首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– The 1.4–1.6 km thick Onaping Formation consists of a complex series of breccias and “melt bodies” lying above the Sudbury Igneous Complex (SIC) at the Sudbury impact structure. Based on the presence of shocked lithic clasts and various “glassy” phases, the Onaping has been described as a “suevitic” breccia, with an origin, at least in part, as fallback material. Recent mapping and a redefined stratigraphy have emphasized similarities and differences in its various vitric phases, both as clast types and discrete intrusive bodies. The nature of the Onaping and that of other “suevitic” breccias overlying impact melt sheets is reviewed. The relative thickness, internal stratigraphic and lithological character, and the relative chronology of depositional units indicate multiple processes were involved over some time in the formation of the Onaping. The Sudbury structure formed in a foreland basin and water played an essential role in the evolution of the Onaping, as indicated by a major hydrothermal system generated during its formation. Taken together, observations and interpretations of the Onaping suggest a working hypothesis for the origin of the Onaping that includes not only impact but also the interaction of sea water with the impact melt, resulting in repeated explosive interactions involving proto‐SIC materials and mixing with pre‐existing lithologies. This is complicated by additional brecciation events due to the intrusion of proto‐SIC materials into the evolving and thickening Onaping. Fragmentation mechanisms changed as the system evolved and involved vesiculation in the formation of the upper two‐thirds of the Onaping.  相似文献   

2.
Ejecta from the Connors Creek site in Michigan (500 km from the Sudbury Igneous Complex [SIC]), the Pine River site in western Ontario (650 km from the SIC), and the Coleraine site in Minnesota (980 km from the SIC) were petrographically and geochemically analyzed. Connors Creek was found to have approximately 2 m of ejecta, including shocked quartz, melt droplets, and accretionary lapilli; Pine River has similar deposits about 1 m in thickness, although with smaller lapilli; Coleraine contains only impact spherules in a 20 cm‐thick layer (impact spherules being similar to microkrystites or microtektites). The ejecta transition from chaotic deposits of massively bedded impactoclastic material with locally derived detritus at Connors Creek to a deposit with apparently very little detrital material that is primarily composed of melt droplets at Pine River to a deposit that is almost entirely composed of melt spherules at Coleraine. The major and trace element compositions of the ejecta confirm the previously observed similarity of the ejecta deposits to the Onaping Formation in the SIC. Platinum‐group element (PGE) concentrations from each of the sites were also measured, revealing significantly elevated PGE contents in the spherule samples compared with background values. PGE abundances in samples from the Pine River site can be reproduced by addition of approximately 0.2 wt% CI chondrite to the background composition of the underlying sediments in the core. PGE interelement ratios indicate that the Sudbury impact event was probably caused by a chondritic impactor.  相似文献   

3.
The term “suevite” has been applied to various impact melt‐bearing breccias found in different stratigraphic settings within terrestrial impact craters. Suevite was coined initially for impact glass‐bearing breccias from the Ries impact structure, Germany, which is the type locality. Various working hypotheses have been proposed to account for the formation of the Ries suevite deposits over the past several decades, with the most recent being molten‐fuel‐coolant interaction (MFCI) between an impact melt pool and water. This mechanism is also the working hypothesis for the origin of the bulk of the Onaping Formation at the Sudbury impact structure, Canada. In this study, the key characteristics of the Ries suevite, the Onaping Formation and MFCI deposits from phreatomagmatic volcanic eruptions are compared. The conclusion is that there are clear and significant lithological, stratigraphic, and petrographic observational differences between the Onaping Formation and the Ries suevite. The Onaping Formation, however, shares many key similarities with MFCI deposits, including the presence of layering, their well‐sorted and fine‐grained nature, and the predominance of vitric particles with similar shapes and lacking included mineral and lithic clasts. These differences argue against the viability of MFCI as a working hypothesis for genesis of the Ries suevite and for a required alternative mechanism for its formation.  相似文献   

4.
Abstract To investigate the origin of Offset Dikes and their age relationships to major impact generated lithologies in the Sudbury multi-ring impact structure, such as the Main Mass of the Sudbury “Igneous” Complex, zircon and baddeleyite were dated by the U-Pb chronometer. The rocks analysed are one diorite and two quartz diorites from inside the Foy Offset, one quartz diorite from the contact zone, and two country rock samples collected at 10 and 30 m distances from the contact within the Levack Gneiss Complex. The 21 analysed zircon and baddeleyite fractions yield a crystallization age of 1852 +4/-3 (2σ) Ma for the accessory minerals in the Foy Offset Dike and an age of 2635 ± 5 Ma for the shocked Levack country rock, in which zircons show significant shock effects (multiple sets of planar fractures), in contrast to the totally unshocked zircons of the Offset Dike. Within given errors, the new age of 1852 Ma is identical to the pooled 1850 ± 1 Ma U-Pb age determined by Krogh et al. (1984) as the crystallization age of accessory phases in different lithologies of the Sudbury “Igneous” Complex, which has been interpreted to represent the coherent impact melt sheet of the Sudbury Structure. This excellent agreement of the ages substantiates that emplacement of the Offset Dikes occurred coevally with the formation of the impact melt sheet. Total absence of inherited zircons in the central part of the Foy Offset indicates melting of the precursor material at temperatures well above 1700 °C, which emphasizes the origin of the dike lithologies by impact melting.  相似文献   

5.
Abstract— The Offset Dikes of the 1.85 Ga Sudbury Igneous Complex (SIC) constitute a key topic in understanding the chemical evolution of the impact melt, its mineralization, and the interplay between melt migration and impact‐induced deformation. The origin of the melt rocks in Offset Dikes as well as mode and timing of their emplacement are still a matter of debate. Like many other offset dikes, the Worthington is composed of an early emplaced texturally rather homogeneous quartz‐diorite (QD) phase at the dike margin, and an inclusion‐ and sulfide‐rich quartz‐diorite (IQD) phase emplaced later and mostly in the centre of the dike. The chemical heterogeneity within and between QD and IQD is mainly attributed to variable assimilation of host rocks at the base of the SIC, prior to emplacement of the melt into the dike. Petrological data suggest that the parental magma of the Worthington Dike mainly developed during the pre‐liquidus temperature interval of the thermal evolution of the impact melt sheet (>1200 °C). Based on thermal models of the cooling history of the SIC, the two‐stage emplacement of the Worthington Dike occurred likely thousands to about ten thousand years after impact. Structural analysis indicates that an alignment of minerals and host rock fragments within the Worthington Dike was caused by ductile deformation under greenschist‐facies metamorphic conditions rather than flow during melt emplacement. It is concluded that the Worthington Offset Dike resulted from crater floor fracturing, possibly driven by late‐stage isostatic readjustment of crust underlying the impact structure.  相似文献   

6.
The 1.85 Ga Sudbury Igneous Complex (SIC) and its thermal aureole are unique on Earth with regard to unraveling the effects of a large impact melt sheet on adjacent target rocks. Notably, the formation of Footwall Breccia, lining the basal SIC, remains controversial and has been attributed to impact, cratering, and postcratering processes. Based on detailed field mapping and microstructural analysis of thermal aureole rocks, we identified three distinct zones characterized by static recrystallization, incipient melting, and crystallization textures. The temperature gradient in the thermal aureole increases toward the SIC and culminates in a zone of partial melting, which correlates spatially with the Footwall Breccia. We therefore conclude that assimilation of target rock into initially superheated impact melt and simultaneous deformation after cratering strongly contributed to breccia formation. Estimated melt fractions of the Footwall Breccia amount to 80 vol% and attest to an extreme loss in mechanical strength and, thus, high mobility of the Breccia during assimilation. Transport of highly mobile Footwall Breccia material into the overlying Sublayer Norite of the SIC and vice versa can be attributed to Raleigh–Taylor instability of both units, long‐term crater modification caused by viscous relaxation of crust underlying the Sudbury impact structure, or both.  相似文献   

7.
Offset dikes are found concentrically around—and extending radially outward from—the Sudbury Igneous Complex (SIC), which represents an ~3 km thick differentiated impact melt sheet. The dikes are typically composed of an inclusion‐rich, so‐called quartz diorite (IQD) in the center of the dike, and an inclusion‐poor quartz diorite (QD) along the margins of the dike. New exposures of the intersection between the concentric Hess and radial Foy offset dikes provide an excellent opportunity to understand the relationship between the radial and concentric offset dikes and their internal phases. The goal was to constrain the timing of the dike emplacements relative to the impact and formation of the SIC. Results herein suggest that (1) the timing between the emplacement of the QD and IQD melts was geologically short, (2) the Hess and Foy dikes coexisted as melts at the same time and the intersection between them represents a mixture of the two, (3) the Foy dike has a slightly more evolved chemical composition than the Hess dike, and (4) the IQD melt from the Foy dike underwent some degree of chemical fractionation after its initial emplacement.  相似文献   

8.
Abstract— The Hess Offset is a steeply dipping dyke located 12–15 km north of the 1.85 Ga Sudbury igneous complex (SIC) within the 200–250 km diameter Sudbury impact structure. It is up to 60 m wide and strikes subconcentrically to the SIC for at least 23 km. The main phase of the dyke is granodioritic, but it conforms with what is locally referred to as Quartz Diorite: a term used for all the Offset Dykes of the Sudbury impact structure. Rare earth element data shows that the Hess Offset is genetically related to the SIC. Hess is most closely affiliated with an evolved Felsic Norite component of SIC and not bulk impact melt. This indicates that Hess was emplaced during fractionation of the impact melt sheet, rather than immediately following impact. The main Quartz Diorite phase of the dyke comprises a quartz + plagioclase + hornblende + biotite ± clinopyroxene ± orthopyroxene assemblage. Critically, the Hess Offset occupies a concentric fault system that marks the northern limit of a pseudotachylyte-rich, shatter cone-bearing annulus about the SIC. This fault system was active during the modification stage of the impact process.  相似文献   

9.
Abstract— The South Range Breccia Belt (SRBB) is an arcuate, 45 km long zone of Sudbury Breccia in the South Range of the 1.85 Ga Sudbury Impact Structure. The belt varies in thickness between tens of meters to hundreds of meters and is composed of a polymict assemblage of Huronian Supergroup (2.49–2.20 Ga), Nipissing Diabase (2.2 Ga), and Proterozoic granitoid breccia fragments ranging in size from a few millimeters to tens of meters. The SRBB matrix is composed of a fine‐grained (~100 μm) assemblage of biotite, quartz, and ilmenite, with trace amounts of plagioclase, zircon, titanite, epidote, pyrite, chalcopyrite, pyrrhotite, and occasionally chlorite. The SRBB hosts the Frood‐Stobie, Vermilion, and Kirkwood quartz diorite offset dykes, the former being associated with one of the largest Ni‐Cu‐PGE sulphide deposits in the world. Optical petrography and whole‐rock geochemistry concur with previous studies that have suggested that the matrix of the SRBB is derived from comminution and at least partial frictional melting of the wall rock Huronian Supergroup lithologies. Rare earth element (REE) data from all sampled lithologies associated with the SRBB exhibit crustal signatures when normalized to C1 chondrite values. Additionally, REE data from the quartz diorites, disseminated sulphides in Sudbury Breccia, and a sample of an aphanitic biotite‐hornblende tonalite dyke exhibit flat slopes when compared to the mafic and felsic norites, quartz gabbro, and granophyre units of the Sudbury Igneous Complex (SIC), which suggests that these lithologies are representative of bulk SIC melt. We suggest that the SRBB was formed by high strain‐rate (>1 m/s), gravity‐driven seismogenic slip of the inner ring of the Sudbury Impact Structure during postimpact crustal readjustment (crater modification stage). Failure of the hanging wall may have facilitated the injection of bulk SIC melt into the SRBB, along with the Ni‐Cu‐PGE sulphides of the Frood‐Stobie deposit. Postimpact Penokean (1.9–1.7 Ga) tectonism, particularly northwest‐directed shearing along the South Range Shear Zone and associated thrust faulting, could account for the present subvertical orientation of the SRBB, and the apparent lack of a connection at depth with the SIC.  相似文献   

10.
Metallic microspheres have been found in rocks from the Onaping Formation of the Sudbury impact structure, Canada. Microspherules are common in contact breccias, the lowest part of the Dowling Member, and rare microspherules have been found in the upper sequences of the Dowling Member. Separate microspherules are dispersed in the breccia matrix and do not form clusters. The sizes of the microspheres range from 5 to 30 μm; most commonly, they are 8–15 μm in size. The microspherules have a regular spherical shape, and in some cases show concentric zonal structures. The microspherules consist mostly of the refractory elements Cr, Co, Fe, Mo, W, and Ti, with a predominant Ni content of 40–75 wt%. The formation of the Sudbury metal microspherules by condensation in a high-temperature plume is suggested by their spherical shape, concentric-zoned structure, uniform composition, and distribution in fallback breccias of the crater-fill Onaping Formation. The content of the most refractory W in the composition of the microspheres indicates early condensation. A decrease in the content of W and an increase in the content of Ni in the microspheres of the upper layers relative to the content of these elements in the earliest microspheres of the contact layers indicate that they could have formed by fractional condensation during the expansion and cooling of the impact vapor plume. As source material, a combination of target rocks with high nickel content with a chondritic impactor is suggested.  相似文献   

11.
Abstract— The Footwall Breccia layer in the North Range of the Sudbury impact structure is up to 150 m thick. It has been analyzed for several aspects: shock metamorphism of clasts, matrix texture, mineralogy, and geochemistry with respect to major and trace element compositions. The matrix of this heterolithic breccia contains mineral and lithic fragments, which have suffered shock pressures exceeding 10 GPa, along with clasts of breccia dikes originating from the crater basement. The matrix in a zone near the upper contact of the breccia layer is dominated by a dioritic composition with intersertal textures, whereas beneath this zone the matrix is characterized by poikilitic to granular textures and a tonalitic to granitic composition. Major and trace element analyses of adjacent slices of a thin-slab profile from the breccia show that the matrix is chemically inhomogeneous within a range of 3 mm. The breccia layer has been thermally annealed by the overlying Sudbury Igneous Complex, which is interpreted as a coherent impact melt sheet. The Rb-Sr isochron age of 1.825 ± 0.021 Ga for the matrix is a cooling age after partial melting of fine grained clastic material by the melt system. Two-pyroxene thermometry calculations give temperatures in excess of 1000 °C for this thermal overprinting. Clasts were affected by recrystallization, melting, and reactions with the surrounding matrix at that time. The crystallization of the molten matrix resulted in the observed variety of igneous textures. Results of clast population statistics for the Footwall Breccia along with both geochemical considerations and the Sr-Nd isotopic signature of the matrix indicate that the breccia constituents exclusively derived from the Levack gneiss complex, which forms the local country rock to the breccia layer in the Levack area. K-feldspar-rich domains, which tend to replace parts of matrix and felsic gneiss fragments have been formed due to metasomatic activities during the Penokean orogeny, ~ 1.7 Ga ago. The available observations suggest that the Sudbury structure represents the remnant of a multi-ring basin with an apparent diameter between 180 and 200 km and a diameter of the transient cavity of about 100 km. For a crater of the size of the Sudbury basin a maximum depth of excavation of ~21 km and a depth of shock-melted target rocks of ~27 km are obtained. In the Sudbury crater, the Footwall Breccia layer represents a part of the uplifted crater floor directly underlying the thick coherent impact melt sheet.  相似文献   

12.
Abstract— Orogenic deformation, both preceding and following the impact event at Sudbury, strongly hinders a straightforward assessment of impact‐induced geological processes that generated the Sudbury impact structure. Central to understanding these processes is the state of strain of the Sudbury Igneous Complex, the solidified impact melt sheet, its underlying target rocks, overlying impact breccias and post‐impact sedimentary rocks. This review addresses (1) major structural, metamorphic and magmatic characteristics of the impact melt sheet and associated dikes, (2) attempts that have been made to constrain the primary geometry of the igneous complex, (3) modes of impact‐induced deformation as well as (4) mechanisms of pre‐ and post‐impact orogenic deformation. The latter have important consequences for estimating parameters such as magnitude of structural uplift, tilting of pre‐impact (Huronian) strata and displacement on major discontinuities which, collectively, have not yet been considered in impact models. In this regard, a mechanism for the emplacement of Offset Dikes is suggested, that accounts for the geometry of the dikes and magmatic characteristics, as well as the occurrence of sulfides in the dikes. Moreover, re‐interpretation of published paleomagnetic data suggests that orogenic folding of the solidified melt sheet commenced shortly after the impact. Uncertainties still exist as to whether the Sudbury impact structure was a peak‐ring or a multi‐ring basin and the deformation mechanisms of rock flow during transient cavity formation and crater modification.  相似文献   

13.
14.
Abstract— The El'gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid‐Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock‐metamorphosed volcanic rocks, impact melt rocks, and bomb‐shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt. Four stages of shocked volcanic rocks were identified: stage I (≤35 GPa; lava and tuff contain weakly to strongly shocked quartz and feldspar clasts with abundant PFs and PDFs; coesite and stishovite occur as well), stage II (35–45 GPa; quartz and feldspar are converted to diaplectic glass; coesite but no stishovite), stage III (45–55 GPa; partly melted volcanic rocks; common diaplectic quartz glass; feldspar is melted), and stage IV (>55 GPa; melt rocks and glasses). Two main types of impact melt rocks occur in the crater: 1) impact melt rocks and impact melt breccias (containing abundant fragments of shocked volcanic rocks) that were probably derived from (now eroded) impact melt flows on the crater walls, and 2) aerodynamically shaped impact melt glass “bombs” composed of homogeneous glass. The composition of the glasses is almost identical to that of rhyolites from the uppermost part of the target. Cobalt, Ni, and Ir abundances in the impact glasses and melt rocks are not or only slightly enriched compared to the volcanic target rocks; only the Cr abundances show a distinct enrichment, which points toward an achondritic projectile. However, the present data do not allow one to unambiguously identify a meteoritic component in the El'gygytgyn impact melt rocks.  相似文献   

15.
Abstract— The ~400 Ma old Ilyinets impact structure was formed in the Precambrian basement of the Ukrainian Shield and is now mostly covered by Quaternary sediments. Various impact breccias and melts are exposed in its southern section. The crater is a complex structure with a central uplift that is surrounded by an annular deposit of breccias and melt rocks. In the annulus, brecciated basement rocks are overlain by up to 80 m of glass-poor suevitic breccia, which is overlain (and partly intercalated) by glass-rich suevite with a thickness of up to 130 m. Impact-melt rocks occur within and on top of the suevites—in some cases in the form of devitrified bomb-shaped impact-glass fragments. We have studied the petrographic and geochemical characteristics of 31, mostly shocked, target rock samples (granites, gneisses, and one amphibolite) obtained from drill cores within the structure, and impact breccias and melt rock samples from drill cores and surface exposures. Multiple sets of planar deformation features (PDFs) are common in quartz, potassium feldspar, and plagioclase of the shocked target rocks. The breccias comprise more or less devitrified impact melt with shocked clasts. The impact-melt rocks (“bombs”) show abundant vesicles and, in some cases, glass is still present as brownish patches and schlieren. All impact breccias (including the melt rocks) are strongly altered and have significantly elevated K contents and lower Na contents than the target rocks. The alteration could have occurred in an impact-induced hydrothermal system. The bomb-shaped melt rocks have lower Mg and Ca contents than other rock types at the crater. Compared to target rocks, only minor enrichments of siderophile element contents (e.g., Ni, Co, Ir) in impact-melt rocks were found.  相似文献   

16.
Abstract— Chicxulub and Sudbury are 2 of the largest impact structures on Earth. Research at the buried but well‐preserved Chicxulub crater in Mexico has identified 6 concentric structural rings. In an analysis of the preserved structural elements in the eroded and tectonically deformed Sudbury structure in Canada, we identified ring‐like structures corresponding in both radius and nature to 5 out of the 6 rings at Chicxulub. At Sudbury, the inner topographic peak ring is missing, which if it existed, has been eroded. Reconstructions of the transient cavities for each crater produce the same range of possible diameters: 80–110 km. The close correspondence of structural elements between Chicxulub and Sudbury suggests that these 2 impact structures are approximately the same size, both having a main structural basin diameter of ?150 km and outer ring diameters of ?200 km and ?260 km. This similarity in size and structure allows us to combine information from the 2 structures to assess the production of shock melt (melt produced directly upon decompression from high pressure impact) and impact melt (shock melt and melt derived from the digestion of entrained clasts and erosion of the crater wall) in large impacts. Our empirical comparisons suggest that Sudbury has ?70% more impact melt than does Chicxulub (?31,000 versus ?18,000 km3) and 85% more shock melt (27,000 km3 versus 14,500 km3). To examine possible causes for this difference, we develop an empirical method for estimating the amount of shock melt at each crater and then model the formation of shock melt in both comet and asteroid impacts. We use an analytical model that gives energy scaling of shock melt production in close agreement with more computationally intense numerical models. The results demonstrate that the differences in melt volumes can be readily explained if Chicxulub was an asteroid impact and Sudbury was a comet impact. The estimated 70% difference in melt volumes can be explained by crater size differences only if the extremes in the possible range of melt volumes and crater sizes are invoked. Preheating of the target rocks at Sudbury by the Penokean Orogeny cannot explain the excess melt at Sudbury, the majority of which resides in the suevite. The greater amount of suevite at Sudbury compared to Chicxulub may be due to the dispersal of shock melt by cometary volatiles at Sudbury.  相似文献   

17.
The offset dykes of the Sudbury Igneous Complex comprise two distinct main magmatic facies, a high-temperature inclusion-free quartz diorite (QD), and a subsequently intruded lower temperature, mineralized, and inclusion-rich quartz diorite (MIQD). The MIQD facies was emplaced after QD dykes had solidified. Key controlling factors of the two injection phases were (1) the development of a coherent roof, which confined the melt sheet; and (2) the periodic increase of melt and fluid pressure within the melt sheet. For the injection of QD melt, the melt pressure exceeded the normal stress acting on fracture surfaces. For the later refracturing of QD dykes and the injection of MIQD melt, the melt pressure increased further, exceeding the tensile strength of, and the normal stress acting on, QD dykes. We associate the melt pressure increase required for both injection episodes with degassing and devolatilization of cooling melt close to the roof. Within the hydraulically connected melt column, the related pressure increase was transmitted to the base of the melt sheet where QD and MIQD melt was extracted into dykes. Residual core to rim thermal gradients in the QD dykes produced tensile strength gradients, accounting for the typically central location of MIQD dykes within QD dykes.  相似文献   

18.
Abstract— The newly discovered Dhala structure, Madhya Pradesh State, India, is the eroded remnant of an impact structure with an estimated present‐day apparent diameter of about 11 km. It is located in the northwestern part of the Archean Bundelkhand craton. The pre‐impact country rocks are predominantly granitoids of ?2.5 Ga age, with minor 2.0–2.15 Ga mafic intrusive rocks, and they are overlain by post‐impact sediments of the presumably >1.7 Ga Vindhyan Supergroup. Thus, the age for this impact event is currently bracketed by these two sequences. The Dhala structure is asymmetrically disposed with respect to a central elevated area (CEA) of Vindhyan sediments. The CEA is surrounded by two prominent morphological rings comprising pre‐Vindhyan arenaceous‐argillaceous and partially rudaceous metasediments and monomict granitoid breccia, respectively. There are also scattered outcrops of impact melt breccia exposed towards the inner edge of the monomict breccia zone, occurring over a nearly 6 km long trend and with a maximum outcrop width of ?170 m. Many lithic and mineral clasts within the melt breccia exhibit diagnostic shock metamorphic features, including multiple sets of planar deformation features (PDFs) in quartz and feldspar, ballen‐textured quartz, occurrences of coesite, and feldspar with checkerboard texture. In addition, various thermal alteration textures have been found in clasts of initially superheated impact melt. The impact melt breccia also contains numerous fragments composed of partially devitrified impact melt that is mixed with unshocked as well as shock deformed quartz and feldspar clasts. The chemical compositions of the impact melt rock and the regionally occurring granitoids are similar. The Ir contents of various impact melt breccia samples are close to the detection limit (1–1.5 ppb) and do not provide evidence for the presence of a meteoritic component in the melt breccia. The presence of diagnostic shock features in mineral and lithic clasts in impact melt breccia confirm Dhala as an impact structure. At 11 km, Dhala is the largest impact structure currently known in the region between the Mediterranean and southeast Asia.  相似文献   

19.
Abstract— The central allochthonous polymict breccia of the Haughton impact structure is up to about 90 m thick and as much as 7.3 km in radial extent. It has been analyzed with respect to modal composition, grain-size characteristics, and degree of shock metamorphism for the grain-size ranges 10–~ 50, 1–10, 0.03–1, and <0.03 mm. The mineralogy of the breccia matrix is dominated by dolomite and calcite, with minor amounts of quartz, other silicate minerals, and rare melt particles. The following lithic clasts have been identified in the 1–10 mm size fraction (averages of vol.% given in parentheses): dolomitic rocks (51), limestones (29), crystalline rocks (10), sandstones and siltstones (3.7), chert (0.7), melt particles (1.9). The mineral clasts (1–0.03 mm) comprise (with decreasing frequency) dolomite, quartz, calcite, feldspar, biotite, amphibole, garnet, opaques, rounded quartz derived from sandstones and accessory minerals. Lithic and mineral clasts display various degrees of shock. Fragments of crystalline rocks are shocked in the 0–60 GPa range; whole rock melts from the crystalline basement are lacking and unshocked rocks are very rare. In contrast, shock-melted sandstones, shales, and chert were found in most samples. Large clasts of these melt rocks are highly concentrated near the center of the crater. Otherwise, no distinct change of the modal composition with radial range has been observed except that the frequency of limestone clasts increases slightly with radial range. The breccia near the center is more fine-grained than that beyond about 1 km radius and the sorting parameter increases somewhat with radial range. Except for the high concentration of shock-melted sedimentary rocks and highly shocked crystalline rocks near the center of the crater, the distribution of shock stages within the lithic clast population is quite uniform throughout the breccia formation. We conclude that the breccia constituents are derived from the lower part of the target stratigraphy (deeper than about 800 m) and that the total depth of excavation at Haughton is in the order of 2000 m. The mixing of sedimentary rocks of the Eleanor River Formation, Lower Ordovician, and Cambrian (~850 m thickness) with crystalline basement rocks is quite thorough and homogeneous throughout the breccia lens, at least for the analyzed part. This may require an air-borne mode of emplacement for the upper section of the breccia in analogy to the fall-back suevite in the Ries crater. A calculation of the excavation (Z-model) and of the shock pressure attenuation based on reasonable estimates of the energy and crater geometry of the Haughton impact confirms the observed maximum depth of excavation of about 2 km. Shock-melted crystalline basement rocks, if present at all, must be confined to the very center of the structure below the excavation cavity.  相似文献   

20.
Abstract The ~7.5 km diameter Wanapitei impact structure (46°45′N; 80°45′W) lies entirely within Lake Wanapitei in central Ontario, Canada. Impact lithologies are known only from glacial float at the southern end of the lake. Over 50% of the impact lithologies recovered from this float can be classified as suevite, <20% as highly shocked and partially melted arkosic metasediments of the target rock Mississagi Formation or, possibly, the Serpent Formation and <20% as glassy impact melt rocks. An additional <5% of the samples have similarities to the suevite but have up to 50% glass clasts and are tentatively interpreted as fall-back material. The glassy impact melt rocks fall into two textural and mineralogical types: a perlitically fractured, colorless glass matrix variant, with microlites of hypersthene with up to 11.5% Al2O3 and a “felted” matrix variant, with evidence of flow prior to the crystallization of tabular orthopyroxene. These melt glasses show chemical inhomogeneities on a microscopic scale, with areas of essentially SiO2, even when appearing optically homogeneous. They are similar in bulk composition for major elements, but the felted matrix variant is ~5×more enriched in Ni, Co and Cr, the interelement ratios of which are indicative of an admixture of a chondritic projectile. Mixing models suggest that the glassy impact melt rocks can be made from the target rocks in the proportions: ~55% Gowganda wacke, ~42% Serpent arkose and ~3% Nipissing intrusives. Geologic reconstructions suggest that this is a reasonable mixture of potential target rocks at the time of impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号