首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以京沪高速济南连接线港沟隧道穿越断裂破碎带区域为依托工程,研究了复杂地层超大断面隧道施工情况下围岩力学响应特征。研发了大型可拼装式地质力学模型试验系统,搭建了以静态数据采集为基础的应力–应变场监测系统和以光栅测距为基础的位移场监测系统,开展了复杂地层超大断面隧道施工过程力学模型试验研究。通过对试验开挖过程中位移变形和围岩应力变化的实时监测,揭示了超大断面隧道穿越断裂破碎带施工过程的力学演化规律。监测数据表明:位移变形大致可分为“缓慢增加-急剧增大-稳定状态”3个过程,水平收敛位移要早于拱顶沉降进入急剧增大阶段;应力变化也可分为“应力积聚-应力释放-稳定状态”3个阶段。形成的试验方法技术以及结论对类似工程研究具有重要的指导和借鉴意义。  相似文献   

2.
深埋隧道围岩-支护结构稳定性研究   总被引:25,自引:1,他引:24  
依据隧址区工程地质特征,建立通-渝深埋公路隧道1:1实体模型。通过有限元数值模拟,结合量测资料,分析了隧道按全断面法和台阶法动态施工过程围岩-支护结构屈服接近度、位移和应力特征,以及支护结构钢支撑受力、二次衬砌轴力和弯矩特征。结果表明,在相同的地质条件和支护条件下,台阶法较全断面法没有明显的优势,为深埋公路隧道优化设计和施工提供了科学依据。  相似文献   

3.
针对高应力软岩公路隧道的特点,对湖北宜巴高速公路峡口隧道开展了地应力测试、隧洞收敛下沉、接触应力、结构受力等项目的监测工作。地应力测试结果表明,虽然隧洞埋深不大,但由于构造应力的存在,仍属于高地应力区。施工监测结果表明,高应力软岩隧道变形与结构受力具有明显的时空效应,与开挖方式、工作面距离以及支护时机密切相关。由于隧洞围岩软弱破碎,加之处于高应力作用下,在工作面通过后,岩体产生持续性的流变变形,导致隧洞产生挤压大变形和结构受力的持续增加,达到支护结构强度极限,最终导致围岩失稳和支护体系的失效。基于上述研究成果,提出了相应的高应力软岩大变形支护设计对策。研究成果为高应力软岩隧道变形与结构受力的时空效应性提供了监测数据支持,为峡口隧道的施工和支护设计提供了依据,对我国西部其他高应力软岩公路隧道的建设具有借鉴意义  相似文献   

4.
偏压连拱隧道优化施工的研究   总被引:2,自引:1,他引:1  
张志强  何川 《岩土力学》2007,28(4):723-727
针对多数连拱隧道修建中存在浅埋地形偏压结构受力状况,结合金丽温高速公路二期工程20多座隧道实际情况,选取有一定代表性浅埋地形偏压覆土厚度,对不同坡度1:1~1:1.5情况下(Ⅱ类取7种、Ⅲ类取3种)偏压连拱隧道结构受力及围岩屈服破坏等进行了施工步骤优化研究。结果表明,一般情况下,连拱隧道施工存在两种偏压效应:一种是因地形偏压引起,称之为“地形偏压”;而另一种则因连拱隧道的分部施工所引起,称之为“施工偏压”。这两种偏压有明确作用方向,产生结果也不相同。对连拱隧道左右洞,按“先外后里”工序施工,能够利用“施工偏压”来部分程度地“抵消”因地形偏压产生的结构偏压受力的不利情况。因此,采用“先外后里”工序施工,实为浅埋偏压情况下连拱隧道最优施工工序。  相似文献   

5.
随着国民经济的飞速发展,对铁道交通运输的要求越来越高。国家铁道网络工程的建设,尤其是高速铁路的建设,使得超长隧洞、超大断面隧洞的应用越来越广。这就对隧洞施工技术提出更高的要求。如何选择合适支护时间及支护方式,将影响施工进度与施工成本的控制。在隧道施工过程中采用围岩量测监控技术,对围岩变化情况及支护结构进行量测,及时提供围岩稳定程度与支护结构可靠性的安全信息,预见事故及险情,作为调整与修改支护设计的依据,并在复合式衬砌中,依据测量结果确定二次衬砌施做的时间,以达到监控隧道围岩与支护结构的变化不超过设计标准。在周家湾隧道施工中应用了围岩量测技术,全过程监督施工中围岩的稳定性。通过对监测数据的分析与研究,选择适宜的支护措施,确保了工程的安全与质量,提高了施工效益并节约了施工成本。  相似文献   

6.
隧道结构系统可靠度研究   总被引:2,自引:0,他引:2  
在结构系统可靠度研究的基础上,根据隧道结构的特点,应用概率理论及工程结构系统可靠度分析方法,对整个隧道结构系统可靠度进行了探讨。隧道结构系统可靠度研究包括衬砌断面可靠度、在各种不同围岩压力作用下衬砌断面可靠度、同种围岩地段衬砌可靠度以及整座隧道可靠度的研究。整座隧道可看作由两端洞门和洞内不同围岩地段隧道衬砌所组成的串联系统,任一围岩地段衬砌和任一洞门结构的破损,都认为该隧道破损,则运用“概率网络估算技术”(又称PNET法)可求得整座隧道系统的失效概率与可靠指标。通过实例计算得到,整座隧道系统的总体可靠指标比所有单段结构的可靠指标都要低。  相似文献   

7.
深基坑“半逆作法”施工实践   总被引:4,自引:0,他引:4  
钟卫斌 《岩土力学》2004,25(3):495-499
涟钢超薄板带钢轧机水处理车间旋流沉淀池是一地处岩溶地区的,安全等级为一级的超大、超深深基坑,工程采用“半逆作法”施工工艺和独到的支护结构体系,该技术的综合运用在国内尚数首次,工程十分成功,笔者介绍了该新技术从设计到应用的全过程,可为同类工程提供参考。  相似文献   

8.
如何保障超大断面隧道的稳定性是当前国内外地下工程亟需解决的技术难题,而超大断面隧道在穿过软弱围岩地带时更容易发生变形失稳破坏等现象.选择合理的开挖工法对隧道施工时的安全性以及围岩的支护控制效果都具有重要意义.以深圳侨城东路北延通道工程东路隧道标准段为研究背景,针对超大断面隧道、地质条件复杂、围岩多为Ⅳ至Ⅴ级的复杂特征,通过原位钻探和室内岩石物理力学实验,获得隧道围岩关键参数,分析隧道围岩大变形机理;利用FLAC3 D数值模拟软件建立隧道模型,模拟全断面法、CRD法、三台阶法和三台阶七步预留核心土法4种不同开挖工法对隧道软弱围岩稳定性的影响;通过揭示其位移应力变化规律,结合室内相似比物理模型试验结果,总结大跨度隧道围岩的应变特征.研究表明:三台阶七步开挖法为侨城东路隧道标准段的最优开挖工法.  相似文献   

9.
大跨扁平连拱隧道由于其开挖跨度大和断面扁平等特点,施工过程中围岩与结构的受力、变形同四车道连拱隧道或分离式隧道存在较大的差异,相应地影响到二次衬砌的最佳支护时机。以某六车道连拱隧道为依托工程,探讨了以隧道位移释放比为基本指标的支护时机确定方法,并通过对围岩位移与不同支护时机条件下二次衬砌内力的现场测试与综合分析,依据“支护抗力最小”的原则,提出了大跨扁平连拱隧道二次衬砌最佳施作时机。  相似文献   

10.
高水位隧道堵水限排围岩与支护相互作用分析   总被引:2,自引:1,他引:1  
王秀英  谭忠盛  王梦恕  张弥 《岩土力学》2008,29(6):1623-1628
为了保护环境并尽可能降低衬砌结构所受的水压力,提出高水位山岭隧道应采取“以堵为主,限量排放”,即“堵水限排”的防排水设计原则。但对于堵水限排情况下衬砌结构的设计,目前尚没有规范可依,这是目前隧道设计施工亟待解决的问题。在隧道力学和渗流力学的基础上进行理论分析,研究渗流应力耦合作用下围岩的力学特性,利用特征曲线法分析了不同排放量下围岩与支护的相互作用,并与数值方法计算结果进行对比。计算结果表明:不同排水量下围岩特性曲线不同,支护阻力也不同,不同排水条件下围岩有效切向应力和有效径向应力的变化很明显,排水对围岩应力以及支护体系受力的影响是不容忽视的。另外,传统隧道设计方法在全排水时完全不考虑水的作用是不安全的。所得结论可为堵水限排衬砌结构设计提供理论依据。  相似文献   

11.
曲率半径对临时支护及核心土的受力影响分析   总被引:2,自引:0,他引:2  
曲海锋  朱合华  蔡永昌 《岩土力学》2008,29(7):1778-1782
双侧壁导坑方法开挖面积小,能够将大断面隧道简化为几个小跨度的导洞隧道,增加了隧道的整体稳定性,是特大断面大跨度公路隧道推荐采用的开挖方法之一。但目前并没有统一标准的双侧壁导坑断面的设计方法,核心土临时支护曲率半径形式的设计具有较大的主观性。而实践表明,临时支护的曲率形式对于核心土和导洞的稳定性影响至关重要。以广州龙头山双洞8车道公路隧道为依托,在相同的边界条件下,通过数值计算、实测数据和现场实例,深入分析核心土临时支护的合理曲率形式。其结果旨在为大断面大跨度公路隧道设计的优化提供借鉴和参考。  相似文献   

12.
基于支护参数优化的强震区软岩隧道变形控制技术研究   总被引:1,自引:0,他引:1  
周艺  何川  汪波  邹育麟 《岩土力学》2013,34(4):1147-1155
为探明强震区千枚岩地层中长大山岭隧道支护参数变化与衬砌结构变形的相互作用关系,基于新奥法施工理念,结合强震区在建杜家山绢云千枚岩隧道现场试验段的实际施工过程,根据采取的三台阶施工方法,以试验段设置的5种支护方案为依托,对各种情形下隧道变形及主体结构内力进行现场动态跟踪测试,探讨隧道施工过程中随各部开挖不同支护方案下拱顶沉降、周边收敛、地表沉降及结构内力的变化关系,分析初步认定支护强度及刚度大的F5方案更适用于震区千枚岩隧道施工。对5种方案的施工过程进行三维有限元弹塑性模拟,通过对开挖后隧道变形、支护受力与现场监测值的对比分析,对施工过程中隧道结构的安全性和围岩稳定性做出评价。现场试验和数值模拟结果综合分析表明,仅有两种(F4、F5)方案适用于隧道开挖,而F5方案的隧道变形及结构受力较其余4种方案更为合理,该方案的成功运用也验证了这一方案的合理、有效性。在该基础上总结提出的软岩隧道支护参数技术要领及方法可供类似工程参考。  相似文献   

13.
为了建立公路隧道在各围岩亚级条件下的支护体系,指导隧道的安全施工,在亚级分级方法、分级标准、物理力学参数等研究基础上,结合双车道公路隧道特点,通过理论分析、实例统计、数值分析等方法,研究了各亚级围岩下隧道开挖方法、预加固参数、支护类型、结构型式和初期支护参数。结果表明,Ⅲ1级围岩可采用全断面法、轻型承载型支护,Ⅲ2级采用台阶法、中型承载型支护;Ⅳ1、Ⅳ2、Ⅳ3级采用台阶法、重型承载型支护,但Ⅳ2、Ⅳ3级需通过预加固措施使加固区围岩强度提高到相当于Ⅳ1水平;Ⅴ1级采用台阶法和使加固区围岩强度提高到相当于Ⅳ1水平的预加固措施,Ⅴ2级采用CRD法和使加固区围岩强度提高到相当于Ⅳ3水平的预加固措施,Ⅴ1、Ⅴ2级也都可采用CD法和使加固区围岩强度提高到相当于Ⅳ1水平的预加固措施,且都采用特殊承载型支护;Ⅳ1、Ⅳ2、Ⅳ3、Ⅴ1、Ⅴ2级均需设置仰拱。  相似文献   

14.
华蓥山隧道在施工过程中遇到岩溶、断层、涌突水、煤层段和瓦斯等主要工程地质问题,地质情况非常复杂。总结了华蓥山隧道东口右线揭穿和通过煤层的施工技术,为隧道大断面安全揭煤提供技术参考。  相似文献   

15.
针对双连拱隧道采用三导洞或中导洞超前施工方法施工工序多、临时支护量大的不足,以黄延高速公路羊泉沟隧道为例,提出在Ⅲ类围岩中采用无中导洞超前施工方法.基于弹塑性有限元方法对其施工过程进行分析,获得了施工各阶段围岩的应力、应变状态,以及初期支护和二次衬砌的受力状态.结果表明:在Ⅲ类围岩中连拱隧道采用无中导洞施工方法,围岩和支护结构处于安全状态.分析结果为羊泉沟隧道的顺利贯通提供了有效指导.  相似文献   

16.
井岗山市井岗冲水电站进坝公路隧道是湖南省地质矿产局四一队施工的第一个大断面掘进工程。施工中,四一四队打破常规,积极推行“新奥法”,采用光面爆破和锚喷支护技术,成功地突破了419m破碎地层掘进的技术难关;同时,在出口段采用缝管式锚杆临时支护等措施进行浅埋破碎区段处理,为浅埋破碎地层的临时支护开辟了新途径。  相似文献   

17.
隧道系统预测的多因素模型   总被引:4,自引:0,他引:4  
郝哲  罗敖  刘斌 《岩土工程技术》2004,18(3):116-121
建立了隧道系统预测的多因素分析模型 ,弥补了以往单因素时序分析的不足 ,并编制了相应的分析程序。结合沈大高速公路韩家岭隧道部分断面的多种实测数据 ,对隧道系统的多因素模型及稳定性进行了研究 ,对相应预测结果进行了讨论  相似文献   

18.
深埋隧道软硬交替复合顶板岩体变形破坏分析   总被引:7,自引:0,他引:7  
为了解隧道开挖后顶板岩层活动范围及其对隧道支护体的影响,对埋深为700 m的隧道多层状顶板岩体,采用两种方式对其顶板围岩破坏形式进行了数值模拟研究和理论分析。一种方式是将顶板112 m至地表的588 m范围内的岩层视为均布荷载,模拟计算隧道顶板112 m范围内岩层的应力、位移及塑性区范围;另一种对隧道至地表岩层进行全断面模拟。模拟计算分析表明,对于隧道顶板112 m范围内相应位置的压应力 、竖向位移 及剪应力 ,两种方式计算结果基本相同,说明在距隧道中心一定高度处的岩层出现离层现象;复合顶板中的两层及两层以上的硬岩层与其间的软岩层构成了若干个组合板结构,隧道支护体所受的载荷主要来源于第一个组合板以下的岩体,并将第一个组合板以下的高度定义为支护体关键荷载圈。由数值模拟分析和理论计算所得到的隧道支护体关键荷载圈高度均在75 m左右,相对误差不超过5 %。  相似文献   

19.
高速公路隧道围岩质量评价系统初步研究   总被引:6,自引:0,他引:6  
回顾了隧道围岩分类研究现状,分析了高速公路隧道围岩的工程特性,提出了建立高速公路隧道围岩质量评价系统时应遵循的原则,思路,并给出了相应的研究成果。将所建立的系统应用于工程实际,取得了满意效果。  相似文献   

20.
基坑开挖对下方既有盾构隧道影响的实测与分析   总被引:6,自引:0,他引:6  
魏纲 《岩土力学》2013,34(5):1421-1428
对基坑开挖影响下方既有盾构隧道的机制进行了理论分析。收集了14个国内基坑工程实例,对实测数据进行了统计分析,结果表明:盾构隧道的最大竖向位移均为隆起,且有64%的隧道隆起值超过报警值(10 mm),提出了隧道最大隆起值的经验预测公式;隧道水平向位移较少量测,实测值较小;收敛变形由“水平向拉伸、竖向压缩”向“水平向压缩、竖向拉伸”转变。基于杭州市延安路某地下过街通道工程,研究了基坑开挖对下方地铁1号线盾构隧道变形的影响,对隧道竖向位移、水平向位移以及水平向收敛的实测数据进行了分析,其结果验证了理论分析和计算公式的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号