首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Natural oil and gas seeps on the Black Sea floor   总被引:3,自引:0,他引:3  
Migration of hydrocarbons to the seafloor in the Black Sea occurs via direct seepages, mud volcanoes, and development of fluidized sediment flows (e.g., diapers). Gas migration occurs on the shelf, continental slope, and abyssal plain. Gas hydrates are spatially related to gas accumulations and are present in shallow subsurface sediment layers. Their distribution is controlled by the activity of mud volcanoes. In regions of methane seepages, specific biogeochemical processes related to the activity of methane-oxidizing bacteria are evident. This activity results in the formation of diagenetic minerals (carbonates, sulfides, sulfates, phosphates and other minerals).  相似文献   

2.
《Marine Geology》2005,216(4):239-247
The Ayeyarwady continental shelf is a complex sedimentary system characterized by large sediment influx (> 360 million ton/yr), a wide shelf (> 170 km), a strong tidal regime (7 m maximum tidal range), and incised by the Martaban Canyon. Grain size distribution on the Ayeyarwady shelf reveals three distinct areas in terms of sediment texture (i) a near-shore mud belt in the Gulf of Martaban and adjacent inner shelf (ii) outer shelf relict sands and (iii) mixed sediments with varying proportions of relict sand and modern mud in the Martaban Canyon. The bulk of the terrigenous sediment discharged by the Ayeyarwady River is displaced eastwards by a combination of tidal currents and clockwise flowing SW monsoon current and deposited in the Gulf of Martaban resulting in shoaling of its water depths. Part of the sediment discharge reaches the deep Andaman Sea via the Martaban Canyon and the rest is transported westward into the Bay of Bengal by the counter-clockwise flowing NE monsoon currents.  相似文献   

3.
High-resolution geophysical surveys (seismic, side-scan sonar) offshore of the Eratini River, a seasonally flowing river in the NW Gulf of Corinth, Greece, revealed a small fan delta with a variety of bottom features (blocky deposits, chutes and sediment instabilities). Considering the relatively small size of this river, however, these features could not be explained as being produced solely by river flow processes. Based on morphological features, the fan delta can be subdivided into a high- and a low-energy area. Sedimentation processes in the fan delta are associated with flood-derived sediment input, hyperpycnal flows which erode the fan surface, mud settling from suspension plumes, shelf sedimentation and sediment failures. The observed blocky deposits are considered to be the result of earthquake-induced mass flows in 1965 and 1995, whereas the chutes would be produced both by erosive mass flows and by hyperpycnal currents. The bulk block sediment volume has probably resulted from the 1965 earthquake. The 1965 evacuation zone and the related chutes were buried by the prograding fan delta. The main causative factor triggering the observed sediment instabilities is considered to be liquefaction, which is caused by (1) frequent earthquake-induced cyclic loading and (2) low sediment shear strengths created by rapid deposition during floods, in both cases associated with high pore-water pressures.  相似文献   

4.
The morphology of the Gulf of Oman Basin, a 3,400 m deep oceanic basin between Oman and southern Pakistan and southern Iran, ranges from a convergent margin (Makran margin) along the north side, a passive type (Oman margin) along the south side, translation types along the basin's west (Zendan Fault-Oman Line) and east (Murray Ridge) sides and a narrow continental rise and a wide abyssal plain in the centre of the basin. Sediment input into the basin during the Late Quaternary has been mainly from the north as a result of the uplift of the Coast Makran Mountains in the Late Miocene-Pliocene. Today most of this detritrus is deposited on the shelf and upper continental slope and perched basins behind the fold/fault ridges on the lower slope. The presence of fans and channels on the continental rise on the north side of the basin indicate, however, that continental derived debris was, and possibly is, being transported to the deep-sea by turbidity currents via gaps in the ridges on the lower slope. In addition to land derived terrigenous sediments, the basin deposits also contain biogenic (organic matter and calcium carbonate), eolian detritus and hydrates and authigenic carbonates from the tectonic dewatering of the Makran accretionary wedge. The eolian sediment is carried into the Gulf of Oman Basin from Arabia and the Mesopotamia Valley by the northwesterly Shamal winds. This type of detritus was particularly abundant during the glacial arid periods 21,000–20,000 and 11,000 (Younger Dryas) years ago when exposure of the Persian (Arabian) Gulf increased the area of dust entrainment and shifted the position of the source of the eolian sediments closer to the basin.  相似文献   

5.
 Sedimentary processes in the Stromboli Canyon and in the Marsili Basin are studied on the basis of side-scan sonographs. The basin margins are characterized by slump scars, gullies, channels, and large debrites on the Calabrian slope and by straight chutes of fast downslope sediment transport and blocky–hummocky avalanche deposits on the flanks of the Stromboli volcano. In the Stromboli Canyon and in minor deep-sea channels, sediment transport by turbidity currents generates sediment waves. Between the basin margins and the abyssal plain, the outcropping volcanic basement traps part of the sediment coming from the marginal areas. The abyssal plain is characterized by low relief lobes and ponded sediments.  相似文献   

6.
In this study we describe mechanisms influencing the spatial distribution of the surface sediments in the Gulf of Manfredonia. Seventy-three samples were collected on a regional grid and analyzed for grain-size, major and trace elements and organic matter content. Sediments contain marine-derived carbonate as well as terrigenous fractions indicating highly heterogeneous sediment composition dictated by different provenance and complex transport processes. Principal Component Analysis provides information about processes involved in the formation and dispersal of the sediments. The regional sediment distribution is function of the Gulf's morphology and sedimentary inputs from fluvial sources, mainly from the Ofanto River, and from the North and Central Adriatic basin. Biogenic carbonate reefs, identified in two restricted coastal areas add complexity to sediment shelf dispersal. The North-Adriatic current flowing southward transports and deposits sediments from the Northern basin in the offshore area of the Gulf while an inner anticyclonic current distributes and mixes northern and fluvial sediment with a clockwise pattern. In order to better assess the fluvial contribution also bedload samples from the main river debouching into the Gulf were sampled, enabling the identification of geochemical indexes to distinguish the role of both fluvial inputs and hydrodynamic processes affecting solid particles dispersion within the Gulf. This study provides a contribution to a qualitative estimate of the sediment supply entailed in the Southwestern Adriatic basin.  相似文献   

7.
Based on a new quantitative analysis of sidescan sonar data combined with coring, we propose a revised model for the origin for Mediterranean Ridge mud volcanism. Image analysis techniques are used to produce a synthetic and objective map of recent mud flows covering a 640 × 700 km2 area, which represents more than half of the entire Mediterranean Ridge mud belt. We identify 215 mud flows, extruded during the last 37,000–60,000 years. This time period corresponds to the limit of penetration of the sonar, that we evaluate through geoacoustic modeling of the backscattered signal returned by the mud breccia-hemipelagites contact, and calibrate by coring. We show that during this period, at least 96% of the mud volume has been extruded at the Mediterranean Ridge-Hellenic backstop contact, the remaining being scattered over the prism. We suggest that the source is a Messinian (5–6 Ma) mud reservoir that remained close to the backstop contact, at variance with the classical transport-through-the-wedge model. A revised mud budget indicates that steady-state input is not needed. We propose that the source layer was deposited in deep and narrow pre-Messinian basins, sealed by Messinian evaporites, and finally inverted in post-Messinian times. Onset of motion of the Anatolia-Aegea microplate in the Pliocene resulted in change from slow to fast convergence, triggering shear partitioning at the edges of the backstop and basin inversion. Mud volcanism initiation is probably coeval with the latest events of this kinematic re-organization, i.e. opening of the Corinth Gulf and activation of the Kephalonia fault around 1–2 Ma.  相似文献   

8.
Based on the measured data in recent 20 years, the variation trends of the median grain size of the surface sediment, the sand-silt boundary and the mud area on the adjacent continental shelf of the Yangtze Estuary were analyzed in depth, and the effects of natural mechanism and human activities were discussed. The results show that:(1) In recent years(2006-2013), the median grain size of sediment and the distribution pattern of grouped sediments in the adjacent continental shelf area to the Yangtze Estuary have presented no obvious change compared with those before 2006;(2) The median diameter of the surface sediment in the continental shelf area displayed a coarsening trend with the decrease of sediment discharge from the basin and the drop in suspended sediment concentration in the shore area;(3) In 2004-2007, the sand-silt boundary in the north part(31°30′N) of the continental shelf area presented no significant changes, while that in the south part(31°30′S) moved inwards; In 2008-2013, both the sand-silt boundaries in the north and south parts of the continental shelf area moved inwards, mainly due to the fact that in the dry season, a relatively enhanced hydrodynamic force of the tides was generated in the Yangtze River, as well as a decreased suspended sediment concentration and a flow along the banks in North Jiangsu;(4) The mud area where the maximum deposition rate is found in the Yangtze Estuary, tends to shrink due to the drop in sediment discharge from the basin, and the decrease in suspended sediment concentration in the shore area and erosion in the delta. Moreover, it tended to shift to the south at the same time because the implement of the training works on the deep-water channel of the North Passage changed the split ratio between the North and South Passages with an increase in the power of the discharged runoff in the South Passage.  相似文献   

9.
Sediment delivery to the abyssal regions of the oceans is an integral process in the source to sink cycle of material derived from adjacent continents and islands. The Zambezi River, the largest in southern Africa, delivers vast amounts of material to the inner continental shelf of central Mozambique. The aim of this contribution is to better constrain sediment transport pathways to the abyssal plains using the latest, regional, high-resolution multibeam bathymetry data available, taking into account the effects of bottom water circulation, antecedent basin morphology and sea-level change. Results show that sediment transport and delivery to the abyssal plains is partitioned into three distinct domains; southern, central and northern. Sediment partitioning is primarily controlled by changes in continental shelf and shelf-break morphology under the influence of a clockwise rotating shelf circulation system. However, changes in sea-level have an overarching control on sediment delivery to particular domains. During highstand conditions, such as today, limited sediment delivery to the submarine Zambezi Valley and Channel is proposed, with increased sediment delivery to the deepwater basin being envisaged during regression and lowstand conditions. However, there is a pronounced along-strike variation in sediment transport during the sea-level cycle due to changes in the width, depth and orientation of the shelf. This combination of features outlines a sequence stratigraphic concept not generally considered in the strike-aligned shelf-slope-abyssal continuum.  相似文献   

10.
Hurricane Ivan made landfall along the Alabama– Florida coastline on September 16, 2004 as a category 3 storm. Ivan provided a rare opportunity to quantify surficial sediment changes following a significant storm event. Sidescan sonar imagery was collected immediately offshore Santa Rosa Island, FL, five days before and after Ivan's landfall 100 km west of the study area. Particle-size, multisensor core logger, X-radiography, photography, scanning electron microscopy (SEM) grain shape, direct shear, radiocarbon isotope, and lignin–phenol analyses were performed on grab or vibracore samples collected after the storm. Sonar observations before Ivan's landfall revealed a mostly sand bottom with uniform, small-scale wind-wave ripple morphology, and a distinct area of low backscatter trending NW–SE that was interpreted to be a mud swale. Ivan introduced new material to the relict sediments and resulted in the deposition of fine-grained material across the shelf that settled in the bathymetric lows and formed mud flaser deposits. Hardbottoms were draped by sand in some locations, but exposed in others. Ripple morphology changes occurred along sand ridges. Hurricane Ivan created major sediment distribution changes along the near-shore shelf, yet served to reinforce and to maintain the ridge-and-swale topography of the northeastern Gulf of Mexico near-shore continental shelf.   相似文献   

11.
The Galicia-Minho Shelf features two large mud patches, the Douro and the Galicia Mud patches. These are recent sediment bodies that have accumulated under a combination of conditions including: (1) abundant supplies of sediment; (2) morphological barriers that act as sediment traps; and (3) hydrographic conditions that favour the accumulation of fine sediment in these sinks. This paper describes the mechanisms controlling the deposition of the fine-grained sediment depositions and the processes that result in resuspension processes on the Galicia-Minho Shelf.Fine-grained sediments are provided from discharges from the river basins on the southern sector of the shelf, mainly the Douro and Minho rivers. Sediments are exported from river estuaries onto the shelf during episodic flood events. In contrast, most of the sediments originating from the Galician hinterland fail to contribute significantly to sedimentation on the shelf, because they are retained in the Galician Rías, which function as sediment traps.Sediments deposited on the shelf are frequently remobilized, particularly during southwesterly storms that coincide with downwelling conditions. Once in suspension the fine-grained sediments are transported northwards by the poleward flowing bottom currents and are eventually deposited on the Douro and Galicia Mud patches after a series of resuspension events. The locations of the two mud patches are strongly influenced by the shelf morphology.Fines already deposited on the mud patches are occasionally reintroduced into the system by large storm events. Some material from the Douro Mud patch and adjacent areas is re-deposited in the Galicia Mud patch. It is probable that sediments re-suspended from the Galicia Mud patch are carried off the shelf when storm events coincide with downwelling conditions.  相似文献   

12.
The Meriadzek Terrace forms part of the continental margin in the Bay of Biscay at a depth between that of the Continental shelf and the abyssal plain. Reflection profiles show that it is bounded on either side by basement ridges with a sediment infill between the ridges. It was probably formed by downfaulting of the continental shelf, possibly connected with the opening of the Bay of Biscay.  相似文献   

13.
《Marine Geology》2001,172(1-2):43-56
The sedimentary processes and sediment sources contributing to the formation of laminated sediments along the upper slope off Pakistan are unravelled using inorganic bulk sediment geochemistry of 43 surface cores from the Pakistani continental margin and additional geochemical and Pb and Nd-isotope data for different types of layers. An important process everywhere along the margin is redeposition of fluvial-derived detritus from the shelf onto the slope. This process is of considerably higher intensity along the Makran margin than on the Indus margin. Trace element enrichment related to early diagenesis or surface productivity, which is commonly detectable in bulk sediment composition, is swamped by the high clastic supply in the Makran region, but may be observed in the Indus region.Four types of layers are found in the laminated sediment cores from the upper slope. They reflect different mechanisms of deposition and different sediment sources. An alternating pattern of olive-grey and black layers results from downslope redeposition of fluvial material over most of the year, to which organic matter from sea surface production is added during the late summer monsoon season. Distinctive white to grey coloured layers along the Makran slope originate from large scale expulsion of sediments from the Makran accretionary wedge through mud volcanoes on the shelf, subsequent erosion by waves, and downslope redeposition. These layers may dominate the sedimentary record within the Makran accretionary wedge, but are absent on the Indus margin. Occasional red coloured turbidites, which probably represent larger floods on the Indus plain, contribute to this mixture of varying sedimentary processes and sediment sources along the Pakistani continental slope.  相似文献   

14.
P. Lesueur  J. P. Tastet 《Marine Geology》1994,120(3-4):267-290
Seventy cores from the Aquitaine continental shelf were examined using radiographic and grain-size techniques in order to describe the sedimentary structures of the muddy deposits, and to evaluate their depositional processes. Four lithofacies are identified in this fine-grained deposit: (a) homogeneous silty sand, (b) interbedded homogeneous mud and sand, (c) silty-clayey mud, and (d) mottled mud. They show a logical pattern in relationship to the water depth and the distance from the coast.

Primary structures are present particularly in the landward and central portion of the mud fields, where the sediment is organized into sequences with a sharp-based erosional contact, overlain by a fining-up succession (centimetre to decimetre scale). The beginning of each of these is characteristic of a high-energy storm event, which is common on this shelf. The settling of suspended fine sediment corresponds to the flood estuarine discharge during quiet periods. Primary sedimentary structures decrease in the distal area where the muddy sediment is frequently reworked by infauna. Finally, primary structures and their preservation depend on the relative magnitudes of surface waves, storms, infaunal mixing and fluvial sediment deposition rates (i.e. floods).  相似文献   


15.
陆架环流作用下的北黄海中北部细颗粒物质输运   总被引:2,自引:2,他引:0  
海洋泥质沉积是流域、古气候及海平面变化信息的重要载体,对该粒级物质的系统研究,是获取环境信息的重要手段。为此,采集北黄海中北部表层沉积物80件,经室内筛分处理,并对细颗粒组分(<63 μm)进行了稀土元素(REE)测试。结果显示REE的含量及分布模式在长山列岛东西两侧差异显著:东侧物质明显富集REE,尤其轻稀土元素(LREE),Eu元素则明显缺失,指示了受鸭绿江的显著控制;长山列岛以西,REE除含量降低外,分布模式也变平缓。造影剂马根维显(Gd-DTPA)在磁共振成像(MRI)中的大量使用,可能是造成Gd明显富集的主要原因。此外,辽南沿岸物质的来源及分布与以往认识存在差异,以往认为辽南沿岸泥质沉积为鸭绿江为主的辽东半岛河流的远端泥沉积,而本文的研究发现:辽东半岛东侧长山列岛至大连湾外海域以黄河来源物质为主,鸭绿江物质对北黄海西部泥质区的贡献在西侧大于东侧,其中陆架环流对物质输运发挥着重要作用。  相似文献   

16.
High-resolution sub-bottom (3.5 kHz) traverses of the southwestern portion of the Balearic Abyssal Plain between North Africa and the Balearic block show an irregular topography where rates of deformation appear to locally exceed those of sedimentation. The basin is underlain by salt of Messinian age, and diapirism has disturbed post-Messinian sediments. The 3.5 kHz records, augmented by 30,000 Joule seismic reflection profiles, indicate that this diapirism is continuing at present and is even now significantly deforming the uppermost sediment sequences.A high concentration of structural features including doming and the development of rim synclines within the 35–60 m of section penetrated are associated with diapirism. Over 70% of the domes have penetrated the surface in the studied area; of these, most display a relief of 10 m or more. In some instances, domes apparently act as dams behind which sediment is ponded. Non-faulted relief averages 3–4 m/km, notable for an abyssal plain surface. Frequently, the uppermost Holocene strata are offset several meters as a result of normal faults and grabens. This concentration of sea-floor irregularities necessarily modifies the present-day sediment dispersal pattern and rules out the uniform flow of turbidity currents and lateral continuity of sedimentation units across this basin plain.  相似文献   

17.
东海陆架北部表层细粒级沉积物的级配及意义   总被引:3,自引:3,他引:3  
本文依据东海陆架北部 2 3个表层沉积物样品的粒度分析资料 ,就东海陆架北部表层细粒级沉积物的级配及意义进行了研究。结果表明 ,研究区表层沉积物中细粒级部分以 <0 .0 16 mm为优势粒级 ,可占到总细粒级沉积物的 75 %以上。济州岛西南泥质区以细于 0 .0 0 8mm粒级的沉积物占据优势 ,长江口泥质区则以 <0 .0 16 mm粒级的沉积物为主 ,两泥质区细粒级沉积物的级配很不相同  相似文献   

18.
Multichannel seismic data from the eastern parts of the Riiser-Larsen Sea have been analyzed with a sequence stratigraphic approach. The data set covers a wide bathymetric range from the lower continental slope to the abyssal plain. Four different sequences (termed RLS-A to RLS-D, from deepest to shallowest) are recognized within the sedimentary section. The RLS-A sequence encompasses the inferred pre-glacial part of the deposits. Initial phases of ice sheet arrival at the eastern Riiser-Larsen Sea margin resulted in the deposition of multiple debris flow units and/or slumps on the upper part of the continental rise (RLS-B). The nature and distribution of these deposits indicate sediment supply from a line or a multi-point source. The subsequent stage of downslope sediment transport activity was dominated by turbidity currents, depositing mainly as distal turbidite sheets on the lower rise/abyssal plain (RLS-C). We attribute this to margin progradation and/or a more focussed sediment delivery to the continental shelf edge. As the accommodation space on the lower rise/abyssal plain declined and the base level was raised, the turbidite channels started to backstep and develop large channel–levee complexes on the upper parts of the continental rise (RLS-D). The deposition of various drift deposits on the lower rise/abyssal plain and along the western margin of the Gunnerus Ridge indicates that the RLS-D sequence is also associated with increased activity of contour currents. The drift deposits overlie a distinct regional unconformity which is considered to reflect a major paleoceanographic event, probably related to a Middle Miocene intensification of the Antarctic Circumpolar Current.  相似文献   

19.
Abstract

It is clear from morphology alone that distinctly different dynamic and sedimentary processes can be expected to be associated with the Greater Antilles Outer Ridge relative to those of the adjacent Nares Abyssal Plain. This difference is further substantiated by seismic reflection data which show the ridge to be a very large prism of acoustically transparent sediment in contrast to the stratified deposits of the abyssal plain. An examination of the geotechnical properties of the near‐surface (0 to 2.4m) deposits of the two areas also reveals distinct differences in their sedimentological characteristics. The outer ridge sediments, of more or less homogenous clay‐size material, display much higher water contents, porosities, sensitivities, plasticity, and organic carbon contents in contrast to the abyssal plain deposits which are much less homogenous owing to the presence of turbidite sequences. The turbidites themselves are uniquely contrasted to the other abyssal plain sediments by their higher silt content, wet bulk density, shear strength, and sensitivity.  相似文献   

20.
B. Manighetti  L. Carter 《Marine Geology》1999,160(3-4):271-300
Side-scan, seismic and surficial sediment data accompanied by current meter records highlight across-shelf sediment transport in Hauraki Gulf, an island-studded embayment off northern New Zealand. Calm weather currents are locally dominated by the tides, with periodic incursions of oceanic water from detached meanders of the East Auckland Current. Under these conditions, bedload transport occurs mainly in three 15–20 km-wide channels, where bathymetric intensification of the flow brings about near-bottom speeds of up to 82 cm s−1 for Colville Channel and 33–44 cm s−1 in Jellicoe and Cradock Channels. Surficial sediments are gravelly to muddy sand, winnowed in places, leaving a lag deposit of mainly biogenic carbonate gravel. Modelling results suggest that in Colville Channel, dominant fine to medium sand modes are mobile for 20–60% of the time, with a net eastward movement for fine sand. In Jellicoe and Cradock Channels, the prevailing direction of transport is southwards across the shelf, with sand mobile for up to 33% of the time. Oceanic incursions have the potential to boost flow in the western Gulf, however such incursions are transitory, and there is no measurable expression of oceanic water in the sedimentary record. Because of their association with prolonged periods of calm weather, the incursions are unlikely to accompany storm events, where their cumulative effect might be important for sediment transport. Near-bottom currents resulting from oceanic incursion may reinforce peak tides inside the Gulf by up to 2–4 cm s−1. Enhancement of prevailing water motions occurs during periods of extreme weather. During cyclone Drena (January 1997), measured flow speeds in Jellicoe Channel reached 48 cm s−1. Furthermore, the disturbance generated large waves that stirred bottom sediments down to over 100 m water depth. Such events are probably the major agent of sediment redistribution in the Hauraki Gulf. The net effect of storm and calm weather currents is to move sediment across the outer to middle shelf where, in the western and central Gulf it accumulates, and in the eastern Gulf it escapes eastward via Colville Channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号