首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

2.
Shallow renewable groundwater sources have been used to satisfy the domestic needs and the irrigation in many parts of Saudi Arabia. Increased demand for water resulting from accelerated development activities has placed excess stress on the renewable sources especially in coastal aquifers of the western region of Saudi Arabia. It is expected that the current and future development activities will increase the rate of groundwater mining of the coastal aquifer near the major city Jeddah and surrounding communities unless management measures are implemented. The current groundwater development of Dahaban coastal aquifer located at alluvial fan at the confluence of three major Wadis is depleting the shallow renewable groundwater sources and causes deterioration of its quality. Numerical models are known tools to evaluate groundwater management scenarios under a variety of development options under different hydrogeological regimes. In this study, two models are applied—the MODFLOW for evaluating the hydrodynamic behaviors of the aquifer and MT3D salinity distribution to the costal aquifer near Dahaban town. The models’ simulation evaluates two development scenarios—the impact of excessive abstraction and the water salinity variation keeping abstraction at its current or increases in levels with or without groundwater recharge taking place. The simulation evaluated two scenarios covering a 25-year period—keeping the current abstraction at its current and the other scenario is increasing the well abstraction by 50% for dry condition (no recharge) and wet condition (with recharge). The analysis reveals that, under the first scenario, the continuation of the current pumping rates will result in depletion of the aquifer resulting in drying of many wells and quality deterioration at the level of 2,500 ppm. The results are associated with the corresponding salinity distribution in the region. Simulation of salinity in the region is a density-independent problem as salt concentration does not exceed 2,000 ppm, which is little value compared with sea salinity that amounts to 40,000 ppm. It is not recommended to increase the pumping rate than the current values. However, for the purpose of increasing water resources in the region, it is recommended to install new wells in virgin zones west of Dahaban main road. Maps of high/low potential groundwater and maps of salinity zones (more or less than 1,000 ppm) are provided and could be used to identify zones of high groundwater potential for the four studied scenarios. The implemented numerical simulation of Dahaban aquifer was undertaken to assess the water resources potential in order to reduce the depletion of sources in the future.  相似文献   

3.
Wadi Zerka Ma’in catchment area is located to the north east of the Dead Sea. It has two types of aquifers: (a) an upper unconfined aquifer and (b) a lower confined aquifer. The two aquifers are separated by a marl aquiclude. A major strike slip fault passes perpendicularly through the two aquifers and the aquiclude layer with embedded normal faults. The aim of the study was to specify the effect of the major strike slip fault on the groundwater chemistry. The spatial variability of the hydrochemical compositions and physiochemical parameters of the groundwater were investigated. It was found that the embedded normal faults, of the strike slip fault, form conduits that allow groundwater to flow from the lower aquifer to the upper aquifer, resulting in mixed groundwater. The ratio of mixing was estimated to be 94 % groundwater from the upper aquifer and 6 % from the lower aquifer. Since groundwater in the lower aquifer is around three times more saline than the upper aquifer, water mixing into the upper water aquifer generates a salinity hazard.  相似文献   

4.
The aim of this article is to assess the main factors influencing salinity of groundwater in the coastal area between El Dabaa and Sidi Barani, Egypt. The types and ages of the main aquifers in this area are the fractured limestone of Middle Miocene, the calcareous sandstone of Pliocene and the Oolitic Limestone of Pleistocene age. The aquifers in the area are recharged by seasonal rainfall of the order of 150 mm/year. The relationship of groundwater salinity against the absolute water level, the well drilling depth, and the ability of aquifer to recharge has been discussed in the present work. The ability of aquifer to locally recharge by direct rainfall is a measure of the vertical permeability due to lithological and structural factors that control groundwater salinity in the investigated aquifers. On the other hand, the fracturing system as well as the attitude of the surface water divide has a prime role in changing both the mode of occurrence and the salinity of groundwater in the area. Directly to the west of Matrouh, where the coastal plain is the narrowest, and east of Barrani, where the coastal plain is the widest, are good examples of this concept, where the water salinity attains its maximum and minimum limits respectively. Accordingly, well drilling in the Miocene aquifer, in the area between El Negila and Barrani to get groundwater of salinities less than 5000 mg/l is recommended in this area, at flow rate less than 10 m3/hr/well. In other words, one can expect that the brackish water is probably found where the surface water divide is far from the shore line, where the Wadi fill deposits dominate (Quaternary aquifer), acting as a possible water salinity by direct rainfall and runoff.  相似文献   

5.
Konarsiah salt diapir is situated in the Simply Folded Zone of the Zagros Mountain, south Iran. Eight small permanent brine springs emerge from the Konarsiah salt body, with average total dissolved solids of 326.7 g/L. There are numerous brackish to saline springs emerging from the alluvial and karst aquifers adjacent to the diapir. Concerning emergence of Konarsiah diapir in the study area, halite dissolution is the most probable source of salinity in the adjacent aquifers. However, other sources including evaporation and deep brines through deep Mangerak Fault are possible. The water samples of the study area were classified based on their water-type, salinity, and the trend of the ions concentration curves. The result of this classification is in agreement with the hydrogeological setting of the study area. The hydrochemical and isotopic evaluations show that the groundwater samples are the result of mixing of four end members; Gachsaran sulfate water, Sarvak and Asmari carbonate fresh waters, and diapir brine. The molar ratios of Na/Cl, Li/Cl, Br/Cl, and SO4/Cl; and isotopic signature of the mixed samples justify a groundwater mixing model for the aquifers adjacent to the salt diapir. The share of brine in each adjacent aquifer was calculated using Cl mass balance. In addition, concentrations of 34 trace elements were determined to characterize the diapir brine and to identify the possible tracers of salinity sources in the mixed water samples. B, Mn, Rb, Sr, Cs, Tl, and Te were identified as trace elements evidencing contact of groundwater with the salt diapir.  相似文献   

6.
A multi-methodological approach based on monitoring and spatio-temporal analysis of groundwater quality changes is proposed. The presented tools are simple, quick and cost-effective to give service to all sorts of users. The chief purpose of the monitoring network is the detection of the piezometric or potenziometric level in the aquifer. The spatial and multi-temporal analysis of usual chemical and physical data provides both an assessment of the spatial vulnerability of the aquifer to seawater intrusion, defining a salinity threshold between fresh groundwater and brackish groundwater and of the water quality trend in terms of salinity. The evaluation of the salinity trend or of salinity-correlated parameters highlights the effects of groundwater mismanagement. The multiparameter logging provides a rapid groundwater quality classification for each well. The whole approach allows evaluating the effects of current management criteria and designing more appropriate management targets. The Apulian karstic coastal aquifers have been selected as a case study (Southern Italy). Three types of aquifer zones can be distinguished: (1) areas with low vulnerability to seawater intrusion, (2) areas with high vulnerability and (3) areas with variable vulnerability in which the salt degradation largely depends on the ability to manage the well discharge. The water quality degradation caused by seawater intrusion appears to be a combined effect of an anomalous succession of drought periods observed from about 1980 onwards and increased groundwater pumping, particularly during drought periods. A management criterion based on aquifer zones is proposed.  相似文献   

7.
The present work provides an online Bench II-IRMS technique for the measurement of stable chlorine isotope ratio, which is used to measure the δ37Cl of 38 groundwater samples from the Karst and Quaternary aquifers in Anyang area. The regional distribution and signature of δ37Cl value are characterized on the base of isotopic data. The results suggest that the δ37Cl value of Quaternary groundwater decreases with increasing Cl? concentration, and has no correlation with δ18O and δD values, but closely correlates with the depth to water table. The fractionation mechanism of the chlorine isotope is expounded according to the type of groundwater. The δ37Cl value of karst water is generally positive, which is relevant to the dissolution of evaporite (gypsum mine), and may be caused by the mixing of groundwater and precipitation. The groundwater of Quaternary unconfined aquifer is mainly recharged by precipitation, and the δ37Cl value of groundwater is generally negative. The δ37Cl value of groundwater in Quaternary confined aquifer is more negative with increasing the depth to water level and elevated Cl? concentration, which is possible to result from the isotope fractionation of ion filtration. The groundwater with inorganic pollutants in Quaternary unconfined aquifer has generally a positive δ37Cl value.  相似文献   

8.
Drilling information, historical water table levels, groundwater salinity records of the existing water wells in Wadi Al Bih area, United Arab Emirates, were stored in a geodatabase and used to characterize the geological and hydrogeological settings of this area. A 2D earth resistivity imaging survey was conducted for the first time in the Northern UAE to determine the potential of the Quaternary aquifer and its groundwater quality in the areas where there are no monitoring wells. The results of the chemical analyses of the collected groundwater samples together with the inversion results of the resistivity data were used to draw a total salinity map and determine the spatial variations in groundwater quality. The inversion results of the 2D earth resistivity imaging data indicated that the Quaternary aquifer in the study area is in a good connection with the underlying carbonate aquifer. It also indicated that the carbonate aquifer is of major regional and vertical extension and it contains the fresh water in this area. The data stored in the developed database were used to produce different types of geopotential maps.  相似文献   

9.
Chemical analysis of groundwater in petroliferous basins can be an effective way to determine the regional hydrogeological regime and to evaluate the preservation conditions of hydrocarbons. This paper presents the hydrochemical distribution of both individual aquifers and different structural units within the Palaeogene strata of the Gaoyou subbasin in the North Jiangsu Basin, east China. The results show that the salinity of the Palaeogene aquifers in the Gaoyou subbasin displays a systematic increase from the central deep depression to the periphery areas, and shows a reverse trend as the burial depth increases. Salinity maps of individual aquifers suggest that formation water in the deep layers at the centre of the study area probably retains original features of fresh lake water. Geofluids near the central deep depression of the Gaoyou subbasin migrate vertically through the Zhenwu and Hanliu faults, while those of the northern slope belt mainly flow laterally through aquifers. Both low and high salinity formation water can be found in the hydrocarbon producing areas. The low salinity zones commonly affected by infiltrated meteoric water are unfavourable conditions for the preservation of trapped hydrocarbons.  相似文献   

10.
Panvel Basin of Raigarh district, Maharashtra, India is the study area for groundwater quality mapping using the Geographic Information System (GIS). The study area is typically covered by Deccan basaltic rock types of Cretaceous to Eocene age. Though the basin receives heavy rainfall, it frequently faces water scarcity problems as well as water quality problems in some specific areas. Hence, a GIS based groundwater quality mapping has been carried out in the region with the help of data generated from chemical analysis of water samples collected from the basin. Groundwater samples show quality exceedence in terms of chloride, hardness, TDS and salinity. These parameters indicate the level of quality of groundwater for drinking and irrigation purposes. Idrisi 32 GIS software was used for generation of various thematic maps and for spatial analysis and integration to produce the final groundwater quality map. The groundwater quality map shows fragments pictorially representing groundwater zones that are desirable and undesirable for drinking and irrigation purposes.  相似文献   

11.
In the Republic of Djibouti (Horn of Africa), fractured volcanic aquifers are the main water resources. The country undergoes an arid climate. Alluvial aquifers exist in the wadis (intermittent streams) valleys and, in relation with volcanic aquifers, form complex volcano-sedimentary systems. Due to increasing water demands, groundwater resources are overexploited and require a rigorous management. This paper is focused on the Dalha basalts aquifer, located in the Dikhil area (Southwest of Djibouti). This aquifer is of vital importance for this area. Hydrochemical data and isotopic tracers (18O and 2H) were used to identify factors and phenomena governing the groundwater’s mineralization. The Piper diagram shows complex water types. Results from multivariate statistical analyses highlight three water families according to their locations: (1) groundwater characterized by low ionic concentrations located at the wadis zones; (2) groundwater characterized by moderate salinity and (3) highly mineralized waters mainly flowing in the eastern and central part of the study area, in volcanic aquifers. Results from scatter plots, especially Na versus Cl and Br versus Cl, suggest that the origin of more saline waters is not from dissolution of halite. The δ18O and δ2H data indicate that the groundwater flowing in the alluvial aquifer is of meteoric origin and fast percolation of rainwater occurs in the volcanic aquifers. These findings provide a preliminary understanding of the overall functioning of this complex volcano-sedimentary system. Additional investigations (pumping tests, numerical modeling) are in progress to achieve a more comprehensive understanding of this system.  相似文献   

12.
河北平原第四系深层地下水36Cl同位素年龄的研究   总被引:10,自引:0,他引:10  
董悦安  何明等 《地球科学》2002,27(1):105-109
为研究河北平原第四系深层地下水的年龄,应用加速器质谱计对河北平原深层地下水样品的N(^36Cl)/N(Cl)进行了测定,计算了其年龄,并与地下水动力学年龄进行了对比研究。结果表明,河北冲洪积平原山前地带保定市第四系第三和第四含水组的地下水年龄皆很小,为近期补给的地下水。中部地带保定地区东部和沧州地区西部的第三含水组地下水年龄皆小于5万a,第四含水组地下水的年龄可能大于10万a。边缘地带沧州市和青县第三含水组地下水年龄为8-9万a左右,东光县为26万a左右;沧州市第四含水组地下水年龄为33万a左右,东光县为77万a左右。  相似文献   

13.
In many countries of the world, groundwater is the main source of water in arid and semiarid regions. The scarcity of water is one of the main issues in Morocco. The coastal aquifer system of Rmel-Oulad Ogbane is recognized as one of the most important aquifers in Morocco and is very well known for their role in industrial, economic, and social development. However, this role is confronted to climate change impacts and heavy abstraction rates leading to a major decline in the groundwater levels and may eventually cause a deficit water balance of the aquifer as well as a degradation of the freshwater quality by seawater intrusion. The objective of this research is to identify and evaluate the distribution and spatial changes of regionalized variables on reservoirs and groundwater resources using geostatistical analysis in Geographic Information System (GIS) software. The prediction of these variables was performed using an interpolation method: ordinary kriging in a GIS. The normality test and trend analysis were applied to each variable to select the appropriate semivariogram model (SVM) and check the results using cross-validation (CV). Hence, several kriged maps of reservoirs and water resources have been produced to be exploited by the decision maker. The studied variables related to reservoirs and hydrodynamic data have a strong spatial dependence, which show correlations in specific direction, while the hydrochemical data are mainly related to groundwater mechanisms, such as advective-diffusive transport, without any autocorrelation between data.  相似文献   

14.
In recent years, voices in Jordan became lauder to exploit the fresh to brackish deep groundwater overlain by fresh groundwater bodies. In this article the implications of such a policy on the existing fresh water bodies are worked out through studying the sources of salinity in the different aquifer systems and the potentials of salinity mobilization by artificial changes in the hydrodynamic regimes. It is concluded that extracting the groundwater of deep aquifers overlain by fresh water bodies, whether the deep groundwater is fresh to brackish, brackish or salty, is equivalent to extracting groundwater from the overlying fresh groundwater bodies because of the hydraulic connections of the deep and the shallow aquifers’ groundwaters. The consequences are even more complicated and severe because exploiting the deep groundwater containing brackish or salty water will lead to refilling by fresh groundwater leaking from the overlying aquifers. The leaking water becomes salinized as soon as it enters the pore spaces of the emptied deep aquifer matrix and by mixing with the deep aquifer brackish or saline groundwater. Therefore, the move to exploit the deep groundwater is misleading and damaging the aquifers and is unjust to future generation's rights in the natural wealth of Jordan or any other country with similar aquifers’ set-up. In addition, desalination produces brines with high salinity which cannot easily be discharged in the highlands of Jordan (with only very limited access to the open sea) because they will on the long term percolate down into fresh water aquifers.  相似文献   

15.
The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.  相似文献   

16.
The Rozna Mine is one of the last active uranium mines in Europe. When the mine is closed and flooded, the natural groundwater flow pattern will be partly restored. Re-established groundwater flow system will be associated with an increase of groundwater discharge into draining rivers and streams. Since the groundwater inflows to streams can be contaminated by the mine water, the groundwater drainage characteristic of fractured aquifer should be carefully identified. Several methods of groundwater discharge zones identification were used including morphological analysis, thermometry, and electrical conductivity (EC) measurements. Stream temperatures and EC at more than 700 points in the area covering about 85 km2 were measured. The measurements were performed during winter period, when stream discharges were low and there was a maximum temperature contrast. There was a frequent presence of preferential discharge zones with resulting anomalous temperatures and electric conductivity values of stream water. The results show evident correlation of discharge zones with surface morphology and geological settings. Just like the aquifer discharge characteristics, the aquifer is strongly heterogeneous. The thermometry supported by measurement of EC proved to be a useful tool for large-scale investigation of groundwater flow and drainage in fractured aquifers.  相似文献   

17.
The increasing demand for freshwater has necessitated the exploration for new sources of groundwater, particularly in hard rock terrain, where groundwater is a vital source of freshwater. A fast, cost effective, and economical way of exploration is to study and analyze geophysical resistivity survey data. The present study area Omalur taluk, Salem District, Tamil Nadu, India, is overlain by Archaean crystalline metamorphic complex. The study area is a characteristic region of unconfined aquifer system. The potential for occurrence of groundwater in the study areas was classified as very good, good, moderate, and poor by interpreting the subsurface geophysical investigations, namely vertical electrical soundings, were carried out to delineate potential water-bearing zones. The studies reveal that the groundwater potential of shallow aquifers is due to weathered zone very low resistivity and very high thickness and the potential of deeper aquifers is determined by fracture zone very low resistivity and very high thickness area. By using conventional GIS method, the spatial distribution maps for different layer (top soil, weathered zone, first fracture zone, and second fracture zone) thicknesses were prepared. The geoelectrical approach was successfully applied in the study area and can be therefore easily adopted for similar environments.  相似文献   

18.
Sustainable development in El Arish area of North Sinai, Egypt, is retarded by serious environmental problems, where the land-use and land cover of the region is changing over present time. The impact of human activities in the study area is accompanied by the destruction and over-exploitation of the environment. This study applies multivariate statistics (factor and cluster analyses) and GIS techniques to identify both anthropogenic and natural processes affecting the groundwater quality in the Quaternary sands aquifer. The aim of this study was to investigate the impacts on groundwater resources, the potential pollution sources, and to identify the main anthropogenic inputs of both nutrients and trace metal. Since the depth to the water table is shallow especially in the northern part (<4?m), and the aquifer was exposed on the ground surface, it has poor buffering capacity and the pollution risk is very high. Groundwater chemistry in this coastal region has complex contaminant sources, where intensive farming activities and untreated wastes put stress on groundwater quality. Several areal distribution maps were constructed for correlating water quality with possible contributing factors such as location, land-use, and aquifer depth. These maps identified both anthropogenic and natural processes affecting groundwater quality of the studied aquifer. Cluster analysis was used to classify water chemistry and determine the hydrochemical groups, Q-mode dendrogram is interpreted and there are three main clusters. Factor analyses identify the potential contamination sources affecting groundwater hydrochemistry such as: nitrate, sulfate, phosphate and potassium fertilizers, pesticides, sewage pond wastes, and salinization due to circulation of dissolved salts in the irrigation water itself.  相似文献   

19.
The main aim of the present study is to detect the status of groundwater resources in west Mallawi area which represented one of the new reclamation lands. In order to achieve this aim, the hydrogeological and hydrogeochemical studies are carried out, based on the results of 21 pumping tests and chemical analysis of 29 water samples. Two water-bearing units are detected in the study area, namely, the Eocene fractured limestone aquifer which occupies the east portion of the studied area. The second aquifer consists of friable sediments of sand and gravel and may be related to the late Oligocene–early Miocene age and overlies the limestone rocks in the west, and this aquifer were studied for the first time in this work. Regionally, the groundwater flow in the area under study occurs toward the north and east directions. There is a hydraulic connection between both aquifers through the structural pattern affected the area. The partial recharge of the both aquifers takes place through the upward leakage from deep aquifers and the Nile water. There is a general decrease in the water salinity from west to east direction. The groundwater of both aquifers was evaluated for the different purposes and concluded that, it is considered suitable for different uses.  相似文献   

20.
The sea level rise has its own-bearing on the coastal recession and hydro-environmental degradation of the River Nile Delta. Attempts are made here to use remote sensing to detect the coastal recession in some selected parts and delineating the chemistry of groundwater aquifers and surface water, which lie along south-mid-northern and coastal zone of the Nile Delta. Eight water samples from groundwater monitoring wells and 13 water samples from surface water were collected and analyzed for various hydrochemical parameters. The groundwater samples are classified into five hydrochemical facies on Hill-Piper trilinear diagram based on the dominance of different cations and anions: facies 1: Ca–Mg–Na–HCO3–Cl–SO4 type I; facies 2: Na–Cl–HCO3 type II; facies 3: Na–Ca–Mg–Cl type III, facies 4: Ca–Na–Mg–Cl–HCO3 type IV and facies 5: Na–Mg–Cl type V. The hydrochemical facies showed that the majority of samples were enriched in sodium, bicarbonate and chloride types and, which reflected that the sea water and tidal channel play a major role in controlling the groundwater chemical composition in the Quaternary shallow aquifers, with a severe degradation going north of Nile Delta. Also, the relationship between the dissolved chloride (Cl, mmol/l), as a variable, and other major ion combinations (in mmol/l) were considered as another criterion for chemical classification system. The low and medium chloride groundwater occurs in southern and mid Nile Delta (Classes A and B), whereas the high and very high chloride (classes D and C) almost covers the northern parts of the Nile Delta indicating the severe effect of sea water intrusion. Other facets of hydro-environmental degradation are reflected through monitoring the soil degradation process within the last two decades in the northern part of Nile Delta. Land degradation was assessed by adopting new approach through the integration of GLASOD/FAO approach and Remote Sensing/GIS techniques. The main types of human induced soil degradation observed in the studied area are salinity, alkalinity (sodicity), compaction and water logging. On the other hand, water erosion because of sea rise is assessed. Multi-dates satellite data from Landsat TM and ETM+ images dated 1983 and 2003 were used to detect the changes of shoreline during the last two decades. The obtained results showed that, the eroded areas were determined as 568.20 acre; meanwhile the accreted areas were detected as 494.61 acre during the 20-year period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号