首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Accurate prediction of ocean surface waves is a challenging task with many associated difficulties. Availability of good quality wind and wave information from satellite platforms inspired the scientific community to assimilate such data in various spectral wave models for enhancing the accuracy of prediction. Over the Indian Ocean, which is the region of interest for the present study, wave heights in extreme situation can go up to 12–14 m, thereby increasing the probability of coastal hazards. This region is further governed by the southern ocean swells that propagate thousands of kilometers. These are, in general, not well captured by the spectral wave models. Therefore, assimilation of altimeter data in open ocean wave model WAM has been attempted with the aim of enhancing the quality of prediction of significant wave height. Further, simulated wave spectra have been assimilated in a coastal wave model SWAN. This assimilation has been found to significantly improve the prediction of the height of wind waves as well as swell waves. V. Bhatt and S. Surendran are former students of Meteorology and Oceanography Group, Space Applications Centre, ISRO, Ahmedabad.  相似文献   

2.
藏北高原夏季典型天气大气边界层特征分析   总被引:7,自引:0,他引:7  
利用加密探空资料,分析了藏北高原那曲和安多地区夏季典型晴天与阴天边界层风速、位温与比湿时空分布及变化特征.结果发现:在夏季8月,上述地区东西分量风速(切变)晴天均比阴天小,安多地区盛行偏西风,那曲地区盛行偏东风;南北分量风速(切变)晴天比阴天大.边界层晴天和阴天白天(晚上)的对流(稳定)边界层特征明显,阴天稳定边界层的厚度和对流边界层的高度较晴天时的都低;比湿夜间比白天大,阴天比晴天大.在安多地区和那曲地区都出现了逆湿现象,强逆湿主要出现在午夜或正午.  相似文献   

3.
Tower platforms, with instrumentation at six levels above the surface to a height of 30 m, were used to record various atmospheric parameters in the surface layer. Sensors for measuring both mean and fluctuating quantities were used, with the majority of them indigenously built. Soil temperature sensors up to a depth of 30 cm from the surface were among the variables connected to the mean data logger. A PC-based data acquisition system built at the Centre for Atmospheric Sciences, IISc, was used to acquire the data from fast response sensors. This paper reports the various components of a typical MONTBLEX tower observatory and describes the actual experiments carried out in the surface layer at four sites over the monsoon trough region as a part of the MONTBLEX programme. It also describes and discusses several checks made on randomly selected tower data sets acquired during the experiment. Checks made include visual inspection of time traces from various sensors, comparative plots of sensors measuring the same variable, wind and temperature profile plots, calculation of roughness lengths, statistical and stability parameters, diurnal variation of stability parameters, and plots of probability density and energy spectrum for the different sensors. Results from these checks are found to be very encouraging and reveal the potential for further detailed analysis to understand more about surface layer characteristics.  相似文献   

4.
吸力基础具有施工方便、可回收利用及造价低等优点,在海洋平台及海上风电工程中得到了成功应用。吸力基础用于系泊深海浮动式平台时,抗拔承载特性是工程设计的重要因素。海上风电场面临着服役期满后的升级改造问题,需采用更大功率的发电设备,风机叶片直径、塔架高度随之增加,原基础难以满足新的设计要求,从可持续发展角度,塔架基础的拔出、回收等方面正逐渐引起人们的高度重视。本文介绍了吸力基础抗拔、拔出特性方面取得的研究成果,阐述了影响基础抗拔和拔出特性的因素,阐明了吸力基础拔出的力学机制与作用机理。通过文献调研推断:注水拔出吸力基础,砂土会发生渗流破坏,黏土会产生劈裂破坏,会导致基础无法继续上拔,应结合拉力上拔或振动法对基础进行回收。  相似文献   

5.
This paper reviews results of recent observations on the thermal belt, cold air drainage and cold air lake, which are striking in local climatic phenomena in mountain areas. The height (A) of the warmer part, the thermal belt, of the mountain slopes changes with time from early evening, midnight to early morning and also seasonally and differs according to the velocity of the upper general wind and cloudiness, but is generalized by the height difference (H) between the bottom of the basin and the surrounding mountain ridges. Roughly speaking, A = (0.25–0.30) H. On the mountain slopes, cold air flows down intermittently. The air temperature shows positive correlation to the wind speed of cold air drainage in the source region of cold air drainage. On the other hand, however, there is a negative correlation between the wind speed and air temperature in the drainage region at the lower part of the slope. Above the downslope cold air drainage, there is an anti-down-slope wind. The relatively large drainages are formed at frequencies corresponding to periods of oscillation of 1–2 hours and the smaller ones are of several minutes. In the basin or valley bottom, cold air lakes are formed. They are well defined by a strong inversion in air temperature. In most cases, the stagnant air in the cold air lake flows down slowly in accordance with inclination of the basin or valley floor. Above the cold air lake, we find the neutral or weak inversion layer. In some periods the drained cold air flows into this layer from the side slopes of the mountains. However, the radiation cooling of the basin or valley floor seems to be more effective for the formation of the cold air lake. Above the neutral or weak inversion layer, there is a layer of the general wind caused by the synoptic scale circulation systems. Their effects are controlled by the surrounding topography as well as the basin or the valley itself. In short, the structure of thermal belt, cold air drainage and cold air lake is a good example of the small-scale climatic processes under the influence of the synoptic scale phenomena and the one-order-greater scale topography.  相似文献   

6.
M. M. Yoshino 《GeoJournal》1984,8(3):235-250
This paper reviews results of recent observations on the thermal belt, cold air drainage and cold air lake, which are striking in local climatic phenomena in mountain areas.The height (A) of the warmer part, the thermal belt, of the mountain slopes changes with time from early evening, midnight to early morning and also seasonally and differs according to the velocity of the upper general wind and cloudiness, but is generalized by the height difference (H) between the bottom of the basin and the surrounding mountain ridges. Roughly speaking, A = (0.25–0.30) H.On the mountain slopes, cold air flows down intermittently. The air temperature shows positive correlation to the wind speed of cold air drainage in the source region of cold air drainage. On the other hand, however, there is a negative correlation between the wind speed and air temperature in the drainage region at the lower part of the slope. Above the downslope cold air drainage, there is an anti-down-slope wind. The relatively large drainages are formed at frequencies corresponding to periods of oscillation of 1–2 hours and the smaller ones are of several minutes.In the basin or valley bottom, cold air lakes are formed. They are well defined by a strong inversion in air temperature. In most cases, the stagnant air in the cold air lake flows down slowly in accordance with inclination of the basin or valley floor. Above the cold air lake, we find the neutral or weak inversion layer. In some periods the drained cold air flows into this layer from the side slopes of the mountains. However, the radiation cooling of the basin or valley floor seems to be more effective for the formation of the cold air lake. Above the neutral or weak inversion layer, there is a layer of the general wind caused by the synoptic scale circulation systems. Their effects are controlled by the surrounding topography as well as the basin or the valley itself.In short, the structure of thermal belt, cold air drainage and cold air lake is a good example of the small-scale climatic processes under the influence of the synoptic scale phenomena and the one-order-greater scale topography.  相似文献   

7.
Characteristics of aerosols in the Atmospheric Boundary Layer (ABL) obtained from a bistatic CW lidar at Trivandrum for the last one decade are used to investigate the role of ABL micro-meteorological processes in controlling the altitude distribution and size spectrum. The altitude structure of number density shows three distinct zones depending on the prevailing boundary layer feature; viz, the well-mixed region, entertainment region and upper mixing region. In the lower altitudes vertical mixing is very strong (the well-mixed region) the upper limit of which is defined as aerosol-mixing height, is closely associated with the low level inversion. The aerosol mixing height generally lies in the range 150 to 400 m showing a strong dependence on the vertical eddy mixing processes in ABL. Above this altitude, the number density decreases almost exponentially with increase in altitude with a scale height of 0.5–1.5 km. The aerosol mixing height is closely associated with the height of the Thermal Internal Boundary Layer (TIBL). Sea-spray aerosols generated as a result of the interaction of surface wind with sea surface forms an important component of mixing region aerosols at this location. This component shows a non-linear dependence on wind speed. On an average, depending on the season, the mixing region contributes about 10–30% of the columnar aerosol optical depth (AOD) at 0.5Μm wavelength. A long term increasing trend (∼ 2.8% per year) is observed in mixing region AOD from 1989 to 1997. A study on the development of the aerosols in the nocturnal mixing region shows that the convectively driven daytime altitude structure continues to persist for about 4–5 hrs. after the sunset and thereafter the altitude structure is governed by vertical structure of horizontal wind. Stratified aerosol layers associated with stratified turbulence is very common during the late night hours.  相似文献   

8.
In this study, wind tunnel tests were performed to determine the relationships between sediment transport, the surface moisture content, and wind velocity using beach sands from a tropical humid coastal area of China. The variation in the properties of the creep proportion, relative decay rate as a function of height, and average saltation height in the flux profile were determined. Sand transport was measured using a standard vertical sand trap. The creep proportion (i.e., the proportion of the particles that move along the surface rather than undergoing saltation) and relative decay rate decreased and more particles were ejected to higher positions as moisture content and wind velocity increased. The creep proportion ranged between 0.12 and 0.33, and averaged 0.22. The creep proportion and relative decay rate decreased abruptly at moisture contents between 0.587 and 1.448%; the latter value was close to 1.591%, the moisture content at a matric potential of ?1.5 MPa. This moisture content limit may indicate a change in the form of soil water from adsorbed films on particle surfaces to capillary forces created by inter-particle water bridges. The surface moisture content therefore appears to decisively determine the degree of the restraint on particle entrainment by the wind. The average heights, below which 25, 50, 75, and 90% of sand transport occurred, increased with increasing moisture content (except at 0.231% moisture content) and wind velocity. The mean saltation height at various wind velocities increased linearly with increasing moisture content.  相似文献   

9.
极端干旱荒漠区典型晴天大气热力边界层结构分析   总被引:3,自引:1,他引:3  
张强  赵映东  王胜  马芳 《地球科学进展》2007,22(11):1150-1159
利用极端干旱区敦煌野外观测试验资料,分析了极端干旱荒漠区夏季典型晴天位温、风速、比湿等主要物理要素的垂直结构特征及其地表热力和近地层大气运动特征的日变化规律。发现在极端干旱地区夏季晴天大气热力边界层结构十分独特。在夜间,贴地逆温层最低在900 m以上,最厚可以达到1 750 m,逆温层上面的残余层一般能达到4 000 m左右的高度。在白天,位温超绝热递减层高达1 000 m,超绝热递减层上面的混合层最高达3 700 m,混合层顶上还有大约450 m甚至更厚的夹卷层。当白天对流层发展达到残余层以后,混合层的发展明显加快。风速和比湿垂直廓线特征很好地印证了大气热力边界层独特的结构特征,地表热力和近地层大气运动特征也为这种独特的大气热力边界层结构提供了较好的物理支持。  相似文献   

10.
航空电磁勘探中,高度计显示的发射线圈高度数据往往是不准确的,这可能会影响反演结果,出现假异常现象。针对这一情况,提出了一种高度计数据不准确条件下的航空瞬变电磁资料一维反演方法,在重构地电参数的同时也对发射线圈高度值进行校正。由于航空电磁反演问题是典型的病态问题,使用正则化反演方法,正则化因子由数据目标函数与模型目标函数之间的关系以自适应方式给出,使得反演迭代能稳定进行。以直升机航空瞬变电磁资料反演为例,用理论模型响应数据加入噪声进行反演,结果表明,无论初始高度值是高于真值还是低于真值,该反演方法均能够较好地重构地下介质参数和发射线圈高度值;作为反演初值的发射线圈高度测量值越准确时,反演迭代收敛速度就越快,反演效果也越好。  相似文献   

11.
Group velocity dispersion data of fundamental-mode Rayleigh and Love waves for 12 wave paths within southeastern China have been measured by applying the multiple-filter technique to the properly rotated three-component digital seismograms from two Seismic Research Observatory stations, TATO and CHTO. The generalized surface wave inversion technique was applied to these group velocity dispersion data to determine the S-wave velocity structures of the crust and upper mantle for various regions of southeastern China. The results clearly demonstrate that the crust and upper mantle under southeastern China are laterally heterogeneous. The southern China region south of 25°N and the eastern China region both have a crustal thickness of 30 km. The eastern Tibet plateau along the 100°E meridian has a crustal thickness of 60 km. Central China, consisting mainly of the Yangtze and Sino-Korean platforms, has a crustal thickness of 40 km. A distinct S-wave low-velocity layer at 10–20 km depth in the middle crust was found under wave paths in southeastern China. On the other hand, no such crustal low-velocity layer is evident under the eastern Tibet plateau. This low-velocity layer in the middle crust appears to reflect the presence of a sialic low-velocity layer perhaps consisting of intruded granitic laccoliths, or possibly the remnant of the source zone of widespread magmatic activities known to have taken place in these regions since the late Carboniferous.  相似文献   

12.
Doppler SODAR (Sound Detection and Ranging) measurements over a tropical Indian station at National Atmospheric Research Laboratory (NARL), Gadanki (13.5°N, 79.2°E) during two consecutive monsoon seasons, 2007 and 2008, are investigated to study the influence of mechanically generated turbulence on temperature structure parameter (CT2)_{\rm T}^{2}) in the convective boundary layer. Increase in the CT2_{\rm T}^{2} is observed after the arrival of monsoon for both seasons. Contribution of vertical wind shear in horizontal wind component to CT2_{\rm T}^{2} due to zonal winds is responsible for the increase observed in the temperature structure parameter which is inferred from the results obtained. CT2_{\rm T}^{2} is found to be increased by an order of 2 in both the lower and upper altitudes, respectively. Magnitude of wind speed is reported to be doubled with the arrival of monsoon. It is also observed that, southwest monsoon wind modulates the day-to-day variations of wind pattern over this station during the onset phase of monsoon season. The lower variability observed at lower height is attributed to the complex topography surrounding this region.  相似文献   

13.
The variation in surface inversions during the recent decades over 20 stations in the Indian region is documented. Radiosonde data at 00UTC for the period 1971–2000 has been used to compute the inversion frequency. The depth and strength of the inversions as well as the wind speed through the inversion layer have also been computed. The frequency of inversions at stations north of 20°N is ~20–60% higher than stations located south of 20°N. Moreover, all the stations show frequencies increasing from the 1st to the 3rd decade. Most of the stations show decreasing depth and increasing strength significant at 99% level. With the exception of Nagpur and Hyderabad which show high frequency of very deep inversions increasing from the 1st to the 3rd decade, the decadal variations of inversion depth at most of the other stations show that shallow and moderate inversions occur more frequently than deep or very deep inversions. Decadal variations in inversion strength show weak inversion frequencies decreasing from the 1st to the 3rd decade while moderate/strong inversions occur more frequently at most stations. Frequencies of very strong inversions are low or are absent. Wind speeds are either weak or moderate with frequencies increasing from the 1st to the 3rd decade. Low frequency of strong winds and negligible frequency of very strong winds are observed.  相似文献   

14.
A mathematical model has been developed to forecast or hindcast wind, waves, and longshore currents during the passage of a coastal storm. Storm intensity is a function of the barometric pressure gradient which is modeled by rotating an inverted normal curve around the center of an ellipse. The length and orientation of the major and minor axes of the ellipse control the size and shape of the storm. The path of the storm is determined by a sequence of storm positions for the hindcast mode, and by interpolated positions assuming constant speed and direction for the forecast mode. The site location, shoreline orientation, and nearshore bottom slope provide input data for the shore position. The geostrophic wind speed and direction at the shore site are computed from the latitude and barometric pressure gradient. The geostrophic wind is converted into surface wind speed and direction by applying corrections for frictional effects over land and sea. The surface wind speed and direction, effective fetch, and wind duration are used to compute wave period, breaker height, and breaker angle at the shore site. The longshore current velocity is computed as a function of wave period, breaker height and angle, and nearshore slope. The model was tested by comparing observed data for several coastal locations with predicted values for wind speed, wave period and height, and longshore current velocity. Forecasts were made for actual storms and for hypothetical circular and elliptical storms.  相似文献   

15.
The Xisha carbonate platforms, which include the modern-day Xisha Atoll, occur upon the northern continental margin of the South China Sea (SCS). In this study, we identify the seismic characteristics about various sedimentary facies of the carbonate platform and different types of reef in this area, based on the 2-D seismic data, reefs show high-amplitue moundy continuous reflection at the top and weak chaotic reflections inside. Carbonate platforms show high-amplitude continuous reflection at the top and high reflection alternative with weak reflection. The above analysis provided information about the influence of fluctuations in relative sea level, tectonic movements, paleotopography and the development mechanism of the carbonate platform. Based on the seismic data and data from drillholes (Xichen-1, Xiyong-1), we propose a schematic sedimentary model of the Xisha carbonate platforms at the northern margin of the SCS and outline five stages of development for the carbonate platform. Its sedimentary evolution consists of Initial establishment stage, development stage, exposure stage, drowning stage and large atoll reefs development stage. We also propose that several phases tectonisms supply proper environment and structural position for carbonate platform development, they can also destroyed the exist platforms. Besides, eustasy change was also the main influential factor on the development of the platforms.  相似文献   

16.
李驰  黄浩  孙兵兵 《岩土力学》2010,31(Z2):378-382
基于Fluent气固两相流,运用 湍流模型,对风沙环境下沙漠路基的风蚀破坏规律进行数值模拟研究。分析路基不同横断面下风沙流扰动、增速、减速、恢复的过程,以及路基障碍物的存在对风沙流扰动后造成的风速减弱区和恢复区,总结路基坡面特征点的风速变化规律,与现场实测结果作比较,二者具有很好的一致性。研究结果表明,不同路基横断面下风速减弱区和恢复区的分布对路基高度变化敏感,受边坡坡率的影响较小,不同路基高度、不同边坡坡率下路基沿程风速变化明显不同。边坡坡率一定,随路基高度的增加,路基周围流场扰动被增强,迎风坡坡顶风速增大显著,背风坡坡底风速下降愈明显;路基高度一定时,边坡坡率越小,路基沿程风速变化越平缓。当边坡坡率为1:3时,路基模型高度由1m增加到3 m时,迎风坡坡顶风速增加12%,背风坡坡底风速降低约80%。建议为避免沙漠路基的风蚀破坏,路基高度不宜太大,边坡坡率较小为宜。  相似文献   

17.
Doppler sodar wind data for the boundary layer over Kharagpur obtained during MONTBLEX-1990 at a height interval of 30 m from surface up to 1500 m have been analysed for the periods when intense synoptic scale disturbances from north Bay of Bengal moved along the eastern end of the monsoon trough. The variation in the vertical wind profile in the lower boundary layer over Kharagpur during the passage of synoptic scale disturbances has been discussed in the paper. The analysis indicates that the mean winds over Kharagpur veered with height in the lower boundary layer near the surface suggesting divergence over Kharagpur when the system lay south/southwest of the station. No such veering has been noticed when the centre of the system lay very close to the station.  相似文献   

18.
河套干旱地区夏季边界层结构特征观测分析   总被引:2,自引:0,他引:2  
崔洋  常倬林  桑建人  左河疆 《冰川冻土》2015,37(5):1257-1267
利用2013年夏季7月爱尔达K/LLX802J型机动式边界层风廓线雷达获取的三维风场资料和银川站高空气象探测资料,对河套干旱地区夏季边界层日变化特征进行了分析.结果表明:爱尔达K/LLX802J型机动式风廓线雷达能较好的反映并分辨出夏季河套干旱地区边界层内大气湍流和风场的演变过程.夏季7月河套干旱地区边界层高度白天平均为2127.2 m,夜间平均为1760.7 m,白天边界层高度比夜间平均高366.5 m.河套干旱区夏季地表非绝热加热对边界层的影响主要集中在800 m以下,800~2000 m高度边界层则主要受昼夜交替和大尺度天气系统的影响.夏季7月河套干旱地区边界层风速在300 m以下随高度增加而增大,离地500 m以下边界层易在北京时间07:00-11:00和18:00-21:00时段发生风速切变;300 m以下边界层白天盛行西南偏南风、夜间盛行南风,300~2000 m高度边界层白天和夜间均盛行东南风;离地300 m以下边界层易在夜间21:00-23:00时出现风向切变.夏季7月白天河套干旱地区边界层大气垂直速度在300 m高度以下随高度增加而增大,由0.3 m·s-1增大到0.6 m·s-1,夜间边界层大气垂直速度在200 m高度以下随高度增大而增大;300 m高度以上边界层大气垂直速度无论昼夜随高度变化均较小.  相似文献   

19.
青藏高原地区多套位势高度和风场再分析资料的对比分析   总被引:5,自引:1,他引:4  
胡梦玲  游庆龙  林厚博 《冰川冻土》2015,37(5):1229-1244
针对20CR、CFSR、NCEP1、NCEP2、ERA-Interim、ERA-20CM和JRA-55再分析位势高度和风场资料,基于探空资料,采用计算均方根误差、相关分析等方法从气候均值、长期变化趋势和年际变率三个方面评估再分析资料在青藏高原地区的适用性.结果表明:再分析资料的适用性存在季节、空间和垂直层次上的差异.气候均值方面,NCEP1和ERA-Interim位势高度资料与观测资料最接近,适用性最佳,而ERA-20CM资料偏差最大.春夏季,NCEP2和NCEP1的风速资料质量较优,20CR和ERA-20CM资料质量相对较差;而秋冬季,ERA-20CM风速资料与探空资料最接近,质量最好.气候变化趋势方面,JRA-55、ERA-Interim和NCEP1资料质量存在时空的差异,但均能很好地反映出位势高度的变化趋势.年际变率方面,除了ERA-20CM,各再分析资料与探空资料相关性高,对年际变率的刻画基本一致,其中JRA-55和ERA-Interim位势高度资料与探空资料相关性最好.就季节而言,冬季再分析资料质量最高,适用性好,其次为春季,夏季资料质量最低.  相似文献   

20.
焦洋  游庆龙  林厚博  闵锦忠 《冰川冻土》2014,36(6):1385-1393
基于青藏高原地区1960-2010年高分辨率(0.5°×0.5°)的逐日地面气温格点资料以及 1960-2010年NCEP/NCAR全球月平均海平面气压场、高度场、风场的再分析格点资料(2.5°×2.5°), 通过计算青藏高原(74.75°~104.25° E, 26.75°~40.25° N)冬季地面温度平均值经标准化处理后得到的区域冬季气温强度指数, 分析了冬季北极涛动(AO)、西伯利亚高压与同期青藏高原地面气温的特征和关系. 结果表明: AO为负(正)相位时, 中高纬西风气流偏弱(强), 有(不)利于极地冷空气向南输送, 西伯利亚地区源地冬季风偏强(弱), 青藏高原冬季气温指数减小(增大), 地面气温偏低(高). 对AO作M-K突变分析, 发现其突变年份为1975年, 通过对突变年份前后高度场和风场作差值场分析, 结果显示: 冬季AO处于高指数时期, 500 hPa上, 欧洲东部槽变浅, 青藏高原北部的高压脊减弱, 环流呈纬向发展, 青藏高原上盛行偏南风, 气温偏高, 青藏高原地区为暖冬期; 200 hPa 上, 青藏高原东部的槽明显加深, 使得青藏高原地区对流层顶至平流层底的环流趋势以经向发展为主, 该区域主要受到偏北的急流控制, 易导致降温.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号