首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Water infiltration rate and hydraulic conductivity in vegetated soil are two vital hydrological parameters for agriculturists to determine availability of soil moisture for assessing crop growths and yields, and also for engineers to carry out stability calculations of vegetated slopes. However, any effects of roots on these two parameters are not well‐understood. This study aims to quantify the effects of a grass species, Cynodon dactylon, and a tree species, Schefflera heptaphylla, on infiltration rate and hydraulic conductivity in relation to their root characteristics and suction responses. The two selected species are commonly used for ecological restoration and rehabilitation in many parts of the world and South China, respectively. A series of in‐situ double‐ring infiltration tests was conducted during a wet summer, while the responses of soil suction were monitored by tensiometers. When compared to bare soil, the vegetated soil has lower infiltration rate and hydraulic conductivity. This results in at least 50% higher suction retained in the vegetated soil. It is revealed that the effects of root‐water uptake by the selected species on suction were insignificant because of the small evapotranspiration (<0.2 mm) when the tests were conducted under the wet climate. There appears to have no significant difference (less than 10%) of infiltration rates, hydraulic conductivity and suction retained between the grass‐covered and the tree‐covered soil. However, the grass and tree species having deeper root depth and greater Root Area Index (RAI) retained higher suction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Surface mining in the Elk Valley, British Columbia, involves removing vegetation, soil, and rock to access underlying metallurgical coal. Subsequent waste rock is placed into adjacent valleys, frequently burying headwater streams. Due to their coarse texture, waste rock piles increase infiltration and percolation, increasing solute transport and concentration of geochemicals in downstream surface waters. Previous research suggests that weathering solutes are transport limited, and it is hypothesized that revegetation will enhance evapotranspiration (ET) and reduce percolation through the waste rock, potentially reducing loading. This study examined the surface‐atmosphere water and energy exchanges using the eddy covariance technique for three waste rock surfaces with different levels of reclamation: (a) an ~25‐year‐old mixed coniferous forest, (b) a grass site, and (c) bare waste rock. Measurements were taken from May to October in 2013 and 2014. Soil moisture and matric suction were measured to 1‐m depth. Sap flow at the forested site was measured to partition transpiration from total ET. In all years, ET rates were greatest at the forested site, followed by the grass cover and lowest at the bare waste rock site. Growing season ET rates at the forest were 56% higher than grass in 2013 and 35% higher in 2014. At the vegetated sites, climate was the main driver of ET, with high radiation, and warm and dry conditions enhancing fluxes. Maximum ET at these sites corresponded with peak growing season, with vegetation increasing both transpiration and rainfall interception. At the bare rock site, ET was weakly related to atmospheric conditions, and ET rates briefly increased during periods following rainfall when near‐surface soil moisture was enhanced. Transpiration comprised 29% of overall ET at the forest site from late July to early October. Results suggest that vegetation establishment can be incorporated into mine reclamation plans to enhance ET rates and limit percolation, potentially reducing downstream geochemical loads.  相似文献   

4.
Soil moisture is a key process in the hydrological cycle. During ecological restoration of the Loess Plateau, soil moisture status has undergone important changes, and infiltration of soil moisture during precipitation events is a key link affecting water distribution. Our study aims to quantify the effects of vegetation cover, rainfall intensity and slope length on total infiltration and the spatial variation of water flow. Infiltration data from the upper, middle and lower slopes of a bare slope, a natural grassland and an artificial shrub grassland were obtained using a simulated rainfall experiment. The angle of the study slope was 15° and rainfall intensity was set at 60, 90, 120, 150, and 180 mm/hr. The effect these factors have on soil moisture infiltration was quantified using main effect analysis. Our results indicate that the average infiltration depth (ID) of a bare slope, a grassland slope and an artificial shrub grassland slope was 46.7–73.3, 60–80, and 60–93.3 cm, respectively, and average soil moisture storage increment was 3.5–5.7, 5.0–9.4, and 5.7–10.2 mm under different rainfall intensities, respectively. Heavy rainfall intensity and vegetation cover reduced the difference of soil infiltration in the 0–40 cm soil layer, and rainfall intensity increased surface infiltration differences on the bare slope, the grassland slope and the artificial shrub grassland slope. Infiltration was dominated by rainfall intensity, accounting for 63.03–88.92%. As rainfall continued, the contribution of rainfall intensity to infiltration gradually decreased, and the contribution of vegetation cover and slope length to infiltration increased. The interactive contribution was: rainfall intensity * vegetation cover > vegetation cover * slope length > rainfall * slope length. In the grass and shrub grass slopes, lateral flow was found at a depth of 23–37 cm when the slope length was 5–10 m, this being related to the difference in soil infiltration capacity between different soil layers formed by the spatial cross-connection of roots.  相似文献   

5.
Vegetation cover is an important factor for erosion control. Laboratory‐simulated rainfall experiments were conducted to quantify the effectiveness of patchy distributed Artemisia capillaris in retarding overland flow velocity. Simulated storms (60, 90, 120, and 150 mm h?1) were applied on a bare plot (CK) and four different plant patterns, a banded pattern perpendicular to the slope direction (BP), a single long strip parallel to slope direction (LP), small patches distributed like a checkerboard (SP1), and small patches distributed like a letter “X” (SP2). All treatments had three replicates. Each plot underwent two sets of experiments, intact plant plots and root plots (the above‐ground parts were removed, only roots were reserved), respectively. Results showed that flow velocity increased with rainfall intensity, and the lower slope velocity (Vl) was higher than the upper slope velocity (Vu). The removal of grass shoots increased flow velocity. Compared with bare soil plot, intact plants reduced mean flow velocity by 14%–60%, whereas the reduction declined to <40% for the root plots. BP and both SP treatments performed more effectively than LP in retarding flow velocity, whereas no significant differences were identified between BP and SP. The contributions of A. capillaris shoots and roots to the reductions in flow velocity under different rainfall intensities were different. The shoots made greater contribution of 53%–97% at 60 and 90 mm h–1, and the roots contributed more (51%–81%) at 120 and 150 mm h–1. Runoff and sediment rate had significant (p < 0.05) linear correlations with mean flow velocity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Wetlands are now being integrated into oil sands mining landscape closure design plans. These wetland ecosystems will be constructed within a regional sub‐humid climate where snowfall represents ~25% of annual precipitation. However, few studies focus on the distribution of snow and, hence, the storage of winter precipitation in reclaimed oil sands landscapes. In this study, the distribution, ablation and fate of snowmelt waters are quantified within a constructed watershed in a post‐mining oil sands environment. Basin‐averaged peak SWE was 106 mm, with no significant difference between reclaimed slopes with vegetation and those that were sparsely vegetated or bare. Snow depth was greatest and more variable near the toe of slopes and became progressively shallower towards the crest. Snow ablation started first on the vegetated slope, which also exhibited the maximum observed ablation rates. This enhanced melt was attributed to increased absorption of short‐wave radiation by vegetation stems and branches. Recharge to reclaimed slopes and a constructed aquifer during the snowmelt period was minimal, as the presence of ground frost minimized infiltration. Accordingly, substantial surface run‐off was observed from all reclaimed slopes, despite being designed to reduce run‐off and increase water storage. This could result in increased flashiness of downstream watercourses during the spring freshet that receive run‐off from post‐mining landscapes where large reclaimed slopes are prolific. Run‐off ratios for the reclaimed slopes were between 0.7 and 0.9. Thus, it is essential to consider snow dynamics when designing landscape‐scale constructed ecosystems. This research demonstrates that the snowmelt period hydrology within reclaimed landscapes is fundamentally different from that reported for natural settings and represents one of the first studies on snow dynamics in constructed watershed systems in the post‐mined oil sands landscape. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Vegetated, shallow groundwater environments typically have high environmental and economic value. A sound understanding of the complex interactions and feedbacks between surface vegetation and groundwater resources is crucial to managing and maintaining healthy ecosystems while responding to human needs. A vegetated shallow groundwater environment was modelled using the software HYDRUS 2D to investigate the effects of several combinations of soil type and root distributions on shallow groundwater resources. Three rainfall regimes coupled to both natural and anthropogenically affected groundwater conditions were used to investigate the effect that combinations of four soil types and five root distributions can have on (a) groundwater level drops, (b) groundwater depletion, (c) groundwater recharge and (d) water stress conditions. Vegetation with roots distributed across the whole unsaturated zone and vegetation with dimorphic root systems (i.e. roots having larger concentrations both near the surface and the capillary fringe) behaved differently from vegetation growing roots mainly near the saturated zone. Specifically, vegetation with roots in the unsaturated zone caused water‐table drops and groundwater depletions that were half the amount due to deep‐rooted vegetation. Vegetation with a large portion of roots near the soil surface benefited from rainfall and was less vulnerable to water‐table lowering; as such, the fraction of the total area of roots affected by water stress conditions could be 40% smaller than in the case with deep‐rooted vegetation. However, roots uniformly distributed in the unsaturated zone could halve groundwater recharge rates observed in bare soils. Our analysis provided insights that can enable the formulation of site‐ and purpose‐specific management plans to respond to both human and ecosystem water requirements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Abstract Water balances for a re-vegetated xerophyte shrub (Caragana korshinskii) area were compared to that of a bare surface area by using auto-weighing type lysimeters during the 1990–1995 growing seasons at the southeast Tengger Desert, Shapotou, China. The six-year experiment displayed how major daily water balance components might vary for a bare and a re-vegetated sand dune area. Evapotranspiration from the C. korshinskii lysimeter represented a major part of the water balance. The average annual ET/P ratios varied between 69 and 142%. No seepage was observed for the vegetated lysimeter. For the bare lysimeter, on the other hand, 48 mm or 27% of observed rainfall per year occurred as seepage. These results suggest that re-vegetating large sandy areas with xerophytic shrubs could reduce soil water storage by transpiration. Also, the experimental results indicate that re-vegetating large sandy areas could significantly change groundwater recharge conditions. However, from a viewpoint of desert ecosystem reconstruction, it appears that natural rainfall can sustain xerophytic shrubs such as C. korshinskii which would reduce erosion loss of sand. However, re-vegetation has to be balanced with recharge/groundwater needs of local populations.  相似文献   

9.
Numerous models had been developed to predict the annual evapotranspiration (ET) in vegetated lands across various spatial scales. Fu's (Scientia Atmospherica Sinica, 5, 23–31) and Zhang's (Water Resources Research, 37, 701–708) ET simulation models have emerged as highly effective and have been widely used. However, both formulas have the non-quantitative parameters (m in Fu's model and w in Zhang's model). Based on the collected 1789 samples from global long-term hydrological studies, this study discovered significant relations between m (or w) and vegetation coverage or greenness in collected catchments. Then, we used these relations to qualify the parameters in both Zhang's and Fu's models. Results show that the ET estimation accuracies of Fu's (or Zhang's) model are significantly improved by about 13.49 mm (or 6.74 mm) for grassland and cropland, 38.52 mm (or 29.84 mm) for forest and shrub land (coverage<40%), 19.74 mm (or 16.17 mm) for mixed land (coverage<40%), respectively. However, Zhang's model shows higher errors compared with Fu's model, especially in regions with high m (or w) values, such as those with dense vegetations or P/E0 (annual precipitation to annual potential ET) smaller than 1.0. Additionally, this study also reveals that for regions with vegetation cover less than 40%, the annual ET is not only determined by vegetation types, but also relates to the sizes of vegetation-covered areas. Conversely, for regions with vegetation cover more than 40%, the annual ET is mainly determined by the vegetation density rather than vegetation types or vegetation coverage. Thus, linking m (or w) parameters with vegetation greenness allows leveraging remote sensing for forest management in data-scarce areas, safeguarding regional water resources. This study pioneers integrating vegetation-related indices with basin parameters, advocating for their crucial role in more effective hydrological modelling.  相似文献   

10.
Simulated rainfall experiments were performed on bare, undecomposed litter layer and semi-decomposed litter layer slopes with litter biomasses of 0, 50, 100 and 150 g m−2, respectively, to evaluate the effect of the undecomposed layer and semi-decomposed layer of Quercus variabilis litter on the soil erosion process and the particle size distribution of eroded sediment. The undecomposed layer and semi-decomposed layer of litter reduced the runoff rate by 10.91–27.04% and 12.91–36.05%, respectively, and the erosion rate by 13.35–40.98% and 17.16–59.46%, respectively. The percentage of smaller particles (clay and fine silt particles) decreased and the percentage of larger particles (coarse silt and sand particles) increased with an increased rainfall duration on all treated slopes, while the extent of the eroded sediment particle content varied among the treated slopes with the rainfall duration, with bare slopes exhibiting the largest variability, followed by undecomposed litter layer slopes and finally semi-decomposed litter layer slopes. The clay and sand particles were transported as aggregates, and fine silt and coarse silt particles were transported as primary particles. Compared with the original soil, sediment eroded from all treated slopes was mainly enriched in smaller particles. Furthermore, the loss of the smaller particles from the undecomposed litter layer slopes was lower than that from the semi-decomposed litter layer slopes, indicating that the undecomposed litter layer alleviated soil coarsening to some extent. The findings from this study improve our understanding of how litter regulates slope erosion and provide a reference for effectively controlling soil erosion.  相似文献   

11.
Estimation of evapotranspiration (ET) is of great significance in modeling the water and energy interactions between land and atmosphere. Negative correlation of surface temperature (Ts) versus vegetation index (VI) from remote sensing data provides diagnosis on the spatial pattern of surface soil moisture and ET. This study further examined the applicability of Ts–VI triangle method with a newly developed edges determination technique in estimating regional evaporative fraction (EF) and ET at MODIS pixel scale through comparison with large aperture scintillometer (LAS) and high‐level eddy covariance measurements collected at Changwu agro‐ecological experiment station from late June to late October, 2009. An algorithm with merely land and atmosphere products from MODIS onboard Terra satellite was used to estimate the surface net radiation (Rn) and soil heat flux. In most cases, the estimated instantaneous Rn was in good agreement with surface measurement with slight overestimation by 12 W/m2. Validation results from LAS measurement showed that the root mean square error is 0.097 for instantaneous EF, 48 W/m2 for instantaneous sensible heat flux, and 30 W/m2 for daily latent heat flux. This paper successfully presents a miniature of the overall capability of Ts–VI triangle in estimating regional EF and ET from limited number of data. For a thorough interpretation, further comprehensive investigation needs to be done with more integration of remote sensing data and in‐situ surface measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Understanding transpiration and plant physiological responses to environmental conditions is crucial for the design and management of vegetated engineered covers. Engineered covers rely on sustained transpiration to reduce the risk of deep drainage into potentially hazardous wastes, thereby minimizing contamination of water resources. This study quantified temporal trends of plant water potential (ψp), stomatal conductance (gs), and transpiration in a 4‐year‐old evergreen woody vegetation growing on an artificial sandy substrate at a mine waste disposal facility. Transpiration averaged 0.7 mm day?1 in winter, when rainfall was frequent, but declined to 0.2 mm day?1 in the dry summer, when the plants were quite stressed. In winter, the mean ψp was ?0.6 MPa at predawn and ?1.5 MPa at midday, which were much higher than the corresponding summer values of ?2.0 MPa and ?4.8 MPa, respectively. The gs was also higher in winter (72.1–95.0 mmol m?2 s?1) than in summer (<30 mmol m?2 s?1), and negatively correlated with ψp (p < 0.05, r2 = 0.71–0.75), indicating strong stomatal control of transpiration in response to moisture stress. Total annual transpiration (147.2 mm) accounted for only 22% of the annual rainfall (673 mm), compared with 77% to 99% for woody vegetation in Western Australia. The low annual transpiration was attributed to the collective effects of a sparse and young vegetation, low moisture retention of the sandy substrate, and a superficial root system constrained by high subsoil pH. Amending the substrate with fine‐textured materials should improve water storage of the substrate and enhance canopy growth and deep rooting, while further reducing the risk of deep drainage during the early stages of vegetation establishment and in the long term. Overall, this study highlights the need to understand substrate properties, vegetation characteristics, and rainfall patterns when designing artificial ecosystems to achieve specific hydrological functions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Biochar has the potential to be a soil amendment in green roofs owing to its water retention, nutrient supply, and carbon sequestration application. The combined effects of biochar and vegetated soil on hydraulic performance (e.g., saturated hydraulic conductivity, retention and detention, and runoff delay) are the crucial factor for the application of the novel biochar in green roofs. Recent studies investigated soil water potential (i.e., suction) either on vegetated soil or on biochar-amended soil but rarely focused on their integrated application. With the purpose of investigating the hydraulic performance of green roofs in the application of biochar, the combined effect of biochar and vegetated soil on hydrological processes was explored. Artificial rainfall experiments were conducted on the four types of experimental soil columns, including natural soil, biochar-amended soil, vegetated natural soil, and vegetated biochar-amended soil. The surface ponding, bottom drainage and the volumetric water content were measured during the rainfall test. Simulation method by using HYDRUS-1D was adopted for estimating hydraulic parameters and developing modelling analysis. The results indicated that the saturated hydraulic conductivity of vegetated soil columns were higher than bare soil columns. The addition of biochar decreased the saturated hydraulic conductivity, and the magnitude of decrease was much significant in the case of vegetated soil. The influence of vegetation on permeability is more prominent than biochar. The vegetated biochar-amended soil has the highest retention and detention capacity, and shows a preferable runoff delay effect under heavy rain among the four soil columns. The results from the present study help to understand the hydrological processes in the green roof in the application of biochar, and imply that biochar can be an alternative soil amendment to improve the hydraulic performance.  相似文献   

14.
Biogeotextiles can be used to facilitate the formation of vegetation cover and to reduce soil erosion.Studies have demonstrated that only biogeotextile or vegetation cover can greatly reduce soil erosion.However, information about the effects of the combination of biogeotextile and vegetation cover on soil erosion is still limited, despite that the combination is the commonly practical form for bare road slope protection. Experimental plots, consisting of a relatively loose surface layer and a c...  相似文献   

15.
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
《国际泥沙研究》2023,38(1):49-65
Severe erosion is caused by intense rainfall in tropical regions. The erodible soil of steep hill slopes, accompanied by destruction of vegetation due to human interventions results in accelerated erosion. A sustainable and cost-effective solution such as vetiver grass (Chrysopogon zizanioides) is, thus, required to control the erosion process. In the current study, 6 small-scale glass models: 1 bare and 5 with vetiver grass, having a slope angle of 37° have been constructed. One year after planting, artificial rainfall of extremely high intensity was applied to all 6 small models and the role of vetiver canopy and roots in erosion and runoff control was observed. To see the effect of soil texture, one among these 5 models was made with silty sand and others contained sandy silt. The results demonstrated that, for sandy silt, the inclusion of vetiver reduced the soil loss by 94%–97%, and soil detachment rates were lowered by 95%. The average runoff also was reduced by 21%. The canopy cover showed a positive impact on reducing both quantities. An increase in average root diameter from 1.6 to 2.5 mm increases the soil loss due to its negative impact on added cohesion. The added cohesion showed a linearly negative correlation with soil loss. A composite system of vetiver and jute geotextile was most effective in erosion reduction among 4 vegetated models with sandy silt. Under same vetiver planting layout, the grass covered model of silty sand yielded 84% lower erosion and 62.5% lower runoff than the grass covered one with sandy silt. Thus, vetiver was more effective in erosion and runoff reduction for soil with a greater percentage of sand, and soil type dominated the erosion process.  相似文献   

17.
Hydropower alteration of the natural flow and sediment regime can severely degrade hydromorphology, thereby threatening biodiversity and overall ecosystem processes of rivers and their floodplains. Using sequences of aerial images, we quantified seven decades (1938/1942–2013) of spatiotemporal changes in channel and floodplain morphology, as well as changes in the physical habitats, of three floodplain river reaches of the Swiss pre-Alps, two hydropower-regulated and one near-natural. In the Sarine River floodplain, within the first decades of hydropower impairment, the magnitude and frequency of flood events (Q2, Q10, Q30) decreased substantially. As a result, the area of pioneer floodplain habitats that depend on flood activity and sediment dynamic, such as bare sediments, decreased dramatically by approximately 95%. However, by 2013 vegetated areas had generally increased in comparison to the pre-regulation period in 1943, indicating general vegetative colonization. Between 1943 and 2013, the active channel underwent essential narrowing (up to 62% width reduction in the residual flow reach) and habitat turnover rates were very low (5% of the total floodplain area changed habitat type five to six times). In contrast, from the 1950s onwards, the near-natural floodplain of the Sense River experienced recurrent narrowing and widening, and frequent changes between bare and vegetated areas, reflecting the shifting habitat mosaic concept typical for natural floodplains. In the three reaches investigated, we found that the active floodplain width and erosion of vegetated areas were primarily controlled by medium to large floods (Q10, Q30), which combined with reduced time intervals between ordinary floods ≥ Q2 most likely mobilized streambed sediments and limited the ability of vegetation to establish itself on bare gravel bars within the parafluvial zone. These findings can contribute to restoration action plans such as controlled flooding and sediment replenishments in the Sarine and other floodplain rivers of the Alps. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
The magnitude, frequency, and duration of erosive rainfall on bare arable soils is investigated within an area of sandy soils in east Shropshire. Rainfall parameters are compared with runoff and erosion from ten 25 m2 runoff plots, maintained in a bare condition on slopes of varying steepness. On rain-drop compacted (capped) soils measured erosion rates of ≦ 42.7t ha?1 occur during individual storms. Erosion rates increase markedly with slope and on slopes > ? 13° are largely attributable to rill erosion. Prolonged duration, low intensity events cause relatively little erosion; most is accomplished by short duration, high intensity (> 10 mm h?1) convective rainstorms. Comparison of measured erosion-producing events and long-term rainfall records indicate that potentially erosive storms are quite frequent, and are most likely to cause erosion in late spring/early summer.  相似文献   

19.
The vulnerability of saltmarshes to lateral erosion at their margin depends on the local biogeomorphological properties of the substrate. In particular, the 3D architecture of pore and root systems is expected to influence shear strength, with repercussions for the wider-scale stability of saltmarshes. We apply X-ray computed microtomography (μCT) to visualize and quantify subsurface structures in two UK saltmarshes at Tillingham Farm, Essex (silt/clay rich substrate) and Warton Sands (sand-rich substrate), with four types of ground cover: bare ground, Spartina spp, Salicornia spp and Puccinellia spp. We extracted μCT structural parameters that characterize pore and root morphologies at each station, and compared them with field measurements of shear strength using a principal component analysis and correlation tests. The 3D volumes show that species-dependent variations in root structures, plant colonization events and bioturbation activity control the morphology of macropores, while sediment cohesivity determines the structural stability and persistence of these pore structures over time, even after the vegetation has died. Areas of high porosity and high mean pore thickness were correlated to lower values of shear strength, especially at Tillingham Farm, where well-connected vertical systems of macropores were associated with current or previous colonization by Spartina spp. However, while well-connected systems of macropores may lower the local deformation threshold of the sediment, they also encourage drainage, promote vegetation growth and reduce the marsh vulnerability to hydrodynamic forces. The highest values of shear strength at both sites were found under Puccinellia spp, and were associated with a high density of mesh-like root structures that bind the sediment and resist deformation. Future studies of marsh stability should ideally consider time series of vegetation cover, especially in silt/clay-dominated saltmarshes, in order to consider the potential effect of preserved buried networks of macropores on water circulation, marsh functioning and cliff-face erosion.  相似文献   

20.
We present a geotechnical stability analysis for the planar failure of riverbanks, which incorporates the effects of root reinforcement and surcharge for mature stands of woody riparian vegetation. The analysis relies on a new method of representing the root distribution in the soil, which evaluates the effects of the vegetation's position on the bank. The model is used in a series of sensitivity analyses performed for a wide range of bank morphological (bank slope and height) and sedimentological (bank cohesion and friction angle) conditions, enabling discrimination of the types of bank environment for which vegetation has an effect on bank stability. The results indicate that woody vegetation elements have a maximal impact on bank stability when they are located at the ends of the incipient failure plane (i.e. at the bank toe or at the intersection of the failure plane with the floodplain) and that vegetation has a greater effect on net bank stability when it is growing on low, shallow, banks comprised of weakly cohesive sediments. However, the magnitude of these effects is limited, with vegetation typically inducing changes (relative to non‐vegetated banks) in simulated factors of safety of less than 5%. If correct, this suggests that the well documented effects of vegetation on channel morphology must be related to alternative process mechanisms (such as the interaction of vegetation with river flows) rather than the mechanical effects of vegetation on bank failure, except in special cases where the equivalent non‐vegetated bank has a highly marginal stability status. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号