首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   5篇
  国内免费   2篇
测绘学   25篇
大气科学   5篇
地球物理   27篇
地质学   46篇
海洋学   1篇
天文学   2篇
综合类   1篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   5篇
  2019年   1篇
  2018年   7篇
  2017年   5篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   7篇
  2012年   5篇
  2011年   3篇
  2009年   4篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2003年   1篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有107条查询结果,搜索用时 187 毫秒
1.
Zhu  H.  Indupriya  M.  Gadi  V. K.  Sreedeep  S.  Mei  G. X.  Garg  A. 《Acta Geotechnica》2020,15(5):1331-1339
Acta Geotechnica - Root depth and leaf area ratio are two important features of a plant and exhibit a coupled relation. Assessing their coupled effects on induced soil suction is essential for...  相似文献   
2.
Reservoir sedimentation is the gradual accumulation of incoming sediments from upstream catchment leading to the reduction in useful storage capacity of the reservoir. Quantifying the reservoir sedimentation rate is essential for better water resources management. Conventional techniques such as hydrographic survey have limitations including time-consuming, cumbersome and costly. On the contrary, the availability of high resolution (both spatial and temporal) in public domain overcomes all these constraints. This study assessed Jayakwadi reservoir sedimentation using Landsat 8 OLI satellite data combined with ancillary data. Multi-date remotely sensed data were used to produce the water spread area of the reservoir, which was applied to compute the sedimentation rate. The revised live storage capacity of the reservoir between maximum and minimum levels observed under the period of analysis (2015–2017) was assessed utilizing the trapezoidal formula. The revised live storage capacity is assessed as 1942.258 against the designed capacity of 2170.935 Mm3 at full reservoir level. The total loss of reservoir capacity due to the sediment deposition during the period of 41 years (1975–2017) was estimated as 228.677 Mm3 (10.53%) which provided the average sedimentation rate of 5.58 Mm3 year1. As this technique also provides the capacity of the reservoir at the different elevation on the date of the satellite pass, the revised elevation–capacity curve was also developed. The sedimentation analysis usually provides the volume of sediment deposited and rate of the deposition. However, the interest of the reservoir authorities and water resources planner’s lies in sub-watershed-wise sediment yield, and the critical sub-watersheds upstream reservoir requires conservation, etc. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) was used for the estimation of sediment yield of the reservoir. The average annual sediment yield obtained from the SWAT model using 36 years of data (1979–2014) was 13.144 Mm3 year?1 with the density of the soil (loamy and clay) of 1.44 ton m?3. The findings revealed that the rate of sedimentation obtained from the remote sensing-based methods is in agreement with the results of the hydrographic survey.  相似文献   
3.
Haryana plain is the drainage divide between the Ganga plain in the east and the Indus plain in the west. Being a part of the Himalayan foreland, its geomorphology, sedimentation processes, and tectonism are broadly controlled by the Himalayan tectonics. Soil and geomorphological mapping in Haryana plain bring out geomorphic features such as paleochannels, various active drainage patterns, and landforms such as old fluvial plains, floodplains, piedmonts, pediments, terminal fans, and eolian plains. Based on the degree of soil development, and Optical stimulated luminescence (OSL) ages, the soil-geomorphic units were grouped into six members (QIMS-I to VI) (Quaternary Indus Morphostratigraphic Sequence) of a morphostratigraphic sequence: QIMS-VI 9.86–5.38 Ka, QIMS-V 5.38–4.45 Ka, QIMS-IV 4.45–3.60 Ka, QIMS-III 3.60–2.91 Ka, QIMS-II <?2.91–1.52 Ka, and QIMS-I <?1.52 Ka. OSL chronology of different geomorphic features suggests six episodes of tectono-geomorphic evolution in the region since 10 Ka. Neotectonic features such as nine faults, two lineaments, and five fault-bounded tectonic blocks have been identified. Independent tilting and sagging of the blocks in response to neotectonics have resulted in modification of landforms, depositional processes, and hydro-geomorphology of the region. Major rivers like the Yamuna, the Ghaggar, and the Sutlej show different episodes of shifting of their courses. Lineament controlled few extinct channels have been recorded between 20 and 25 m depth below the surface in the ground-penetrating radar (GPR) profiles. These buried channels are aligned along the paleo-course of the Lost Saraswati River interpreted from the existing literature and hence are considered as the course of the lost river. Seven terminal fans have been formed on the downthrown blocks of the associated faults. The Markanda Terminal Fan, the first of such features described, is indeed a splay terminal fan and was formed by a splay distributary system of the Markanda River. Association of three terminal fans of different ages with the Karnal fault indicates the segment-wise development of the fault from west to east. Also, comparison with other such studies in the Ganga plain to further east suggests that the terminal fans formed by streams with distributary drainage pattern occur only in semiarid regions as in the present area and thus are indicators of semiarid climate/paleoclimate. Though the whole region is tectonically active, the region between the Rohtak fault and Hisar fault is most active at present signified by the concentration of earthquake epicenters.  相似文献   
4.
Garg  Vaibhav  Anand  Aishwarya 《GeoJournal》2022,87(4):973-997

Rispana River flows through the heart of Dehradun, the capital city of Uttarakhand State, India. Uttarakhand had separated from Uttar Pradesh State in the year 2000; since then, Dehradun City has witnessed numerous changes. Both urban sprawl and densification were noticed, with around a 32% increase in population. The city had faced recurrent high runoff and urban flood situations in these last 2 decades. Therefore, the study was conducted to detect the change in land use/land cover (LULC), especially urbanization, through remote sensing data; and later to determine the impacts of such changes on the Rispana watershed hydrology. The LULC maps for the year 2003 and the 2017 were generated through supervised classification technique using the Landsat Series satellite datasets. The LULC change analysis depicted that mainly the urban settlement class increased with significant area among other classes from the year 2003–2017. It was noticed that majorly agriculture and fallow land (8.18 km2, which is 13.52% of total watershed area) converted to urban, increasing the impervious area. Almost all the municipal wards, falling in the Rispana watershed, showed urbanization during the said period, with an increase of as high as 71%. The change in LULC or effect of urbanization on the hydrological response of the watershed was assessed using the most widely used Natural Resources Conservation Services Curve Number method. It was noticed that the area under moderated runoff potential (approx. 10.23 km2) steeply increased during the lean season, whereas, high runoff potential zones (5 km2) increased significantly under wet season. Therefore, it was concluded that an increase in impervious surface resulted in high runoff generation. Further, such LULC change along with climate might lead to high runoff within the watershed, which the present storm drainage network could not withstand. The situation generally led to urban floods and affected urban dwellers regularly. Therefore, it is critical to assess the hydrological impacts of LULC change for land use planning and water resource management. Furthermore, under the smart city project, the local government has various plans to improve present infrastructure; therefore, it becomes necessary to incorporate such observations in the policies.

  相似文献   
5.
Garg  Ankit  Wani  Insha  Zhu  Honghu  Kushvaha  Vinod 《Acta Geotechnica》2022,17(4):1315-1326
Acta Geotechnica - Recently, incentives have been provided in many countries, including Canada and Denmark, to produce biochar for construction usage. This is done because biochar is carbon...  相似文献   
6.
Biochar has the potential to be a soil amendment in green roofs owing to its water retention, nutrient supply, and carbon sequestration application. The combined effects of biochar and vegetated soil on hydraulic performance (e.g., saturated hydraulic conductivity, retention and detention, and runoff delay) are the crucial factor for the application of the novel biochar in green roofs. Recent studies investigated soil water potential (i.e., suction) either on vegetated soil or on biochar-amended soil but rarely focused on their integrated application. With the purpose of investigating the hydraulic performance of green roofs in the application of biochar, the combined effect of biochar and vegetated soil on hydrological processes was explored. Artificial rainfall experiments were conducted on the four types of experimental soil columns, including natural soil, biochar-amended soil, vegetated natural soil, and vegetated biochar-amended soil. The surface ponding, bottom drainage and the volumetric water content were measured during the rainfall test. Simulation method by using HYDRUS-1D was adopted for estimating hydraulic parameters and developing modelling analysis. The results indicated that the saturated hydraulic conductivity of vegetated soil columns were higher than bare soil columns. The addition of biochar decreased the saturated hydraulic conductivity, and the magnitude of decrease was much significant in the case of vegetated soil. The influence of vegetation on permeability is more prominent than biochar. The vegetated biochar-amended soil has the highest retention and detention capacity, and shows a preferable runoff delay effect under heavy rain among the four soil columns. The results from the present study help to understand the hydrological processes in the green roof in the application of biochar, and imply that biochar can be an alternative soil amendment to improve the hydraulic performance.  相似文献   
7.
8.
The sustainability of water resources mainly depends on planning and management of land use; a small change in it may affect water yield largely, as both are linked through relevant hydrological processes, explicitly. However, human activities, especially a significant increase in population, in-migration and accelerated socio-economic activities, are constantly modifying the land use and land cover (LULC) pattern. The impact of such changes in LULC on the hydrological regime of a basin is of widespread concern and a great challenge to the water resource engineers. While studying these impacts, the issue that prevails is the selection of a hydrological model that may be able to accommodate spatial and temporal dynamics of the basin with higher accuracy. Therefore, in the present study, the capabilities of variable infiltration capacity hydrological model to hydrologically simulate the basin under varying LULC scenarios have been investigated. For the present analysis, the Pennar River Basin, Andhra Pradesh, which falls under a water scarce region in India, has been chosen. The water balance components such as runoff potential, evapotranspiration (ET) and baseflow of Pennar Basin have been simulated under different LULC scenarios to study the impact of change on hydrological regime of a basin. Majorly, increase in built-up (13.94% approx.) and decrease in deciduous forest cover (2.44%) are the significant changes observed in the basin during the last three decades. It was found that the impact of LULC change on hydrology is balancing out at basin scale (considering the entire basin, while routing the runoff at the basin outlet). Therefore, an analysis on spatial variation in each of the water balance components considered in the study was done at grid scale. It was observed that the impact of LULC is considerable spatially at grid level, and the maximum increase of 265 mm (1985–2005) and the decrease of 48 mm (1985–1995) in runoff generation at grid were estimated. On the contrary, ET component showed the maximum increase of 400 and decrease of 570 mm under different LULC change scenario. Similarly, in the base flow parameter, an increase of 70 mm and the decrease of 100 mm were observed. It was noticed that the upper basin is showing an increasing trend in almost all hydrological components as compared to the lower basin. Based on this basin scale study, it was concluded that change in the land cover alters the hydrology; however, it needs to be studied at finer spatial scale rather than the entire basin as a whole. The information like the spatial variation in hydrological components may be very useful for local authority and decision-makers to plan mitigation strategies accordingly.  相似文献   
9.
A three-step hierarchical Semi Automated Empirical Methane Emission Model (SEMEM) has been used to estimate methane emission from wetlands and waterlogged areas in India using Moderate Resolution Imagine Spectroradiometer (MODIS) sensor data onboard Terra satellite. Wetland Surface Temperature (WST), methane emission fluxes and wetland extent have been incorporated as parameters in order to model the methane emission. Analysis of monthly MODIS data covering the whole of India from November 2004 to April 2006 was carried out and monthly methane emissions have been estimated. Interpolation techniques were adopted to fill the data gaps due to cloudy conditions during the monsoon period. AutoRegressive Integrated Moving Average (ARIMA) model has been fitted to estimate the emitted methane for the months of May 2006 to August 2006 using SPSS software.  相似文献   
10.
Soil water retention curve (SWRC) is an important parameter required for seepage modelling in unsaturated soil and is used for analysing rainfall-induced slope failures, design of waste contaminant liners and cover, etc. The influence of stress, which is one of constitutive variables that governs unsaturated soil behaviour on the SWRC, has been well recognised by researchers. Stress is essential for study as it drastically alters the soil fabric which includes macropores, minipores and micropores and thus affects the ability of soil to retain water. Various computational modelling techniques that formulate models based on existing databases such as UNSODA, ISRIC and HYPRES for the estimation of SWRC do not take into account the stress influence on soil behaviour. In the present work, three artificial intelligence (AI) methods of support vector regression, artificial neural network and multi-gene genetic programming (MGGP) have been applied to formulate the mathematical relationship between the water content and input variables such as stress and suction (i.e. stress-dependent soil water characteristic curves (SDSWRCs)). The results indicate that the MGGP model outperforms the other two models and is able to extrapolate the water content values satisfactorily along the stress value of 800 kPa. This MGGP model can then be deployed by experts for the estimation of SDSWRCs, thus eliminating the need for conducting costly and time-consuming experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号