首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We solve for the structure of a hot accretion disc with unsaturated thermal Comptonization of soft photons and with advection, generalizing the classical model of Shapiro et al. The upper limit on the accretion rate due to advection constrains the luminosity to ≲ 0.15 y3/5 α7/5 of the Eddington limit, where y and α are the Compton and viscosity parameters, respectively. The characteristic electron temperature and Thomson optical depth of the inner flow at accretion rates within an order of magnitude of that upper limit are ∼ 109 K and ∼ 1, respectively. The resulting spectra are then in close agreement with the X-ray and soft γ-ray spectra from black hole binaries in the hard state and Seyferts. At low accretion rates, bremsstrahlung becomes the dominant radiative process.  相似文献   

2.
3.
We suggest that an extreme Kerr black hole with a mass ∼106 M, a dimensionless angular momentum     and a marginally stable orbital radius     located in a normal galaxy may produce a γ -ray burst (GRB) by capturing and disrupting a star. During the capture period, a transient accretion disc is formed and a strong transient magnetic field ∼     lasting for     may be produced at the inner boundary of the accretion disc. A large amount of rotational energy of the black hole is extracted and released in an ultrarelativistic jet with a bulk Lorentz factor Γ larger than 103 via the Blandford–Znajek process. The relativistic jet energy can be converted into γ -radiation via an internal shock mechanism. The GRB duration should be the same as the lifetime of the strong transient magnetic field. The maximum number of sub-bursts is estimated to be     because the disc material is likely to break into pieces with a size about the thickness of the disc h at the cusp     The shortest risetime of the burst estimated from this model is ∼     The model GRB density rate is also estimated.  相似文献   

4.
When double neutron star or neutron star–black hole binaries merge, the final remnant may comprise a central solar-mass black hole surrounded by a  ∼0.01–0.1 M  torus. The subsequent evolution of this disc may be responsible for short γ-ray bursts (SGRBs). A comparable amount of mass is ejected into eccentric orbits and will eventually fallback to the merger site after ∼0.01 s. In this paper, we investigate analytically the fate of the fallback matter, which may provide a luminous signal long after the disc is exhausted. We find that matter in the eccentric tail returns at a super-Eddington rate and eventually (≳0.1 s) is unable to cool via neutrino emission and accrete all the way to the black hole. Therefore, contrary to previous claims, our analysis suggests that fallback matter is not an efficient source of late-time accretion power and unlikely to cause the late-flaring activity observed in SGRB afterglows. The fallback matter rather forms a radiation-driven wind or a bound atmosphere. In both the cases, the emitting plasma is very opaque and photons are released with a degraded energy in the X-ray band. We therefore suggest that compact binary mergers could be followed by an 'X-ray renaissance', as late as several days to weeks after the merger. This might be observed by the next generation of X-ray detectors.  相似文献   

5.
This paper focuses on neutron stars (NS) of the magnetar type inside massive binary systems. We determine the conditions under which the matter from the stellar wind can penetrate the inner magnetosphere of the magnetar. At a certain distance from the NS surface, the magnetic pressure can balance the gravitational pressure of the accreting matter, creating a very turbulent, magnetized transition region. It is suggested that this region provides good conditions for the acceleration of electrons to relativistic energies. These electrons lose energy due to the synchrotron process and inverse Compton (IC) scattering of the radiation from the nearby massive stellar companion, producing high-energy radiation from X-rays up to ∼TeV γ-rays. The primary γ-rays can be further absorbed in the stellar radiation field, developing an IC  e±  pair cascade. We calculate the synchrotron X-ray emission from primary electrons and secondary  e±  pairs and the IC γ-ray emission from the cascade process. It is shown that quasi-simultaneous observations of the TeV γ-ray binary system LSI +61 303 in the X-ray and TeV γ-ray energy ranges can be explained with such an accreting magnetar model.  相似文献   

6.
We present X-ray/ γ -ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA , RXTE and CGRO /OSSE in 1996 May and June. The spectra consist of a dominant soft component below ∼2 keV and a power-law-like continuum extending to at least ∼800 keV. We interpret them as emission from an optically thick, cold accretion disc and from an optically thin, non-thermal corona above the disc. A fraction f ≳0.5 of total available power is dissipated in the corona.
We model the soft component by multicolour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCA RXTE data yield the most probable black hole mass of M X≈10 M and an accretion rate,     , locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure-dominated, accretion-disc solution branch.
The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kT e∼30–50 keV, a Thomson optical depth of τ ∼0.3 and a quasi-power-law tail. The compactness of the corona is 2≲ℓh≲7, and a presence of a significant population of electron–positron pairs is ruled out.
We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle, Ω/2π∼0.5–0.7. The reflected continuum is accompanied by a broad iron K α line.  相似文献   

7.
We present a detailed classification of the X-ray states of Cyg X-3 based on the spectral shape and a new classification of the radio states based on the long-term correlated behaviour of the radio and soft X-ray light curves. We find a sequence of correlations, starting with a positive correlation between the radio and soft X-ray fluxes in the hard spectral state, changing to a negative one at the transition to soft spectral states. The temporal evolution can be in either direction on that sequence, unless the source goes into a very weak radio state, from which it can return only following a major radio flare. The flare decline is via relatively bright radio states, which results in a hysteresis loop on the flux–flux diagram. We also study the hard X-ray light curve, and find its overall anticorrelation with the soft X-rays. During major radio flares, the radio flux responds exponentially to the level of a hard X-ray high-energy tail. We also specify the detailed correspondence between the radio states and the X-ray spectral states. We compare our results to those of black hole and neutron star binaries. Except for the effect of strong absorption and the energy of the high-energy break in the hard state, the X-ray spectral states of Cyg X-3 closely correspond to the canonical X-ray states of black hole binaries. Also, the radio/X-ray correlation closely corresponds to that found in black hole binaries, but it significantly differs from that in neutron star binaries. Overall, our results strongly support the presence of a black hole in Cyg X-3.  相似文献   

8.
We study spectral variability of 11 ultraluminous X-ray sources (ULX) using archived XMM–Newton and Chandra observations. We use three models to describe the observed spectra: a power law, a multicolour disc (MCD) and a combination of these two models. We find that seven ULXs show a correlation between the luminosity L X and the photon index Γ. Furthermore, four out of these seven ULXs also show spectral pivoting in the observed energy band. We also find that two ULXs show an   L X–Γ  anticorrelation. The spectra of four ULXs in the sample can be adequately fitted with a MCD model. We compare these sources to known black hole binaries (BHB) and find that they follow similar paths in their luminosity–temperature diagrams. Finally, we show that the 'soft excess' reported for many of these ULXs at ∼0.2 keV seems to roughly follow a trend   L soft∝ T −3.5  when modelled with a power law plus a 'cool' MCD model. This is contrary to the   L ∝ T 4  relation that is expected from theory and what is seen for many accreting BHBs. The observed trend could instead arise from disc emission beamed by an outflowing wind around a  ∼10 M  black hole.  相似文献   

9.
Most astrophysical sources powered by accretion on to a black hole, either of stellar mass or supermassive, when observed with hard X-rays show signs of a hot Comptonizing component in the flow, the so-called corona , with observed temperatures and optical depths lying in a narrow range (0.1≲ τ ≲1 and 1×109 K≲ T ≲3×109 K). Here we argue that these facts constitute strong supporting evidence for a magnetically dominated corona. We show that the inferred thermal energy content of the corona, in all black hole systems, is far too low to explain their observed hard X-ray luminosities, unless either the size of the corona is at least of the order of 103 Schwarzschild radii, or the corona itself is in fact a reservoir , where the energy is mainly stored in the form of a magnetic field generated by a sheared rotator (probably the accretion disc). We briefly outline the main reasons why the former possibility is to be discarded, and the latter preferred.  相似文献   

10.
We study how axisymmetric magnetohydrodynamic (MHD) accretion flows depend on γ adiabatic index in the polytropic equation of state. This work is an extension of Mościbrodzka & Proga, where we investigated the γ dependence of two-dimensional Bondi-like accretion flows in the hydrodynamical (HD) limit. Our main goal is to study if simulations for various γ can give us insights into the problem of various modes of accretion observed in several types of accretion systems, such as black hole binaries (BHBs), active galactic nuclei (AGN) and gamma-ray bursts. We find that for  γ≳ 4/3  , the fast-rotating flow forms a thick torus that is supported by rotation and gas pressure. As shown before for  γ= 5/3  , such a torus produces a strong, persistent bipolar outflow that can significantly reduce the polar funnel accretion of a slowly rotating flow. For low γ, close to 1, the torus is thin and is supported by rotation. The thin torus produces an unsteady outflow which is too weak to propagate throughout the polar funnel inflow. Compared to their HD counterparts, the MHD simulations show that the magnetized torus can produce an outflow and does not exhibit regular oscillations. Generally, our simulations demonstrate how the torus thickness affects the outflow production. They also support the notion that the geometrical thickness of the torus correlates with the power of the torus outflow. Our results, applied to observations, suggest that the torus ability to radiatively cool and become thin can correspond to a suppression of a jet as observed in the BHBs during a transition from a hard/low to soft/high spectral state and a transition from a quiescent to hard/low state in AGN.  相似文献   

11.
Share  G.H.  Murphy  R.J.  Tylka  A.J.  Schwartz  R.A.  Yoshimori  M.  Suga  K.  Nakayama  S.  Takeda  H. 《Solar physics》2001,204(1-2):41-53
The HXS and GRS detectors on Yohkoh observed the 14 July 2000, X5.7 flare, beginning at ∼ 10:20 UT, ∼ 4 min before the peak in soft X-rays. The hard X-rays and γ-rays peaked ∼ 3 min later at ∼ 10:27 UT. Solar γ-ray emission lasted until ∼ 10:40 UT. Impact of high-energy ions at the Sun is revealed by the γ-ray lines from neutron capture, annihilation radiation and de-excitation that are visible above the bremsstrahlung continuum. From measurement of these lines we find that the flare-averaged spectrum of accelerated protons is consistent with a power law ge10 MeV with index 3.14±0.15 and flux 1.1×1032 protons MeV−1 at 10 MeV. We estimate that there were ∼1.5×1030 erg in accelerated ions if the power law extended without a break down to 1 MeV; this is about 1% of the energy in electrons > 20 keV from measurements of the hard X-rays. We find no evidence for spectral hardening in the hard X-rays that has been suggested as a predictor for the occurrence of solar energetic particle (SEP) events. This was the third largest proton event above 10 MeV since 1976. The GRS and HXS also observed γ-ray lines and continuum produced by the impact of SEP on the Earth's atmosphere beginning about 13 UT on 14 July. These measurements show that the SEP spectrum softened considerably over the next 24 hours. We compare these measurements with proton measurements in space.  相似文献   

12.
We report the discovery of a new hysteresis effect in black hole X-ray binary state transitions, that of the near-infrared (NIR) flux (which most likely originates in the jets) versus X-ray flux. We find, looking at existing data sets, that the IR emission of black hole X-ray transients appears to be weaker in the low/hard state rise of an outburst than the low/hard state decline of an outburst at a given X-ray luminosity. We discuss how this effect may be caused by a shift in the radiative efficiency of the inflowing or outflowing matter, or variations in the disc viscosity or the spectrum/power of the jet. In addition we show that there is a correlation (in slope but not in normalization) between IR and X-ray luminosities on the rise and decline, for all three low-mass black hole X-ray binaries with well-sampled IR and X-ray coverage:   L NIR∝ L 0.5–0.7X  . In the high/soft state this slope is much shallower;   L NIR∝ L 0.1–0.2X  , and we find that the NIR emission in this state is most likely dominated by the viscously heated (as opposed to X-ray heated) accretion disc in all three sources.  相似文献   

13.
Helium star–compact object binaries, and helium star–neutron star binaries in particular, are widely believed to be the progenitors of the observed double-neutron-star systems. In these, the second neutron star is presumed to be the compact remnant of the helium star supernova. In this paper, the observational implications of such a supernova are discussed, and in particular are explored as a candidate γ-ray burst mechanism. In this scenario, the supernova results in a transient period of rapid accretion on to the compact object, extracting via magnetic torques its rotational energy at highly super-Eddington luminosities in the form of a narrowly beamed, strongly electromagnetically dominated jet. Compton scattering of supernova photons advected within the ejecta, and photons originating at shocks driven into the ejecta by the jet, will cool the jet and can produce the observed prompt emission characteristics, including the peak-inferred isotropic energy relation, X-ray flash characteristics, subpulse light curves, energy-dependent time lags and subpulse broadening, and late time spectral softening. The duration of the burst is limited by the rate of Compton cooling of the jet, eventually creating an optically thick, moderately relativistically expanding fireball that can produce the afterglow emission. If the black hole or neutron star stays bound to a compact remnant, late term light curve variability may be observed as in SN 2003dh.  相似文献   

14.
We present a full set of model atmosphere equations for the accretion disc around a supermassive black hole irradiated by a hard X-ray lamp of power-law spectral distribution. Model equations allow for multiple Compton scattering of radiation on free electrons, and for large relative photon–electron energy exchange at the time of scattering. We present spectra in specific intensities integrated over the disc surface. Theoretical outgoing intensity spectra show soft X-ray excess below 1 keV, and distinct Kα and Kβ fluorescent lines of iron. We demonstrate the existence of the Compton Shoulder and claim that it can contribute to the asymmetry and equivalent widths of some observed Fe Kα lines in active galactic nuclei. Our models exhibit the effect of limb-brightening in reflected X-rays.  相似文献   

15.
We study the emission from an old supernova remnant (SNR) with an age of around 105 yr and that from a giant molecular cloud (GMC) encountered by the SNR. When the SNR age is around 105 yr, proton acceleration is efficient enough to emit TeV γ-rays both at the shock of the SNR and that in the GMC. The maximum energy of primarily accelerated electrons is so small that TeV γ-rays and X-rays are dominated by hadronic processes,  π0  -decay and synchrotron radiation from secondary electrons, respectively. However, if the SNR is older than several 105 yr, there are few high-energy particles emitting TeV γ-rays because of the energy-loss effect and/or the wave-damping effect occurring at low-velocity isothermal shocks. For old SNRs or SNR–GMC interacting systems capable of generating TeV γ-ray emitting particles, we calculated the ratio of TeV γ-ray (1–10 TeV) to X-ray (2–10 keV) energy flux and found that it can be more than  ∼102  . Such a source showing large flux ratio may be a possible origin of recently discovered unidentified TeV sources.  相似文献   

16.
There is increasing evidence that supermassive black holes in active galactic nuclei (AGN) are scaled-up versions of Galactic black holes. We show that the amplitude of high-frequency X-ray variability in the hard spectral state is inversely proportional to the black hole mass over eight orders of magnitude. We have analysed all available hard-state data from RXTE of seven Galactic black holes. Their power density spectra change dramatically from observation to observation, except for the high-frequency (≳10 Hz) tail, which seems to have a universal shape, roughly represented by a power law of index −2. The amplitude of the tail,   C M   (extrapolated to 1 Hz), remains approximately constant for a given source, regardless of the luminosity, unlike the break or quasi-periodic oscillation frequencies, which are usually strongly correlated with luminosity. Comparison with a moderate-luminosity sample of AGN shows that the amplitude of the tail is a simple function of black hole mass,   C M = C / M   , where   C ≈ 1.25 M Hz−1  . This makes   C M   a robust estimator of the black hole mass which is easy to apply to low- to moderate-luminosity supermassive black holes. The high-frequency tail with its universal shape is an invariant feature of a black hole and, possibly, an imprint of the last stable orbit.  相似文献   

17.
We propose a model of magnetic connection (MC) of a black hole with its surrounding accretion disc based on large-scale magnetic field. The MC gives rise to transport of energy and angular momentum between the black hole and the disc, and the closed field lines pipe the hot matter evaporated from the disc, and shape it in the corona above the disc to form a magnetically induced disc–corona system, in which the corona has the same configuration as the large-scale magnetic field. We numerically solve the dynamic equations in the context of the Kerr metric, in which the large-scale magnetic field is determined by dynamo process and equipartition between magnetic pressure and gas pressure. Thus we can obtain a global solution rather than assuming the distribution of large-scale magnetic field beforehand. The main MC effects lie in three aspects. (1) The rotational energy of a fast-spinning black hole can be extracted, enhancing the dissipation in the accretion disc, (2) the closed field lines provide a natural channel for corona matter escaping from disc and finally falling into black hole and (3) the scope of the corona can be bounded by the conservation of magnetic flux. We simulate the high-energy spectra of this system by using Monte Carlo method, and find that the relative hardness of the spectra decreases as accretion rate or black hole spin a * increases. We fit the typical X-ray spectra of three black hole binaries  (GRO J1655−40, XTE 1118+480 and GX 339−4)  in the low/hard or very high state.  相似文献   

18.
In the present communication of our series of papers dealing with the accretion flows in the pseudo-Kerr geometry, we discuss the effects of viscosity on the accretion flow around a rotating black hole. We find the solution topologies and give special attention to the solutions containing shocks. We draw the parameter space where standing shocks are possible and where the shocks could be oscillating and could produce quasi-periodic oscillations (QPOs) of X-rays observed from black hole candidates. In this model, the extreme locations of the shocks give the upper limits of the QPO frequencies  (νQPO)  which could be observed. We show that both the viscosity of the flow and the spin of the black hole a increase the QPO frequency while, as expected, the black hole mass reduces the QPO frequencies. Our major conclusion is that the highest observed frequency gives a strict lower limit of the spin. For instance, a black hole exhibiting  νQPO∼ 400  and  700 Hz  must have the spin parameters of   a > 0.25  and  >0.75  , respectively, provided viscosity of the flow is small. We discuss the implications of our results in the light of observations of QPOs from black hole candidates.  相似文献   

19.
Optical/near-infrared (optical/NIR, OIR) light from low-mass neutron star X-ray binaries (NSXBs) in outburst is traditionally thought to be thermal emission from the accretion disc. Here we present a comprehensive collection of quasi-simultaneous OIR and X-ray data from 19 low magnetic field NSXBs, including new observations of three sources: 4U 0614+09, LMC X−2 and GX 349+2. The average radio–OIR spectrum for NSXBs is  α≈+ 0.2  (where   L ν∝να  ) at least at high luminosities when the radio jet is detected. This is comparable to, but slightly more inverted than the  α≈ 0.0  found for black hole X-ray binaries. The OIR spectra and relations between OIR and X-ray fluxes are compared to those expected if the OIR emission is dominated by thermal emission from an X-ray or viscously heated disc, or synchrotron emission from the inner regions of the jets. We find that thermal emission due to X-ray reprocessing can explain all the data except at high luminosities for some NSXBs, namely, the atolls and millisecond X-ray pulsars. Optically thin synchrotron emission from the jets (with an observed OIR spectral index of  αthin < 0  ) dominate the NIR light above     and the optical above     in these systems. For NSXB Z-sources, the OIR observations can be explained by X-ray reprocessing alone, although synchrotron emission may make a low-level contribution to the NIR, and could dominate the OIR in one or two cases.  相似文献   

20.
We propose a method to synthesize the inverse Compton (IC) γ-ray image of a supernova remnant starting from the radio (or hard X-ray) map and using results of the spatially resolved X-ray spectral analysis. The method is successfully applied to SN 1006. We found that synthesized IC γ-ray images of SN 1006 show morphology in nice agreement with that reported by the High Energy Stereoscopic System (HESS) collaboration. The good correlation found between the observed very high energy γ-ray and X-ray/radio appearance can be considered as evidence of the fact that the γ-ray emission of SN 1006 observed by HESS is leptonic in origin, although a hadronic origin may not be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号