method is a powerful technique for quantification of \(\hbox {CO}_{2},\) \(\hbox {H}_{2}\)O and energy fluxes in natural ecosystems. Leaf area index (LAI) and its changes are significant drivers of \(\hbox {CO}_{2}\) and \(\hbox {H}_{2}\)O exchange in a forest ecosystem due to their role in photosynthesis. The present study reports the seasonal variation of \(\hbox {CO}_{2}\) and energy fluxes and their relationship with other meteorological parameters of a semi-evergreen primary forest of Kaziranga National Park, Assam, India during February 2016–January 2017. The diurnal pattern of half hourly average \(\hbox {CO}_{2 }\) fluxes over the forest was found to be mostly dominated by the incident photosynthetically active radiation. During the period of study, diurnal variations of \(\hbox {CO}_{2}\) flux showed a maximum value of \(-9.97\,\upmu \)mol \(\hbox {m}^{-2}\hbox {s}^{-1}\) in the month of June during summer which is also the beginning of the monsoon season. The monthly averaged diurnal \(\hbox {CO}_{2}\) flux and variation in LAI of the forest canopy closely followed each other. The annual net ecosystem exchange of the forest estimated from the \(\hbox {CO}_{2}\) flux data above the canopy is 84.21 g C \(\hbox {m}^{-2}\,\hbox {yr}^{-1}\). Further studies are in progress to confirm these findings. The estimated average annual evapotranspiration of the semi-evergreen forest is 2.8 ± 0.19 mm \(\hbox {day}^{-1}\). The study of partitioning of energy fluxes showed the dominance of latent heat fluxes over sensible heat fluxes. The energy balance closure was found to increase with an increase in instability and the highest closure of around 83% was noted under neutral conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号