首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The concentration of calcium was determined in the samples collected from four stations in the Laccadive Sea and from two lagoons of Kavaratti and Minicoy atolls. The calcium/chlorinity ratio for the open ocean samples was found to be 0.02168 ± 0.000015 with an average calcium concentration of 424.9 mg kg?1. A maximum in this ratio was observed at about 200 m depth, below the salinity maximum corresponding to Arabian Sea Surface Water mass. No increase in calcium concentration or in calcium/chlorinity ratio was observed down to 1500 m depth, thereby ruling out the possibility of any calcium carbonate dissolution at these depths. Samples from Kavaratti and Minicoy lagoons gave much lower values of the Ca/Cl ratio (0.02145 ± 0.000036 and 0.02142 ± 0.000046, respectively). These low values are apparently the result of calcium utilization by the coral reefs. Using the reduction in the calcium concentration inside the lagoon, in the absence of any chemical precipitation, the annual CaCO3 production by reef flat and lagoon on Kavaratti Atoll has been estimated as 1 · 107 kg. This gives an average gross production of 1.4 kg CaCO3 per m2 per yr.  相似文献   

2.
Halipteris finmarchica is one of the most common species of deep‐sea pennatulacean corals in the Northwest Atlantic; it was recently determined to act as a biogenic substrate for other species and as a nursery for fish larvae. Its reproductive cycle was investigated in colonies sampled in 2006 and 2007 along the continental slope of Newfoundland and Labrador (Canada). Halipteris finmarchica exhibits large oocytes (maximum diameter of 1000 μm), which are consistent with lecithotrophic larval development. Female potential fecundity based on mature oocytes just before spawning was ~6 oocytes · polyp?1 (500–6300 oocytes · colony?1); male potential fecundity was 16 spermatocysts · polyp?1 (5500–57,400 spermatocysts · colony?1). Based on statistical analysis of size‐probability frequency distributions, males harboured one cohort of spermatocysts that matured inside 8–11 months, whereas females harboured two distinct cohorts of oocytes; a persistent pool of small ones (≤400 μm) and a small number (~20%) of larger ones that grew from ~400 to >800 μm over a year. Despite this difference in the tempo of oogenesis and spermatogenesis, a synchronic annual spawning was detected. A latitudinal shift in the spawning period occurred from south (April in the Laurentian Channel) to north (May in Grand Banks and July–August in Labrador/Lower Arctic), following the development of the phytoplankton bloom (i.e. sinking of phytodetritus). Prolonged oogenesis with the simultaneous presence of different oocyte classes in a given polyp is likely not uncommon in deep‐sea octocorals and could hamper the detection of annual/seasonal reproduction when sample sizes are low and/or time series discontinued or brief.  相似文献   

3.
Quantitative research on composition, biomass and production rates of zooplankton community is crucial to understand the trophic structure in coral reef pelagic ecosystems. In the present study, micro‐ (35–100 μm) and net‐ (>100 μm) metazooplankton were investigated in a fringing coral reef at Tioman Island of Malaysia. Sampling was done during the day and night in August and October 2004, and February and June 2005. The mean biomass of total metazooplankton (i.e. micro + net) was 3.42 ± 0.64 mg C·m?3, ranging from 2.32 ± 0.75 mg C·m?3 in October to 3.26 ± 1.77 mg C·m?3 in August. The net‐zooplankton biomass exhibited a nocturnal increase from daytime at 131–264% due to the addition of both pelagic and reef‐associated zooplankton into the water column. The estimated daily production rates of the total metazooplankton community were on average 1.80 ± 0.57 mg C·m?3·day?1, but this increased to 2.51 ± 1.06 mg C·m?3·day?1 if house production of larvaceans was taken into account. Of the total production rate, the secondary and tertiary production rates were 2.20 ± 1.03 and 0.30 ± 0.06 mg C·m?3·day?1, respectively. We estimated the food requirements of zooplankton in order to examine the trophic structure of the pelagic ecosystem. The secondary production may not be satisfied by phytoplankton alone in the study area and the shortfall may be supplied by other organic sources such as detritus.  相似文献   

4.
The tropical seagrass Halophila stipulacea is dominant in most regions of the Indo‐Pacific and the Red Sea and was introduced into the Mediterranean Sea after the opening of the Suez canal. The species is considered invasive in the Mediterranean Sea and has been progressively colonizing new areas westward. Growth and photosynthetic responses of H. stipulacea have been described but no information is yet available on the nitrogen nutrition of the species. Here we simultaneously investigated the uptake kinetics of ammonium and nitrate and the internal translocation of incorporated nitrogen in H. stipulacea using 15N‐labelled substrates across a range of Ni levels (5, 25, 50 and 100 μm ). The ammonium uptake rates exceeded the nitrate uptake rates 100‐fold, revealing a limited capacity of H. stipulacea to use nitrate as an alternative nitrogen source. The uptake rates of ammonium by leaves and roots were comparable up to 100 μm 15NH4Cl. At this concentration, the leaf uptake rate was 1.4‐fold higher (6.22 ± 0.70 μmol·g?1 DW h?1) than the root uptake rate (4.54 ± 0.28 μmol·g?1 DW h?1). The uptake of ammonium followed Michaelis–Menten kinetics, whereas nitrate uptake rates were relatively constant at all nutrient concentrations. The maximum ammonium uptake rate (Vmax) and the half‐saturation constant (Km) of leaves (9.79 μmol·g?1 DW h?1 and 57.95 μm , respectively) were slightly higher than that of roots (6.09 μmol·g?1DW h?1 and 30.85 μm , respectively), whereas the affinity coefficients (α = Vmax/Km) for ammonium of leaves (0.17) and roots (0.20) were comparable, a characteristic that is unique among seagrass species. No substantial translocation (<2.5%) of 15N incorporated as ammonium was detected between plant parts, whereas the translocation of 15N incorporated as nitrate was higher (40–100%). We conclude that the Ni acquisition strategy of H. stipulacea, characterized by a similar uptake capacity and efficiency of leaves and roots, favors the geographical expansion potential of the species into areas with variable water‐sediment N levels throughout the Mediterranean.  相似文献   

5.
During a research cruise carried out in April 2010, aimed at updating the knowledge on the biodiversity of the Santa Maria di Leuca (SML) cold‐water coral province (Mediterranean Sea), a facies of the sea pen Kophobelemnon stelliferum (Muller, 1776) was found on mud‐dominated bottoms. This finding represents a new species and a new habitat record from the SML coral province as well as a new bathyal facies in the whole Central Mediterranean Sea. The colonies were collected using an epi‐benthic sledge, at depths between 400 and 470 m. A significant positive relationship between polyp number and colony length was detected. Density of the colonies ranged from 0.003 to 0.038 N·m?2. Differences and affinities between Mediterranean and Atlantic occurrences of K. stelliferum are discussed.  相似文献   

6.
Leaf growth, biomass and production of Cymodocea nodosa were measured from October 2006 to September 2007 in Monastir Bay (Tunisia). Shoot density showed a clear seasonal pattern, increasing during spring and summer and decreasing during fall and winter. Monthly mean shoot density ranged between 633 ± 48 and 704 ± 48 shoots?m?2. The monthly average total biomass ranged between 560 ± 37 and 646 ± 32 g dry weight (DW)?m?2. Total biomass varied significantly among stations and sampling times but did not show seasonal variation. Leaf plastochrone intervals varied seasonally, with an annual average of 28–30 days. Leaf productivity was highest in August (2.61 g DW?m?2?day?1) and lowest in February (0.35 g DW?m?2?day?1). Annual belowground primary production varied from 263 to 311 g DW?m?2?year?1. Annual leaf production was approximately equal for all the stations (from 264 to 289 g DW?m?2?year?1). Variability in water temperature, air temperature and salinity explained the annual variability in biological characteristics. Changes in belowground and total biomass were not correlated with seasonal variability in the environmental parameters monitored. Additionally, a literature review was conducted of C. nodosa features at other Mediterranean sites, encompassing 30 studies from 1985 to 2014.  相似文献   

7.
Rhodoliths are important marine carbonate producers that provide habitat for several marine organisms, and are threatened by ongoing global climate change. Meter‐sized sedimentary patches rich in living rhodoliths, interspersed among corals, were discovered in the back reef of Ras Ghamila lagoon, Southern Sinai, at less than 1 m water depth. In this shallow and relatively sheltered subtropical environment, rhodoliths were found to be monospecific or oligospecific, spheroidal, 3.5 to 9.4 cm in maximum diameter, with warty/lumpy or fruticose (protuberance degree IV) growth forms, and corresponded to the unattached branches or praline type. They grew in bright light under seasonal, moderate, wind‐driven water motion. The dominant rhodolith‐forming species recorded were: Lithophyllum kotschyanum, Porolithon onkodes, Hydrolithon sp. and three species of Neogoniolithon: Neogoniolithon fosliei, Neogoniolithon brassica‐florida, and an undescribed species noted in the text as Neogoniolithon sp. A total of 38 Alizarin‐stained rhodoliths was released in the field and collected after 1 year. They showed different banding patterns (alternating long and short cells) that revealed seasonal growth, with the lowest rates occurring in winter for all species, and an additional summer growth slackening in Neogoniolithon fosliei. Lithophyllum kotschyanum presented evidence of occasional growth cessation, possibly due to temporary burial. The observed annual growth rate of rhodoliths was unrelated to their size. The mean accretion rates were 1.08 mm · year?1 in L. kotschyanum, 0.75 mm · year?1 in P. onkodes, 0.49 mm · year?1 in Hydrolithon sp., 0.85 mm mm · year?1 in N. fosliei, 0.63 mm · year?1 in N. brassica‐florida and 0.57 mm · year?1 in Neogoniolithon sp. The annual mean marginal elongation rate for these taxa was respectively 8.74, 13.92, 3.59, 9.40 and 9.25 mm · year?1, with the exception of Neogoniolithon sp., for which this parameter was not recorded. Maximum marginal elongation occurred in P. onkodes pointing out its greater ability as a space competitor in comparison with the other rhodolith species. The highest accretion rate and common presence of L. kotschyanum indicate its importance as carbonate producer in tropical reef.  相似文献   

8.
To test the effects of site and successional stage on nitrogen fixation rates in salt marshes of the Venice Lagoon, Italy, acetylene reduction assays were performed with Salicornia veneta‐ and Spartina townsendii‐vegetated sediments from three restored (6–14 years) and two natural marshes. Average nitrogen fixation (acetylene reduction) rates ranged from 31 to 343 μmol C2H4·m?2·h?1 among all marshes, with the greatest average rates being from one natural marsh (Tezze Fonde). These high rates are up to six times greater than those reported from Southern California Spartina marshes of similar Mediterranean climate, but substantially lower than those found in moister climates of the Atlantic US coast. Nitrogen fixation rates did not consistently vary between natural and restored marshes within a site (Fossei Est, Tezze Fonde, Cenesa) but were negatively related to assayed plant biomass within the acetylene reduction samples collected among all marshes. Highest nitrogen fixation rates were found at Tezze Fonde, the location closest to the city of Venice, in both natural and restored marshes, suggesting possible site‐specific impacts of anthropogenic stress on marsh succession.  相似文献   

9.
We present the results of the first study to highlight the demography, morphometry and growth rates of Spinimuricea klavereni, a rare Mediterranean endemic gorgonian exceptionally common in shallow depths of the Northeast Marmara Sea. In the study area, this species forms vast populations on rocks, boulders and attached to pebbles/stones/shells on soft substrates between 20 and 45 m depth, with a total average density of 0.3 colonies·m?2 but comprising patches up to 3 colonies·m?2. Colonies, which are on average 42.9 (±20.1) cm in height, can reach up to 110 cm. Unlike other Mediterranean gorgonians, the colonies studied here showed fast growth rates that decreased with increasing colony height, between 1.5–11.1 and 4.96 ± 3.01 cm·year?1 on average. The low necrosis and high growth rates displayed by this species in the Northeast Marmara Sea confirm the previously hypothesized opportunistic behaviour of the species. The unique community consisting of S. klavereni and other rare gorgonian/soft corals has limited distribution in this area and should be considered to be a vulnerable marine ecosystem. Therefore we recommend that some conservation measures are taken, including the prohibition of all fisheries and anchoring over these assemblages.  相似文献   

10.
Microbioerosion rates and microbioeroder community structure were studied in four Kenyan protected coral-reef lagoons using shell fragments of Tridacna giant clams to determine their response to the influence of terrestrial run-off. Fourteen different microbioeroder traces from seven cyanobacteria, three green algae and four fungi species were identified. The river discharge-impacted reef and ‘pristine’ reef showed similar composition but higher microbioeroder abundance and total cyanobacteria- and chlorophyte-bioeroded areas when compared with the other study reefs. Cyanobacteria dominated during the north-east monsoon (NEM) relative to the south-east monsoon (SEM) season, with algae and cyanobacteria being major microbioeroders in the river-impacted and pristine reefs. The rate of microbioerosion varied between 4.3 g CaCO3 m?2 y?1 (SEM) and 134.7 g CaCO3 m?2 y?1 (NEM), and was highest in the river-impacted reef (127.6 g CaCO3 m?2 y?1), which was almost double that in the pristine reef (69.5 g CaCO3 m?2 y?1) and the mangrove-fringed reef (56.2 g CaCO3 m?2 y?1). The microbioerosion rates measured in this study may not be high enough to cause concern with regard to the health and net carbonate production of Kenya’s coral reefs. Nevertheless, predicted increases in the frequency and severity of stresses related to global climate change (e.g. increased sea surface temperature, acidification), as well as interactions with local disturbances and their influence on bioerosion, may be increasingly important in the future.  相似文献   

11.
Commercially harvested since ancient times, the highly valuable red coral Corallium rubrum (Linnaeus, 1758) is an octocoral endemic to the Mediterranean Sea and adjacent Eastern Atlantic Ocean, where it occurs on rocky bottoms over a wide bathymetric range. Current knowledge is restricted to its shallow populations (15–50 m depth), with comparably little attention given to the deeper populations (50–200 m) that are nowadays the main target of exploitation. In this study, red coral distribution and population structure were assessed in three historically exploited areas (Amalfi, Ischia Island and Elba Island) in the Tyrrhenian Sea (Western Mediterranean Sea) between 50 and 130 m depth by means of ROV during a cruise carried out in the summer of 2010. Red coral populations showed a maximum patch frequency of 0.20 ± 0.04 SD patches·m?1 and a density ranging between 28 and 204 colonies·m?2, with a fairly continuous bathymetric distribution. The highest red coral densities in the investigated areas were found on cliffs and boulders mainly exposed to the east, at the greatest depth, and characterized by medium percentage sediment cover. The study populations contained a high percentage (46% on average) of harvestable colonies (>7 mm basal diameter). Moreover, some colonies with fifth‐order branches were also observed, highlighting the probable older age of some components of these populations. The Ischia population showed the highest colony occupancy, density and size, suggesting a better conservation status than the populations at the other study locations. These results indicate that deep dwelling red coral populations in non‐stressed or less‐harvested areas may diverge from the inverse size‐density relationship previously observed in red coral populations with increasing depth.  相似文献   

12.
Coral reefs are increasingly threatened by anthropogenic disturbances and consequently coral cover and complexity are declining globally. However, bioeroding sponges, which are the principal agents of internal bioerosion on many coral reefs, are increasing in abundance on some degraded reefs, tipping them towards net carbonate erosion. The aim of this study was to identify the environmental factors that drive the erosion rates of the common Indonesian bioeroding sponge Spheciospongia cf. vagabunda . Sponge explants were attached to limestone blocks and deployed across seven sites characterized by different environmental conditions in the UNESCO Wakatobi Biosphere Reserve in Indonesia. Average bioerosion rates were 12.0 kg m?2 sponge tissue year?1 (±0.87 SE ), and were negatively correlated with depth of settled sediment (r  = ?.717, p  < .01) and showed weak positive correlation with water movement (r  = .485, p  = .012). Our results suggest that although bioeroding sponges may generally benefit from coral reef degradation, bioerosion rates may be reduced on reefs that are impacted by high sedimentation, which is a common regional stressor in the South‐East Asian Indo‐Pacific.  相似文献   

13.
We evaluated the effectiveness of chemical tagging with the fluorescent marker calcein for two key species of herbivorous sea urchins, Diadema africanum and Paracentrotus lividus, to facilitate medium‐ and long‐term ecological experiments. In total, 98 juveniles of Dafricanum and 98 Plividus were tagged with this fluorescent marker, with 12 combinations of different tagging techniques (chemical bath or injection), concentrations of calcein (2, 10 and 20 mg · l?1), and soaking times (2, 4 and 24 h). Respective control treatments were conducted by means of seawater injection and bathing. The success of tagging was assessed after a month of feeding individuals ad libitum with the algae Dictyota sp. Sea urchins were dissected and their Aristotle's lanterns cleaned with 10% sodium hypochlorite to examine these structures under UV light using a binocular microscope. Each species was evaluated in terms of survival, percentage of tagged individuals and intensity of the resulting tag. The results showed that the method of soaking individuals of both species for 24 h in concentrations of calcein of 10 and 20 mg · l?1 gave the highest percentage survival (100%) and the resulting tags were clearly visible.  相似文献   

14.
Magellania venosa, the largest recent brachiopod, occurs in clusters and banks in population densities of up to 416 ind m?2 in Comau Fjord, Northern Chilean fjord region. Below 15 m, it co‐occurs with the mytilid Aulacomya atra and it dominates the benthic community below 20 m. To determine the question of why M. venosa is a successful competitor, the in situ growth rate of the brachiopod was studied and its overall growth performance compared with that of other brachiopods and mussels. The growth in length was measured between February 2011 and March 2012 after mechanical tagging and calcein staining. Settlement and juvenile growth were determined from recruitment tiles installed in 2009 and from subsequent photocensus. Growth of M. venosa is best described by the general von Bertalanffy growth function, with a maximum shell length (L) of 71.53 mm and a Brody growth constant (K) of 0.336 year?1. The overall growth performance (OGP index = 5.1) is the highest recorded for a rynchonelliform brachiopod and in the range of that for Mytilus chilensis (4.8–5.27), but lower than that of A. atra (5.74). The maximal individual production (PInd) is 0.29 g AFDM ind?1 year?1 at 42 mm shell length and annual production ranges from 1.28 to 89.25 g AFDM year?1 m?2 (1–57% of that of A. atra in the respective fjords). The high shell growth rate of M. venosa, together with its high overall growth performance may explain the locally high population density of this brachiopod in Comau Fjord. However, the production per biomass of the population (‐ratio) is low (0.535) and M. venosa may play only a minor role in the food chain. Settling dynamics indicates that M. venosa is a pioneer species with low juvenile mortality. The coexistence of the brachiopod and bivalve suggests that brachiopod survival is affected by neither the presence of potential brachiopod predators nor that of space competitors (i.e. mytilids).  相似文献   

15.
Although grazing is considered an essential process controlling epiphyte biomass on seagrass leaves, there is still a lack of fundamental knowledge about the species‐specific consumption rates of the most common grazers in Mediterranean meadows. This study experimentally assessed the effect of Posidonia oceanica‐associated gastropod grazing on early successional biofilm and the species‐specific relationship between biofilm consumption rates and biofilm biomass. Two biofilms on artificial substrata, both developed in situ (in a P. oceanica meadow), one under ambient conditions and the other under nutrient‐enriched conditions, were offered in aquaria assays to nine species of grazers found in P. oceanica meadows. Biofilm consumption rates and their association with biofilm biomass were assessed. It was found that: (i) there was a positive association between biofilm consumption and biofilm biomass up to 20 mg Chl a·m?2 for Bittium reticulatum, Gibbula ardens, Jujubinus exasperatus and Tricolia pullus; (ii) Alvania montagui, B. reticulatum and Jujubinus striatus showed the highest consumption rates and are thus expected to be amongst the leading consumers in early‐successional epiphytic communities; (iii) there was not an increase of consumption rate when a substratum colonized under nutrient‐enriched conditions was offered to any of the nine studied species. This study provides species‐specific consumption rates knowledge that is useful for the assessment of the strength of grazer–epiphyte interactions and trophic fluxes in P. oceanica meadows.  相似文献   

16.
Abstract. The secondary production and population dynamics of the mole crab Emerita brasiliensis Schmitt, 1935 (Decapoda: Hippidae) were studied by taking monthly samples from June 1993 to May 1995 at each of three intertidal transects at Prainha beach, Brazil. The lifespan was ca. 8 months for males and females, but females showed higher growth, mortality, secondary production, and turnover rate. The higher production in spring versus autumn and winter was related to intense recruitment during that period. The population production was estimated at between 39.86 and 46.88 g (AFDW) · m?2 · a?1 for the first year (June 93–May 94) and between 150.95 and 156.07 g (AFDW) · m?2 · a?1 for the second year (June 94–May 95); the mean annual biomass was 4.91 and 23.09 g (AFDW) · m?2, respectively. High P/B rates, between ca. 6 and 9 · a?1, reflected the fast growth, high mortality, and low lifespan of the population, characterized by a high percentage of recently recruited individuals.  相似文献   

17.
The seasonal and interannual changes in surface nutrients, dissolved inorganic carbon (DIC) and total alkalinity (TA) were recorded in the North Pacific (30–54°N) from 1995 to 2001. This study focuses on the region north of the subarctic boundary (∼40°N) where there was extensive monthly coverage of surface properties. The nutrient cycles showed large interannual variations in the eastern and western subarctic gyres. In the Alaska Gyre the seasonal depletion of nitrate (ΔNO3) increased from 8–14 μmol kg−1 in 1995–1999 to 21.5 μmol kg−1 in 2000. In the western subarctic the shifts were similar in amplitude but more frequent. The large ΔNO3 levels were associated with high silicate depletions, indicating enhanced diatom production. The seasonal DIC:NO3 drawdown ratios were elevated in the eastern and central subarctic due to calcification. In the western subarctic and the central Bering Sea calcification was significant only during 1997 and/or 1998, two El Ni?o years. Regional C/N stoichiometric molar ratios of 5.7 to 7.0 (>40°N) were determined based on the years with negligible or no calcification. The annual new production (NPa) based on ΔNO3 and these C/N ratios showed large interannual variations. NPa was usually higher in the western than in the eastern subarctic. However, values of 84 gC m−2yr−1 were found in the Alaska Gyre in 2000 which is similar to that in the most productive provinces of the northern North Pacific. There were also large increases in NPa around the Alaska Peninsula in 1997 and 1998. Finally, the net removal of carbon by the biological pump was estimated as 0.72 Gt C yr−1 in the North Pacific (>30°N). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
We investigated the reproductive biology of the planktonic harpacticoid copepod Euterpina acutifrons, including morphometric data, egg production rates (EPR) and viability, and weight‐specific egg production. Experiments were carried out during 1 year in an inner‐shelf area off Ubatuba (SE Brazil), a site seasonally influenced by bottom intrusions of the relatively cold and nutrient‐rich South Atlantic Central Water (SACW). We hypothesized that E. acutifrons attain higher reproductive rates when SACW penetrates in this region. Live females were incubated individually in cell culture plates during two periods of 24 h each, under controlled temperature and light conditions. Euterpina acutifrons carried on average 16.9 ± 6.9 eggs·sac?1, ranging between 10.8 ± 5.7 and 30.8 ± 7.4 eggs·sac?1. Estimated EPRs ranged from 6.3 ± 3.4 to 13.6 ± 4.2 eggs·female?1·day?1, with mean weight‐specific egg production rates of 0.06 ± 0.04 and 0.17 ± 0.08 per day. Euterpina acutifrons was not directly influenced by SACW intrusions, but body length and clutch size were positively related to temperature and chlorophyll content. Egg hatching time was clearly dependent on water temperature, as a 2 °C increase resulted in a decrease of 15 h in egg hatching time. This shows that even a small variation in temperature may considerably affect E. acutifrons population dynamics. Reproductive traits of this pelagic harpacticoid seem, therefore, to be controlled by the trade‐offs between increased food supply and the metabolic demands at low temperatures associated with SACW bottom intrusions toward this coastal area.  相似文献   

19.
The effect of self‐shading and competition for light in the seagrass Enhalus acoroides were investigated with a density reduction experiment in Haad Chao Mai National Park, Trang Province, Thailand. The study was carried out in a monospecific meadow with a natural density of 141.0 ± 8.7 shoots·m?2. The intent was to determine the response of E. acoroides beds to loss of shoots and thinning, which often occur during typhoons and severe storm activity. Permanent quadrats were manipulated by clipping the seagrass shoots to 140, 72, 36 and 16 shoots·m?2, to yield natural, 50%, 25% and 10% densities, respectively. Reducing shoot density in E. acoroides increased underwater light intensity below the canopy, generating increased leaf surface area and shoot weight. Seagrass leaf width, growth rate, and number of leaves per shoot also increased with greater light. The extent of flowering varied among treatments with no consistent trend. Our results demonstrate that increasing the available light to E. acoroides produces an increasing leaf size response as self‐shading in the bed is reduced.  相似文献   

20.
Multiple biotic and abiotic drivers regulate the balance between CO2 assimilation and release in surface waters. In the present study, we compared in situ measurements of plankton carbon metabolism (primary production and respiration) to calculated air–water CO2 fluxes (based on abiotic parameters) during 1 year (2008) in a hypereutrophic tropical estuary (Recife Harbor, NE Brazil – 08°03′S, 34°52′W) to test the hypothesis that high productivity leads to a net CO2 flux from the atmosphere. The calculated CO2 fluxes through the air–water interface (FCO2) were negative throughout the year (FCO2: –2 to –9 mmol C·m?2·day?1), indicating that Recife Harbor is an atmospheric CO2 sink. Respiration rates of the plankton community ranged from 2 to 45 mmol C·m?2·hr?1. Gross primary production ranged from 0.2 to 281 mmol C·m?2·hr?1, exceeding respiration during most of the year (net autotrophy), except for the end of the wet season, when the water column was net heterotrophic. The present results highlight the importance of including eutrophic tropical shallow estuaries in global air–water CO2 flux studies, in order to better understand their role as a sink of atmospheric CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号