首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new method for obtaining the C factor (i.e., vegetation cover and management factor) of the RUSLE model is proposed. The method focuses on the derivation of the C factor based on the vegetation density to obtain a more reliable erosion prediction. Soil erosion that occurs on the hillslope along the highway is one of the major problems in Malaysia, which is exposed to a relatively high amount of annual rainfall due to the two different monsoon seasons. As vegetation cover is one of the important factors in the RUSLE model, a new method that accounts for a vegetation density is proposed in this study. A hillslope near the Guthrie Corridor Expressway (GCE), Malaysia, is chosen as an experimental site whereby eight square plots with the size of \(8\times 8\) and \(5\times 5\) m are set up. A vegetation density available on these plots is measured by analyzing the taken image followed by linking the C factor with the measured vegetation density using several established formulas. Finally, erosion prediction is computed based on the RUSLE model in the Geographical Information System (GIS) platform. The C factor obtained by the proposed method is compared with that of the soil erosion guideline Malaysia, thereby predicted erosion is determined by both the C values. Result shows that the C value from the proposed method varies from 0.0162 to 0.125, which is lower compared to the C value from the soil erosion guideline, i.e., 0.8. Meanwhile predicted erosion computed from the proposed C value is between 0.410 and \(3.925\, \hbox {t ha}^{-1 }\,\hbox {yr}^{-1}\) compared to 9.367 to \(34.496\, \hbox {t ha}^{-1}\,\hbox {yr}^{-1 }\) range based on the C value of 0.8. It can be concluded that the proposed method of obtaining a reasonable C value is acceptable as the computed predicted erosion is found to be classified as a very low zone, i.e. less than \(10\, \hbox {t ha}^{-1 }\,\hbox {yr}^{-1}\) whereas the predicted erosion based on the guideline has classified the study area as a low zone of erosion, i.e., between 10 and \(50\, \hbox {t ha}^{-1 }\,\hbox {yr}^{-1}\).  相似文献   

2.
Seismic source parameters of small to moderate sized intraplate earthquakes that occurred during 2002–2009 in the tectonic blocks of Kachchh Rift Basin (KRB) and the Saurashtra Horst (SH), in the stable continental region of western peninsular India, are studied through spectral analysis of shear waves. The data of aftershock sequence of the 2001 Bhuj earthquake (\(M_{w}\) 7.7) in the KRB and the 2007 Talala earthquake (\(M_{w}\) 5.0) in the SH are used for this study. In the SH, the seismic moment (\(M_{o})\), corner frequency \((f_{c})\), stress drop (\(\varDelta \sigma \)) and source radius (r) vary from \(7.8\times 10^{11}\) to \(4.0\times \)10\(^{16}\) N-m, 1.0–8.9 Hz, 4.8–10.2 MPa and 195–1480 m, respectively. While in the KRB, these parameters vary from \(M_{o} \sim 1.24 \,\times \, 10^{11}\) to \(4.1 \times 10^{16}\) N-m, \(f_{c }\sim \) 1.6 to 13.1 Hz, \(\varDelta \sigma \sim 0.06\) to 16.62 MPa and \(r \sim 100\) to 840 m. The kappa (K) value in the KRB (0.025–0.03) is slightly larger than that in the SH region (0.02), probably due to thick sedimentary layers. The estimated stress drops of earthquakes in the KRB are relatively higher than those in SH, due to large crustal stress concentration associated with mafic/ultramafic rocks at the hypocentral depths. The results also suggest that the stress drop value of intraplate earthquakes is larger than the interplate earthquakes. In addition, it is observed that the strike-slip events in the SH have lower stress drops, compared to the thrust and strike-slip events.  相似文献   

3.
Here we report new paleomagnetic results and precise paleopole position of the extensional study on \(\sim \)2367 Ma mafic giant radiating dyke swarm in the Dharwar craton, southern India. We have sampled 29 sites on 12 dykes from NE–SW Karimnagar–Hyderabad dykes and Dhone–Gooty sector dykes, eastern Dharwar craton to provide unambiguous paleomagnetism evidence on the spectacular radiating dyke swarm and thereby strengthening the presence of single magmatic event at \(\sim \)2367 Ma. A total of 158 samples were subjected to detailed alternating field and thermal demagnetization techniques and the results are presented here along with previously reported data on the same dyke swarm. The remanent magnetic directions are showing two components, viz., seven sites representing four dykes show component (A) with mean declination of \(94{{}^{\circ }}\) and mean inclination of \(-\,70{{}^{\circ }}\) (\(\hbox {k}=87\), \(\upalpha _{95}=10{{}^{\circ }}\)) and corresponding paleopole at \(16{{}^{\circ }}\hbox {N}\), \(41{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=15{{}^{\circ }}\) and \(\hbox {dm}=17{{}^{\circ }}\)) and 22 sites representing 8 dykes yielded a component (B) with mean declination of \(41{{}^{\circ }}\) and mean inclination of \(-\,21{{}^{\circ }}\) (\(\hbox {k}=41\), \(\upalpha _{95}=9{{}^{\circ }}\)) with a paleopole at \(41{{}^{\circ }}\hbox {N}\), \(200{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=5{{}^{\circ }}\) and \(\hbox {dm}=10{{}^{\circ }}\)). Component (A) results are similar to the previously reported directions from the \(\sim \)2367 Ma dyke swarm, which have been confirmed fairly reliably to be of primary origin. The component (B) directions appear to be strongly overprinted by the 2080 Ma event. The grand mean for the primary component (A) combined with earlier reported studies gives mean declination of \(97{{}^{\circ }}\) and mean inclination of \(-\,79{{}^{\circ }}\) (\(\hbox {k}=55\), \(\upalpha _{95}=3{{}^{\circ }}\)) with a paleopole at \(15{{}^{\circ }}\hbox {N}\), \(57{{}^{\circ }}\hbox {E}\) (\(\hbox {dp}=5{{}^{\circ }}\), \(\hbox {dm}=6{{}^{\circ }}\)). Paleogeographical position for the Dharwar craton at \(\sim \)2367 Ma suggests that there may be a chance to possible spatial link between Dharwar dykes of Dharwar craton (India), Widgemooltha and Erayinia dykes of Yilgarn craton (Australia), Sebanga Poort Dykes of Zimbabwe craton (Africa) and Karelian dykes of Kola-Karelia craton (Baltica Shield).  相似文献   

4.
The effect of solar flare, sudden commencement of magnetic storm and of the disturbances ring current on the equatorial electrojet in the Eastern Brazil region, where the ground magnetic declination is as large as \(20^{^{\circ }}\hbox {W}\) is studied based on geomagnetic data with one minute resolution from Bacabal during November–December 1990. It is shown that the mean diurnal vector of the horizontal field was aligned along \(2{^{\circ }}\hbox {E}\) of north at Huancayo and \(30{^{\circ }}\hbox {W}\) of north at Bacabal during the month of December 1990. Number of solar flares that occurred on 30 December 1990 indicated the direction of solar flare related \(\Delta H\) vector to be aligned along \(5{^{\circ }}\hbox {E}\) of north at Huancayo and \(28{^{\circ }}\hbox {W}\) of north at Bacabal. This is expected as the solar flare effects are due to the enhanced conductivity in the ionosphere. The SC at 2230 UT on 26 November 1990 produced a positive impulse in \(\Delta X\) and negative impulse in \(\Delta Y\) at Bacabal with \(\Delta H\) vector aligned along \(27{^{\circ }}\hbox {W}\) of north. At Huancayo the \(\Delta H\) vector associated with SC is aligned along \(8{^{\circ }}\hbox {E}\) of north, few degrees east to the alignment of the diurnal vector of H. The magnetic storm that followed the SC had a minimum Dst index of –150 nT. The corresponding storm time disturbance in \(\Delta X\) at Huancayo as well as at Bacabal were about –250 nT but \(\Delta Y\) at Bacabal was about +70 nT and very small at Huancayo, that give the alignment of the H vector due to ring current about \(16{^{\circ }}\hbox {W}\) of north at Bacabal and almost along N–S at Huancayo. Thus alignment of the \(\Delta H\) vector due to ring current at Bacabal is \(14{^{\circ }}\hbox {E}\) of the mean direction of \(\Delta H\) vector during December 1990. This is consistent with the direction of ring current dependent on the dipole declination at the ring current altitude which is about \(5{^{\circ }}\hbox {W}\) of north over Bacabal and the deviation of declination due to the ring current during disturbed period given by the angle (\(\psi \)-D).  相似文献   

5.
This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and \(\hbox {O}_{2}\)(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (\(24.6^{\circ }\hbox {N}\), \(72.8^{\circ }\hbox {E}\)) since January 2013. NIRIS uses a diffraction grating of 1200 lines \(\hbox {mm}^{-1}\) and 1024\(\times \)1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of \(80^{\circ }\) along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, \(c_{z}\), is calculated and along with the coherent GW time period ‘\(\tau \)’, the vertical wavelength, \(\lambda _{z}\), is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, \(\lambda _{y}\), are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and \(\hbox {O}_{2}\) emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (\(\tau \), \(c_{z}\), \(\lambda _{z}\), and \(\lambda _{y})\), and results on the statistical study of MTIs that exist in the earth’s mesospheric altitudes.  相似文献   

6.
7.
In the present study, measurements of surface ozone (\(\hbox {O}_{3}\)) and its precursors (NO and \(\hbox {NO}_{2}\)) were carried out at a sub-urban site of Agra (\(27{^{\circ }}10'\hbox {N}\), \(78{^{\circ }}05'\hbox {E}\)), India during May 2012–May 2013. During the study period, average concentrations of \(\hbox {O}_{3}\), NO, and \(\hbox {NO}_{2}\) were \(39.6 \pm 25.3\), \(0.8 \pm 0.8\) and \(9.1 \pm 6.6 \, \hbox {ppb}\), respectively. \(\hbox {O}_{3}\) showed distinct seasonal variation in peak value of diurnal variation: summer \({>}\) post-monsoon \({>}\) winter \({>}\) monsoon. However, \(\hbox {NO}_{2}\) showed highest levels in winter and lowest in monsoon. The average positive rate of change of \(\hbox {O}_{3}\) (08:00–11:00 hr) was highest in April (16.3 ppb/hr) and lowest in August (1.1 ppb/hr), while average negative rate of change of \(\hbox {O}_{3}\) (17:00–19:00 hr) was highest in December (–13.2 ppb/hr) and lowest in July (–1.1 ppb/hr). An attempt was made to identify the \(\hbox {VOC--NO}_{\mathrm{x}}\) sensitivity of the site using \(\hbox {O}_{3}/\hbox {HNO}_{3}\) ratio as photochemical indicator. Most of the days this ratio was above the threshold value (12–16), which suggests \(\hbox {NO}_{\mathrm{x}}\) sensitivity of the site. The episodic event of ozone was characterized through meteorological parameters and precursors concentration. Fine particles (\(\hbox {PM}_{2.5}\)) cause loss of ozone through heterogeneous reactions on their surface and reduction in solar radiation. In the study, statistical analyses were used to estimate the amount of ozone loss.  相似文献   

8.
The fluvial geochemistry of the Subarnarekha River and its major tributaries has been studied on a seasonal basis in order to assess the geochemical processes that explain the water composition and estimate solute fluxes. The analytical results show the mildly acidic to alkaline nature of the Subarnarekha River water and the dominance of \(\hbox {Ca}^{2+}\) and \(\hbox {Na}^{+}\) in cationic and \(\hbox {HCO}_{3}^{-}\) and \({\hbox {Cl}}^{-}\) in anionic composition. Minimum ionic concentration during the monsoon and maximum concentration in the pre-monsoon seasons reflect concentrating effects due to decrease in the river discharge and increase in the base flow contribution during the pre-monsoon and dilution effects of atmospheric precipitation in the monsoon season. The solute acquisition processes are mainly controlled by weathering of rocks, with minor contribution from marine and anthropogenic sources. Higher contribution of alkaline earth \((\hbox {Ca}^{2+}{+}\,\hbox {Mg}^{2+})\) to the total cations \((\hbox {TZ}^{+})\) and high \((\hbox {Na}^{+}+\hbox {K}^{+})/\hbox {Cl}^{-}\), \((\hbox {Na}^{+}+\hbox {K}^{+})/\hbox {TZ}^{+}\), \(\hbox {HCO}_{3}^{-}/(\hbox {SO}_{4}^{2-}+\hbox {Cl}^{-})\) and low \((\hbox {Ca}^{2+}+\hbox {Mg}^{2+})/(\hbox {Na}^{+}+\hbox {K}^{+})\) equivalent ratios suggest that the Subarnarekha River water is under the combined influence of carbonate and silicate weathering. The river water is undersaturated with respect to dolomite and calcite during the post-monsoon and monsoon seasons and oversaturated in the pre-monsoon season. The pH–log \(\hbox {H}_{4}\hbox {SiO}_{4}\) stability diagram demonstrates that the water chemistry is in equilibrium with the kaolinite. The Subarnarekha River annually delivered \(1.477\times 10^{6}\) ton of dissolved loads to the Bay of Bengal, with an estimated chemical denudation rate of \(77\hbox { ton km}^{-2}\hbox { yr}^{-1}\). Sodium adsorption ratio, residual sodium carbonate and per cent sodium values placed the studied river water in the ‘excellent to good quality’ category and it can be safely used for irrigation.  相似文献   

9.
This systematic study was carried out with objective to delineate the various sources responsible for \(\hbox {NO}_{3}^{-}\) contamination and \(\hbox {F}^{-}\) enrichment by utilizing statistical and graphical methods. Since Central Ground Water Board, India, indicated susceptibility of \(\hbox {NO}_{3}^{-}\) contamination and \(\hbox {F}^{-}\) enrichment, in most of the groundwater, \(\hbox {NO}_{3}^{-}\) and \(\hbox {F}^{-}\) concentration primarily observed \({>}45\) and \({>}1.5~\hbox {mg/L}\), respectively, i.e., higher than the permissible limit for drinking water. Water Quality Index (WQI) indicates \({\sim }22.81\%\) groundwater are good-water, \({\sim }71.14\%\) groundwater poor-water, \({\sim }5.37\%\) very poor-water and 0.67% unsuitable for drinking purpose. Piper diagram indicates \({\sim }59.73\%\) groundwater hydrogeochemical facies are Ca–Mg–\(\hbox {HCO}_{3 }\) water-types, \({\sim }28.19\%\) Ca–Mg–\(\hbox {SO}_{4}\)–Cl water-types, \({\sim }8.72\%\) Na–K–\(\hbox {SO}_{4}\)–Cl water-types and 3.36% Na–K–\(\hbox {HCO}_{3 }\) water-types. This classification indicates dissolution and mixing are mainly controlling groundwater chemistry. Salinity diagram indicate \({\sim }44.30\%\) groundwater under in low sodium and medium salinity hazard, \({\sim }49.66\%\) groundwater fall under low sodium and high salinity hazard, \({\sim }3.36\%\) groundwater fall under very-high salinity hazard. Sodium adsorption ratio indicates \({\sim }97\%\) groundwater are in excellent condition for irrigation. The spatial distribution of \(\hbox {NO}_{3}^{-}\) indicates significant contribution of fertilizer from agriculture lands. Fluoride enrichment occurs in groundwater through the dissolution of fluoride-rich minerals. By reducing the consumption of fertilizer and stress over groundwater, the water quality can be improved.  相似文献   

10.
The eddy covariance method is a powerful technique for quantification of \(\hbox {CO}_{2},\) \(\hbox {H}_{2}\)O and energy fluxes in natural ecosystems. Leaf area index (LAI) and its changes are significant drivers of \(\hbox {CO}_{2}\) and \(\hbox {H}_{2}\)O exchange in a forest ecosystem due to their role in photosynthesis. The present study reports the seasonal variation of \(\hbox {CO}_{2}\) and energy fluxes and their relationship with other meteorological parameters of a semi-evergreen primary forest of Kaziranga National Park, Assam, India during February 2016–January 2017. The diurnal pattern of half hourly average \(\hbox {CO}_{2 }\) fluxes over the forest was found to be mostly dominated by the incident photosynthetically active radiation. During the period of study, diurnal variations of \(\hbox {CO}_{2}\) flux showed a maximum value of \(-9.97\,\upmu \)mol \(\hbox {m}^{-2}\hbox {s}^{-1}\) in the month of June during summer which is also the beginning of the monsoon season. The monthly averaged diurnal \(\hbox {CO}_{2}\) flux and variation in LAI of the forest canopy closely followed each other. The annual net ecosystem exchange of the forest estimated from the \(\hbox {CO}_{2}\) flux data above the canopy is 84.21 g C \(\hbox {m}^{-2}\,\hbox {yr}^{-1}\). Further studies are in progress to confirm these findings. The estimated average annual evapotranspiration of the semi-evergreen forest is 2.8 ± 0.19 mm \(\hbox {day}^{-1}\). The study of partitioning of energy fluxes showed the dominance of latent heat fluxes over sensible heat fluxes. The energy balance closure was found to increase with an increase in instability and the highest closure of around 83% was noted under neutral conditions.  相似文献   

11.
We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (\(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\)), differences of circular vertical and horizontal \(\sigma ^{\mathrm{o}} \, (\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}})\) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height (\({\hbox {RMS}}_{\mathrm{height}}\)). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., \(\sigma ^{\mathrm{o}}\). Near surface SM measurements were related to \(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\) derived using 5.35 GHz (C-band) image of RISAT-1 and \({\hbox {RMS}}_{\mathrm{height}}\). The roughness component derived in terms of \({\hbox {RMS}}_{\mathrm{height}}\) showed a good positive correlation with \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}} \, (R^{2} = 0.65)\). By considering all the major influencing factors (\(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\), and \({\hbox {RMS}}_{\mathrm{height}}\)), an SEM was developed where SM (volumetric) predicted values depend on \(\sigma ^{\mathrm{o}}_{\mathrm{RH}}\), \(\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}\), and \({\hbox {RMS}}_{\mathrm{height}}\). This SEM showed \(R^{2}\) of 0.87 and adjusted \(R^{2}\) of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement (\({\hbox {SM}}_{\mathrm{Observed}}\)) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash–Sutcliffe efficiency (NSE) = 0.91 (\({\approx } 1\)), index of agreement (d) = 1, coefficient of determination \((R^{2}) = 0.87\), mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences \(({\hbox {S}}_{\mathrm{d}}^{2}) = 0.004\). The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on \(\sigma ^{\mathrm{o}}\). By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.  相似文献   

12.
Evapotranspiration (ET) plays an important role in exchange of water budget and carbon cycles over the Inner Mongolia autonomous region of China (IMARC). However, the spatial and decadal variations in terrestrial ET and drought over the IMARC in the past was calculated by only using sparse meteorological point-based data which remain quite uncertain. In this study, by combining satellite and meteorology datasets, a satellite-based semi-empirical Penman ET (SEMI-PM) algorithm is used to estimate regional ET and evaporative wet index (EWI) calculated by the ratio of ET and potential ET (PET) over the IMARC. Validation result shows that the square of the correlation coefficients \((R^{2})\) for the four sites varies from 0.45 to 0.84 and the root-mean-square error (RMSE) is  \(0.78\) mm. We found that the ET has decreased on an average of 4.8 mm per decade (\(p=0.10\)) over the entire IMARC during 1982–2009 and the EWI has decreased on an average of 1.1% per decade (\(p=0.08\)) during the study period. Importantly, the patterns of monthly EWI anomalies have a good spatial and temporal correlation with the Palmer Drought Severity Index (PDSI) anomalies from 1982 to 2009, indicating EWI can be used to monitor regional surface drought with high spatial resolution. In high-latitude ecosystems of northeast region of the IMARC, both air temperature \((T_{a})\) and incident solar radiation \((R_{s})\) are the most important parameters in determining ET. However, in semiarid and arid areas of the central and southwest regions of the IMARC, both relative humidity (RH) and normalized difference vegetation index (NDVI) are the most important factors controlling annual variation of ET.  相似文献   

13.
We calculated the phase diagram of \(\hbox {AlPO}_{4}\) up to 15 GPa and 2,000 K and investigated the thermodynamic properties of the high-pressure phases. The investigated phases include the berlinite, moganite-like, \(\hbox {AlVO}_{4},\, P2_1/c\), and \(\hbox {CrVO}_{4}\) phases. The computational methods used include density functional theory, density functional perturbation theory, and the quasiharmonic approximation. The investigated thermodynamic properties include the thermal equation of state, isothermal bulk modulus, thermal expansivity, and heat capacity. With increasing pressure, the ambient phase berlinite transforms to the moganite-like phase, and then to the \(\hbox {AlVO}_{4}\) and \(P2_1/c\) phases, and further to the \(\hbox {CrVO}_{4}\) phase. The stability fields of the \(\hbox {AlVO}_{4}\) and \(P2_1/c\) phases are similar in pressure but different in temperature, as the \(\hbox {AlVO}_{4}\) phase is stable at low temperatures, whereas the \(P2_1/c\) phase is stable at high temperatures. All of the phase relationships agree well with those obtained by quench experiments, and they support the stabilities of the moganite-like, \(\hbox {AlVO}_{4}\), and \(P2_1/c\) phases, which were not observed in room-temperature compression experiments.  相似文献   

14.
Oxygen (\({\updelta }^{18}\hbox {O}\)) and hydrogen (\({\updelta }^{2}\hbox {H}\) and \(^{3}\hbox {H}\)) isotopes of water, along with their hydrochemistry, were used to identify the source of a newly emerged seepage water in the downstream of Lake Nainital, located in the Lesser Himalayan region of Uttarakhand, India. A total of 57 samples of water from 19 different sites, in and around the seepage site, were collected. Samples were analysed for chemical tracers like \(\hbox {Ca}^{++}\), \(\hbox {Mg}^{++}\), \(\hbox {Na}^{+}\), \(\hbox {K}^{+}\), \({\hbox {SO}_{4}}^{--}\) and \(\hbox {Cl}^{-}\) using an Ion Chromatograph (Dionex IC-5000). A Dual Inlet Isotope Ratio Mass Spectrometer (DIIRMS) and an Ultra-Low Level Liquid Scintillation Counter (ULLSC), were used in measurements of stable isotopes (\({\updelta }^{2}\hbox {H}\) and \({\updelta }^{18}\hbox {O}\)) and a radioisotope (\(^{3}\hbox {H}\)), respectively. Results obtained in this study repudiate the possibility of any likely connection between seepage water and the lake water, and indicate that the source of seepage water is mainly due to locally recharged groundwater. The study suggests that environmental isotopes (\({\updelta }^{2}\hbox {H}\), \({\updelta }^{18}\hbox {O}\) and \(^{3}\hbox {H}\)) can effectively be used as ‘tracers’ in the detection of the source of seepage water in conjunction with other hydrochemical tracers, and can help in water resource management and planning.  相似文献   

15.
In situ measurements of near-surface ozone (\(\hbox {O}_{3})\), carbon monoxide (CO), and methane (\(\hbox {CH}_{4})\) were carried out over the Bay of Bengal (BoB) as a part of the Continental Tropical Convergence Zone (CTCZ) campaign during the summer monsoon season of 2009. \(\hbox {O}_{3}\), CO and \(\hbox {CH}_{4}\) mixing ratios varied in the ranges of 8–54 ppbv, 50–200 ppbv and 1.57–2.15 ppmv, respectively during 16 July–17 August 2009. The spatial distribution of mean tropospheric \(\hbox {O}_{3}\) from satellite retrievals is found to be similar to that in surface \(\hbox {O}_{3}\) observations, with higher levels over coastal and northern BoB as compared to central BoB. The comparison of in situ measurements with the Monitoring Atmospheric Composition & Climate (MACC) global reanalysis shows that MACC simulations reproduce the observations with small mean biases of 1.6 ppbv, –2.6 ppbv and 0.07 ppmv for \(\hbox {O}_{3}\), CO and \(\hbox {CH}_{4}\), respectively. The analysis of diurnal variation of \(\hbox {O}_{3}\) based on observations and the simulations from Weather Research and Forecasting coupled with Chemistry (WRF-Chem) at a stationary point over the BoB did not show a net photochemical build up during daytime. Satellite retrievals show limitations in capturing \(\hbox {CH}_{4}\) variations as measured by in situ sample analysis highlighting the need of more shipborne in situ measurements of trace gases over this region during monsoon.  相似文献   

16.
Stable isotopes of benthic foraminifera have widely been applied in micropalaeontological research to understand vital effects in foraminifera. Isotopic fractionations are mainly controlled by ontogeny, bottom/pore water chemistry, habitat preference, kinetic effect and respiration. Discontinuous abundance of a species for isotopic analysis has forced us to select multiple species from down-core samples. Thus standardisation factors are required to convert isotopic values of one species with respect to other species. The present study is pursued on isotopic values of different pairs of benthic foraminifera from the Krishna–Godavari basin and Peru offshore to understand habitat-wise isotopic variation and estimation of isotopic correction factors for the paired species (Cibicides wuellerstorfi–Bulimina marginata, Ammonia spp.–Loxostomum amygdalaeformis and Bolivina seminuda–Nonionella auris). Infaunal species (B. marginata, Ammonia spp. and N. auris) show a lighter carbon isotopic excursion with respect to the epifaunal to shallow infaunal forms (C. wuellerstorfi, L. amygdalaeformis and B. seminuda). These lighter \(\updelta ^{13}\) \(\hbox {C}\) values are related to utilisation of \(\hbox {CO}_{2}\) produced by anaerobic remineralisation of organic matter. However, enrichment of \(\updelta ^{18}\) \(\hbox {O}\) for the deeper microhabitat (bearing lower pH and decreased \({\hbox {CO}_{3}}^{2-})\) is only recorded in case of B. marginata. It is reverse in case of N. auris and related to utilisation of respiratory \(\hbox {CO}_{2}\) and internal dissolve inorganic carbon pool. Estimation of interspecies isotopic correction factors for the species pairs (\(\updelta ^{13}\) \(\hbox {C}\) of C. wuellerstorfiB. marginata, L. amygdalaeformisAmmonia spp., N. aurisB. seminuda) and \(\updelta ^{18}\) \(\hbox {O}\) of C. wuellerstorfiB. marginata are statistically reliable and may be used in palaeoecological studies.  相似文献   

17.
Petrography and mineralogy of four calc-alkaline granitoid plutons Agarpur, Sindurpur, Raghunathpur and Sarpahari located from west to east of northern Purulia of Chhotanagpur Gneissic Complex, eastern India, are investigated. The plutons, as a whole, are composed of varying proportions of Qtz–Pl–Kfs–Bt–Hbl±Px–Ttn–Mag–Ap–Zrn±Ep. The composition of biotite is consistent with those of calc-alkaline granitoids. Hornblende–plagioclase thermometry, aluminium-in-hornblende barometry and the assemblage sphene–magnetite–quartz were used to determine the P, T and \(f_{\mathrm{O}_2}\) during the crystallisation of the parent magmas in different plutons. The plutons are crystallised under varying pressures (6.2–2.4 kbar) and a wide range of temperatures (896–\(718{^{\circ }}\hbox {C}\)) from highly oxidised magmas (log \(f_{\mathrm{O}_2}\) \(-11.2\) to \(-15.4\) bar). The water content of the magma of different plutons varied from 5.0 to 6.5 wt%, consistent with the calc-alkaline nature of the magma. Calc-alkaline nature, high oxygen fugacity and high \(\hbox {H}_{2}\hbox {O}_{{\mathrm{melt}}}\) suggest that these plutons were emplaced in subduction zone environment. The depths of emplacement of these plutons seem to increase from west to east. Petrologic compositions of these granitoids continuously change from enderbite (opx-tonalite: Sarpahari) in the east to monzogranite (Raghunathpur) to syenogranite (Sindurpur) to alkali feldspar granite (Agarpur) in the west. The water contents of the parental magmas of different plutons also increase systematically from east to west. No substantial increase in the depth of emplacement is found in these plutons lying south and north of the major shear zone passing through the study area suggesting the strike-slip nature of the east–west shear zone.  相似文献   

18.
Resilience is the capacity of an ecosystem to absorb disturbance and undergo change while maintaining its essential structure, functions, identity and feedbacks. The forests of the Hindu Kush Himalayan (HKH) region are vulnerable to both natural and anthropogenic changes, and the forest land conversion and degradation. Using satellite-derived tree canopy cover percent data and precipitation as the explaining variable, we studied the forest cover resilience in a geospatial framework employing the logistic regression and polynomial equation fitting. Out of the \(4.3\,\hbox {million km}^{2}\) geographical areas, \(873{,}650\,\hbox {km}^{2}\) (20.20%) was under the forest in 2000 and experienced loss of \(11{,}250\,\hbox {km}^{2}\) during 2000–2010. We could model the forest cover and treeless areas fairly than the scrub and grassland owing to the variation in precipitation pattern. The majority of the forest cover (59.3%) has been estimated to have less resilience owing to the receipt of <1650 mm of total annual precipitation, whereas only \(375\,\hbox {km}^{2}\) forest area could change to scrub that shows the least resilience. About 94.4% of treeless areas were estimated to be stable, while only 1% \((25{,}200\,\hbox {km}^{2})\) area could accommodate the grassland. The resilient forest areas estimated and observed, owing to the mapping and modelling protocols used in this study, shall be useful in conservation planning in the HKH region.  相似文献   

19.
The deglacial transition from the last glacial maximum at \(\sim \)20 kiloyears before present (ka) to the Holocene (11.7 ka to Present) was interrupted by millennial-scale cold reversals, viz., Antarctic Cold Reversal (\(\sim \)14.5–12.8 ka) and Greenland Younger Dryas (\(\sim \)12.8–11.8 ka) which had different timings and extent of cooling in each hemisphere. The cause of this synchronously initiated, but different hemispheric cooling during these cold reversals (Antarctic Cold Reversal \(\sim \)3\(^{\circ }\hbox {C}\) and Younger Dryas \(\sim \)10\(^{\circ }\hbox {C}\)) is elusive because \(\hbox {CO}_{2}\), the fundamental forcing for deglaciation, and Atlantic meridional overturning circulation, the driver of antiphased bipolar climate response, both fail to explain this asymmetry. We use centennial-resolution records of the local surface water \(\delta ^{18}\hbox {O}\) of the Eastern Arabian Sea, which constitutes a proxy for the precipitation associated with the Indian Summer Monsoon, and other tropical precipitation records to deduce the role of tropical forcing in the polar cold reversals. We hypothesize a mechanism for tropical forcing, via the Indian Summer Monsoons, of the polar cold reversals by migration of the Inter-Tropical Convergence Zone and the associated cross-equatorial heat transport.  相似文献   

20.
Homogeneous single crystals of synthetic monticellite with the composition \({\text{Ca}}_{0.88}{\text{Mg}}_{1.12}{\text{SiO}}_4\) (Mtc I) were annealed in a piston-cylinder apparatus at temperatures between 1000 and \(1200\,^{\circ }\hbox {C}\), pressures of 1.0–1.4 GPa, for run durations from 10 min to 24 h and applying bulk water contents ranging from 0.0 to 0.5 wt% of the total charge. At these conditions, Mtc I breaks down to a fine-grained, symplectic intergrowth. Thereby, two types of symplectites are produced: a first symplectite type (Sy I) is represented by an aggregate of rod-shaped forsterite immersed in a matrix of monticellite with end-member composition (Mtc II), and a second symplectite type (Sy II) takes the form of a lamellar merwinite–forsterite intergrowth. Both symplectites may form simultaneously, where the formation of Sy I is favoured by the presence of water. Sy I is metastable with respect to Sy II and is successively replaced by the latter. For both symplectite types, the characteristic spacing of the symplectite phases is independent of run duration and is only weeakly influenced by the water content, but it is strongly temperature dependent. It varies from about 400 nm at \(1000\,^{\circ }\hbox {C}\) to 1200 nm at \(1100\,^{\circ }\hbox {C}\) in Sy I, and from 300 nm at \(1000\,^{\circ }\hbox {C}\) to 700 nm at \(1200\,^{\circ }\hbox {C}\) in Sy II. A thermodynamic analysis reveals that the temperature dependence of the characteristic spacing of the symplectite phases is due to a relatively high activation energy for chemical segregation by diffusion within the reaction front as compared to the activation energy for interface reactions at the reaction front. The temperature dependence of the characteristic lamellar spacing and the temperature-time dependence of overall reaction progress have potential for applications in geo-thermometry and geo-speedometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号