首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water samples were collected from rivers and estuarine environments within the Florida Coastal Everglades (FCE) ecosystem, USA, and ultrafiltered dissolved organic matter (UDOM; <0.7 μm, >1 kDa) was isolated for characterization of its source, bioavailability and diagenetic state. A combination of techniques, including 15N cross-polarization magic angle spinning nuclear magnetic resonance (15N CPMAS NMR) and X-ray photoelectron spectroscopy (XPS), were used to analyze the N components of UDOM. The concentrations and compositions of total hydrolysable amino acids (HAAs) were analyzed to estimate UDOM bioavailability and diagenetic state. Optical properties (UV-visible and fluorescence) and the stable isotope ratios of C and N were measured to assess the source and dynamics of UDOM. Spectroscopic analyses consistently showed that the major N species of UDOM are in amide form, but significant contributions of aromatic-N were also observed. XPS showed a very high pyridinic-N concentration in the FCE-UDOM (21.7 ± 2.7%) compared with those in other environments. The sources of this aromatic-N are unclear, but could include soot and charred materials from wild fires. Relatively high total HAA concentrations (4 ± 2% UDOC or 27 ± 4% UDON) are indicative of bioavailable components, and HAA compositions suggest FCE-UDOM has not undergone extensive diagenetic processing. These observations can be attributed to the low microbial activity and a continuous supply of fresh UDOM in this oligotrophic ecosystem. Marsh plants appear to be the dominant source of UDOM in freshwater regions of the FCE, whereas seagrasses and algae are the dominant sources of UDOM in Florida Bay. This study demonstrates the utility of a multi-technique and multi-proxy approach to advance our understanding of DON biogeochemistry.  相似文献   

2.
Amino acids and the bacterial biomarkers muramic acid and d-amino acids were quantified in the ultrafiltered dissolved, particulate and sedimentary organic matter (UDOM, POM and SOM) of the St. Lawrence system (Canada). The main objectives were to better describe the fate of terrigenous and marine organic matter (OM) in coastal zones and to quantify the bacterial contributions to OM composition and diagenesis. Regardless of their origin, the carbon (C) content of the particles substantially decreased with depth, especially near the water-sediment interface. Major diagenetic transformations of organic nitrogen (N) were revealed and important differences were observed between terrigenous and marine OM. Amino acid contents of particles decreased by 66-93% with depth and accounted for 12-30% of the particulate C losses in marine locations. These percentages were respectively 18-56% and 7-11% in the Saguenay Fjord where terrigenous input is important. A preferential removal of particulate N and amino acids with depth or during transport was measured, but only in marine locations and for N-rich particles. This leads to very low amino acid yields in deep marine POM. However, these yields then increased to a level up to three times higher after deposition on sediments, where SOM showed lower C:N ratios than deep POM. The associated increase of bacterial biomarker yields suggests an active in situ resynthesis of amino acids by benthic bacteria. The N content of the substrate most likely determines whether a preferential degradation or an enrichment of N and amino acid are observed. For N-poor OM, such as terrigenous or deep marine POM, the incorporation of exogenous N by attached bacteria can be measured, while the organic N is preferentially used or degraded in N-rich OM. Compared to the POM from the same water samples, the extracted UDOM was poor in N and amino acids and appeared to be mostly made of altered plant and bacterial fragments. Signs of in situ marine production of UDOM were observed in the most marine location. The POM entering the St. Lawrence Upper Estuary and the Saguenay Fjord appeared made of relatively fresh vascular plant OM mixed with highly altered bacterial debris from soils. In contrast, the POM samples from the more marine sites appeared mostly made of fresh planktonic and bacterial OM, although they were rapidly degraded during sinking. Based on biomarker yields, bacterial OM represented on average ∼20% of bulk C and approximately 40-70% of bulk N in POM and SOM, with the exception of deep marine POM exhibiting approximately two times lower bacterial contributions.  相似文献   

3.
Aggregation of particulate organic matter (POM) and mineral grains may result in physical protection of organic matter (OM). To test this, phytoplankton cells of the dinoflagellate Scrippsiella trochoidea were inoculated with a natural bacterial assemblage and incubated with or without the clay montmorillonite. Within 5 h, aggregation of phytoplankton OM and clay resulted in transfer of the majority (∼80%) of OM into the >1.6 g cm−3 density fraction. Degradation of particulate organic carbon (POC), particulate nitrogen (PN), dissolved organic carbon (DOC), and dissolved and particulate total hydrolyzable amino acids (THAA), were modeled with a multi-G approach. Quantity of resistant OM was between two and four times larger during clay incubation relative to clay-free incubation. The two incubations did not exhibit significant differences in degradation state of particulate amino acids nor were there indications of preferential sorption of basic amino acids. The results suggest that a considerable fraction of phytoplankton OM can become resistant, at least on a timescale of weeks, mostly due to aggregation of POM and clay mineral grains.  相似文献   

4.
The Pichavaram mangrove ecosystem is located between the Vellar and Coleroon Estuaries in south-eastern India. To document the spatial-depth-based variabilities in organic matter (OM) input and cycling, five sediment cores were collected. A comparative study was carried out of grain-size composition, pore water salinity, dissolved organic C (DOC), loss-on-ignition (LOI), elemental ratios (C/N and H/C), pigments (Chl a, Chl b, and total carotenoids), and humification indices. Sand is the major fraction in these cores ranging from 60% to 99% followed by silt and clay; cores from the estuarine margin have high sand content. In mangrove forests, pore-water DOC concentrations are high (32 ± 14 mg L−1), whereas salinity levels are low (50 ± 5.5‰). Likewise, LOI, organic C and N, and pigment concentrations are high in mangroves. OM is mainly derived from upstream terrestrial matter and/or mangrove litter, and marine OM. The humification indices do not vary significantly with depth because of rapid OM turnover. The bulk parameters indicate that the Vellar and Coleroon Estuaries are more affected by anthropogenic processes than mangrove forests. Finally, greater variability and sometimes lack of specific trends in bulk parameters implies that the 2004 tsunami caused extensive mixing in sediments.  相似文献   

5.
Bulk nitrogen (N) isotope signatures have long been used to investigate organic N source and food web structure in aquatic ecosystems. This paper explores the use of compound-specific δ15N patterns of amino acids (δ15N-AA) as a new tool to examine source and processing history in non-living marine organic matter. We measured δ15N-AA distributions in plankton tows, sinking particulate organic matter (POM), and ultrafiltered dissolved organic matter (UDOM) in the central Pacific Ocean. δ15N-AA patterns in eukaryotic algae and mixed plankton tows closely resemble those previously reported in culture. δ15N differences between individual amino acids (AA) strongly suggest that the sharply divergent δ15N enrichment for different AA with trophic transfer, as first reported by [McClelland, J.W. and Montoya, J.P. (2002) Trophic relationships and the nitrogen isotopic composition of amino acids. Ecology83, 2173-2180], is a general phenomenon. In addition, differences in δ15N of individual AA indicative of trophic transfers are clearly preserved in sinking POM, along with additional changes that may indicate subsequent microbial reworking after incorporation into particles.We propose two internally normalized δ15N proxies that track heterotrophic processes in detrital organic matter. Both are based on isotopic signatures in multiple AA, chosen to minimize potential problems associated with any single compound in degraded materials. A trophic level indicator (ΔTr) is derived from the δ15N difference between selected groups of AA based on their relative enrichment with trophic transfer. We propose that a corresponding measure of the variance within a sub-group of AA (designated ΣV) may indicate total AA resynthesis, and be strongly tied to heterotrophic microbial reworking in detrital materials. Together, we hypothesize that ΔTr and ΣV define a two dimensional trophic “space”, which may simultaneously express relative extent of eukaryotic and bacterial heterotrophic processing.In the equatorial Pacific, ΔTr indicates an average of 1.5-2 trophic transfers between phytoplankton and sinking POM at all depths and locations. The ΣV parameter suggests that substantial variation may exist in bacterial heterotrophic processing between differing regions and time periods. In dissolved material δ15N-AA patterns appear unrelated to those in POM. In contrast to POM, δ15N-AA signatures in UDOM show no clear changes with depth, and suggest that dissolved AA preserved throughout the oceanic water column have undergone few, if any, trophic transfers. Together these data suggest a sharp divide between processing histories, and possibly sources, of particulate vs. dissolved AA.  相似文献   

6.
Sorptive stabilization of organic matter by amorphous Al hydroxide   总被引:3,自引:0,他引:3  
Amorphous Al hydroxides (am-Al(OH)3) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L−1) with OM extracted from organic horizons under a Norway spruce and a European beech forest. The stabilization of OM by sorption was analyzed by comparing the CO2 mineralized during the incubation of sorbed and non-sorbed OM. The mineralization of OM was evaluated based in terms of (i) the availability of the am-Al(OH)3, thus surface OM loadings, (ii) spectral properties of OM, and (iii) the presence of phosphate as a competitor for OM. This was done by varying the solid-to-solution ratio (SSR = 0.02-1.2 g L−1) during sorption. At low SSRs, hence limited am-Al(OH)3 availability, only small portions of dissolved OM were sorbed; for OM from Oa horizons, the mineralization of the sorbed fraction exceeded that of the original dissolved OM. The likely reason is competition with phosphate for sorption sites favouring the formation of weak mineral-organic bindings and the surface accumulation of N-rich, less aromatic and less complex OM. This small fraction controlled the mineralization of sorbed OM even at higher SSRs. At higher SSRs, i.e., with am-Al(OH)3 more available, competition of phosphate decreased and aromatic compounds were sorbed selectively, which resulted in pronounced resistance of sorbed OM against decay. The combined OC mineralization of sorbed and non-sorbed OM was 12-65% less than that of the original DOM. Sorbed OM contributed only little to the overall OC mineralization. Stabilization of OC increased in direct proportion to am-Al(OH)3 availability, despite constant aromatic C (∼30%). The strong stabilization at higher mineral availability is primarily governed by strong Al-OM bonds formed under less competitive conditions. Due to these strong bonds and the resulting strong stabilization, the surface loading, a proxy for the mineral’s occupation by OM, was not a factor in the mineralization of sorbed OM over a wide range of C sorption (0.2-1.1 mg C m−2). This study demonstrates that sorption to am-Al(OH)3 results in stabilization of OM. The mineral availability as well as the inorganic solution chemistry control sorptive interactions, thereby the properties of sorbed OM, and the stability of OM against microbial decay.  相似文献   

7.
The distribution, partition and speciation of mercury (Hg) were studied along the redox gradient of an anthropogenically perturbed tropical estuary, the Sinnamary Estuary in French Guiana. This system is a partially mixed estuary characterized by an anoxic freshwater end-member, while the marine end-member consists of the Amazon Plume.The set up of an artificial oxygenation system in the anoxic freshwater end-member generates sharp gradients of major chemical species (iron, sulfides, etc.) coupled with intense organic matter (OM) turnover. The coexistence of oxygenated waters and dissolved sulfides in an organic rich environment depicts the Upper Sinnamary Estuary (USE: part of Sinnamary Estuary under the tidal influence but upstream of the salt intrusion) as a potential site for Hg methylation. The concentrations of all mercury compounds (HgT) in the unfiltered samples (HgTUNF), in the dissolved (HgTD) and particulate (HgTP) phases of the USE average 11 ± 3, 6 ± 2 and 5 ± 3 (i.e. 600 ± 200 pmol g−1) pmol L−1, respectively. Average concentrations of monomethylmercury (MMHg) in the unfiltered (MMHgUNF), dissolved (MMHgD) and particulate (MMHgP) phases were 3.7 ± 1.0, 2.0 ± 0.9 and 1.8 ± 1.2 (i.e. 220 ± 130 pmol g−1) pmol L−1, respectively. Water oxygenation and sulfides concentrations emerged to play a critical role in controlling MMHg levels. Additionally, iron cycling, acid-base mechanisms, and redox-dependent processes were involved in the MMHg partitioning between phases.Overall, the USE constitutes a biogeochemical reactor that gathers partitioning and methylation processes. The permanent MMHg inputs from the anoxic freshwater end-member combined with the intense endogenous Hg methylation ensures high-MMHg levels in both dissolved and particulate phases. To illustrate, the USE exports 60 ± 20% more MMHgUNF than it imports: 5.5 ± 0.7 vs. 3.5 ± 1.2 kg year−1.  相似文献   

8.
The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.  相似文献   

9.
Detailed structural information on two humic acids extracted from two sinking particulate matter samples at a water depth of 20 m in the Saguenay Fjord (F-20-HA) and the St. Lawrence Estuary (E-20-HA) (Canada), was obtained by advanced solid-state NMR. Spectral-editing analyses provided numerous structural details rarely reported in geochemical studies. The NMR data account almost quantitatively for the elemental compositions. The two humic acids were found to be quite similar, consisting of four main structural components: peptides (ca. 39 ± 3% vs. 34 ± 3% of all C for E-20-HA and F-20-HA, respectively); aliphatic chains, 14-20 carbons long (ca. 25 ± 5% vs. 17 ± 5% of all C); aromatic structures (ca. 17 ± 2% vs. 26 ± 2% of all C); and sugar rings (14 ± 2% vs. 15 ± 2% of all C). Peptides were identified by 13C{14N} SPIDER NMR, which selects signals of carbons bonded to nitrogen, and by dipolar DEPT, which selects CH-group signals, in particular the NCH band of peptides. The SPIDER spectra also indicate that heterocycles constitute a significant fraction of the aromatic structures. The aliphatic (CH2)n chains, which are highly mobile, contain at least one double bond per two chains and end in methyl groups. 1H spin diffusion NMR experiments showed that these mobile aliphatic chains are in close (<10 nm) proximity to the other structural components. A major bacterial contribution to these two samples could explain why the samples, which have different dominant organic matter sources (terrestrial vs. marine), are similar to each other as well as to degraded algae and particles from other waters. The NMR data suggest structures containing mobile lipids in close proximity to peptides and carbohydrates (e.g., peptidoglycan) as found in bacterial cell walls. Measured yields of muramic acid and d-amino acids confirmed the presence of bacterial cell wall components in the studied samples.  相似文献   

10.
The contents of different organic matter components and dissolved organic matter (DOM) release kinetics of the sediments from the middle and lower reaches of the Yangtze River region were investigated, and their relationships discussed. The results show that organic C (OC) ranged from 8.14 to 43.65 g kg−1, dissolved organic C (DOC) from 0.38 to 1.38 g kg−1, active organic C (AOC) from 1.12 to 4.45 g kg−1, heavy fraction organic C (HFOC) from 6.86 to 39.08 g kg−1, accounting for 2.42-9.34%, 8.66-29.72% and 84.29-93.18% of OC, respectively. With increasing of OC content the ratios of DOC to OC and AOC to OC decreased. The contents of AOC, DOC, light fraction organic C (LFOC) and their contribution ratios to OC in studied sediments were higher than those reported in soils. The DOM release process of the studied sediments includes rapid and slow stages, and the rapid release occurred within 30 min, mainly in 5 min. The DOM release kinetic data in this investigation can be best fitted by the Power Function model. The correlations between total N (TN), total P (TP), OC, DOC, AOC, LFOC, HFOC and the DOM release kinetic parameters (k, c, a, b, rate30) of the sediments were significant. There were also significant correlations between TN, TP, OC, DOC, LFOC and HFOC in sediments. So the DOM release from sediment was not only related to the OC content, but also related to the organic matter composition characteristics, especially the contents of DOC, AOC and LFOC.  相似文献   

11.
Cationic Al species (Ali) cause toxic effects towards fish in acidified water. As several factors can influence the Ali-speciation, acid neutralising capacity (ANC) has been applied as an alternative indicator for acidification and effects towards fish. However, the critical range of ANC for biological stress has been shown to be dependent upon the concentration of organic material (DOC). Using in situ size fractionation techniques the influence of particulate and colloidal DOC (0–400 μM) on Ali-speciation and ANC-values was investigated in Norwegian streams. During high flow events with high river transport of DOC the Ali concentration increased by a factor of 2 due to retention of colloidal Al species (>10 kDa), probably organic, in the chromatography column. Ultrafiltration (?10 kDa) of water prior to chromatography reduced the influence of non-toxic organic Al-species, on Ali-speciation. The charge balanced ANC-values (ANCcb) were also significantly lower (on average 34 μeq L−1) in ultrafiltered water compared to unfiltered water samples, as base cations were associated with colloidal DOC (>10 kDa to 0.45 μm) and organic acids were not incorporated in the ANCcb estimate. Thus, ANCcb will underestimate the acidification effects towards fish in organic waters increasing with concentration of colloidal DOC present. Alkalinity based ANC-values (ANCalk), which include a fraction of organic acids, were similar in unfiltered and ultrafiltered waters, but higher than ANCcb-values of ultrafiltered samples. Thus, ANCalk-values also underestimate the acidification effects on fish in organic waters. Based on ultrafiltered samples, however, ANCcb-values was negatively correlated with Ali independent of the DOC present and thus a more correct indicator for toxic Al-species.  相似文献   

12.
Mineral-associated organic matter (OM) represents a large reservoir of organic carbon (OC) in natural environments. The factors controlling the extent of the mineral-mediated OC stabilization, however, are poorly understood. The protection of OM against biodegradation upon sorption to mineral phases is assumed to result from the formation of strong bonds that limit desorption. To test this, we studied the biodegradation of OM bound to goethite (α-FeOOH), pyrophyllite, and vermiculite via specific mechanisms as estimated from OC uptake in different background electrolytes and operationally defined as ‘ligand exchange’, ‘Ca2+ bridging’, and ‘van der Waals forces’. Organic matter extracted from an Oa forest floor horizon under Norway spruce (Picea abies (L.) Karst) was reacted with minerals at dissolved OC concentrations of ∼5-130 mg/L at pH 4. Goethite retained up to 30.1 mg OC/g predominantly by ‘ligand exchange’; pyrophyllite sorbed maximally 12.5 mg OC/g, largely via ‘van der Waals forces’ and ‘Ca2+ bridging’, while sorption of OM to vermiculite was 7.3 mg OC/g, mainly due to the formation of ‘Ca2+ bridges’. Aromatic OM components were selectively sorbed by all minerals (goethite ? phyllosilicates). The sorption of OM was strongly hysteretic with the desorption into 0.01 M NaCl being larger for OM held by ‘Ca2+ bridges’ and ‘van der Waals forces’ than by ‘ligand exchange’. Incubation experiments under aerobic conditions (initial pH 4; 90 days) revealed that OM mainly bound to minerals by ‘ligand exchange’ was more resistant against mineralization than OM held by non-columbic interactions (‘van der Waals forces’). Calcium bridges enhanced the stability of sorbed OM, especially for vermiculite, but less than the binding via ‘ligand exchange’. Combined evidence suggests that the extent and rate of mineralization of mineral-associated OM are governed by desorption. The intrinsic stability of sorbed OM as related to the presence of resistant, lignin-derived aromatic components appears less decisive for the sorptive stabilization of OM than the involved binding mechanisms. In a given environment, the type of minerals present and the solution chemistry determine the operating binding mechanisms, thereby the extent of OM sorption and desorption, and thus ultimately the bioavailability of mineral-associated OM.  相似文献   

13.
Organic matter (OM) in mineral-organic associations (MOAs) represents a large fraction of carbon in terrestrial ecosystems which is considered stable against biodegradation. To assess the role of MOAs in carbon cycling, there is a need to better understand (i) the time-dependent biogeochemical evolution of MOAs in soil, (ii) the effect of the mineral composition on the physico-chemical properties of attached OM, and (iii) the resulting consequences for the stabilization of OM. We studied the development of MOAs across a mineralogical soil gradient (0.3-4100 kyr) at the Hawaiian Islands that derived from basaltic tephra under comparable climatic and hydrological regimes. Mineral-organic associations were characterized using biomarker analyses of OM with chemolytic methods (lignin phenols, non-cellulosic carbohydrates) and wet chemical extractions, surface area/porosity measurements (N2 at 77 K and CO2 at 273 K), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results show that in the initial weathering stage (0.3 kyr), MOAs are mainly composed of primary, low-surface area minerals (olivine, pyroxene, feldspar) with small amounts of attached OM and lignin phenols but a large contribution of microbial-derived carbohydrates. As high-surface area, poorly crystalline (PC) minerals increase in abundance during the second weathering stage (20-400 kyr), the content of mineral-associated OM increased sharply, up to 290 mg C/g MOA, with lignin phenols being favored over carbohydrates in the association with minerals. In the third and final weathering stage (1400-4100 kyr), metastable PC phases transformed into well crystalline secondary Fe and Al (hydr)oxides and kaolin minerals that were associated with less OM overall, and depleted in both lignin and carbohydrate as a fraction of total OM. XPS, the N2 pore volume data and OM-mineral volumetric ratios suggest that, in contrast to the endmember sites where OM accumulated at the surfaces of larger mineral grains, topsoil MOAs of the 20-400-kyr sites are composed of a homogeneous admixture of small-sized PC minerals and OM, which originated from both adsorption and precipitation processes. The chemical composition of OM in surface-horizon MOAs, however, was largely controlled by the uniform source vegetation irrespective of the substrate age whereas in subsoil horizons, aromatic and carboxylic C correlated positively with oxalate-extractable Al and Si and CuCl2-extractable Al concentrations representing PC aluminosilicates and Al-organic complexes (r2 > 0.85). Additionally, XPS depth profiles suggest a zonal structure of sorbed OM with aromatic carbons being enriched in the proximity of mineral surfaces and amide carbons (peptides/proteins) being located in outer regions of MOAs. Albeit the mineralogical and compositional changes of OM, the rigidity of mineral-associated OM as analyzed by DSC changed little over time. A significantly reduced side chain mobility of sorbed OM was, however, observed in subsoil MOAs, which likely arose from stronger mineral-organic bindings. In conclusion, our study shows that the properties of soil MOAs change substantially over time with different mineral assemblages favoring the association of different types of OM, which is further accentuated by a vertical gradient of OM composition on mineral surfaces. Factors supporting the stabilization of sorbed OM were (i) the surface area and reactivity of minerals (primary or secondary crystalline minerals versus PC secondary minerals), (ii) the association of OM with micropores of PC minerals (via ‘sterically’ enhanced adsorption), (iii) the effective embedding of OM in ‘well mixed’ arrays with PC minerals and monomeric/polymeric metal species, (iv) the inherent stability of acidic aromatic OM components, and (iv) an impaired segmental mobility of sorbed OM, which might increase its stability against desorption and microbial utilization.  相似文献   

14.
Both the concentrations and the stocks of soil organic carbon vary across the landscape. Do the amounts of recalcitrant components of soil organic matter (SOM) vary with landscape position? To address this question, we studied four Mollisols in central Iowa, two developed in till and two developed in loess. Two of the soils were well drained and two were poorly drained. We collected surface-horizon samples and studied organic matter in the particulate organic matter (POM) fraction, the clay fractions, and the whole, unfractionated samples. We treated the soil samples with 5 M HF at ambient temperature or at 60 °C for 30 min to concentrate the SOM. To assess the composition of the SOM, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, in particular, quantitative 13C DP/MAS (direct-polarization/magic-angle spinning), with and without recoupled dipolar dephasing. Spin counting by correlation of the integral NMR intensity with the C concentration by elemental analysis showed that NMR was ?85% quantitative for the majority of the samples studied. For untreated whole-soil samples with <2.5 wt.% C, which is considerably less than in most previous quantitative NMR analyses of SOM, useful spectra that reflected ?65% of all C were obtained. The NMR analyses allowed us to conclude (1) that the HF treatment (with or without heat) had low impact on the organic C composition in the samples, except for protonating carboxylate anions to carboxylic acids, (2) that most organic C was observable by NMR even in untreated soil materials, (3) that esters were likely to compose only a minor fraction of SOM in these Mollisols, and (4) that the aromatic components of SOM were enriched to ∼53% in the poorly drained soils, compared with ∼48% in the well drained soils; in plant tissue and particulate organic matter (POM) the aromaticities were ∼18% and ∼32%, respectively. Nonpolar, nonprotonated aromatic C, interpreted as a proxy for charcoal C, dominated the aromatic C in all soil samples, composing 69-78% of aromatic C and 27-36% of total organic C in the whole-soil and clay-fraction samples.  相似文献   

15.
Brazil has extensive sugar cane monocultures, which significantly alter hydrogeochemical material fluxes. We studied dissolved organic matter (OM) fluxes in the Manguaba lagoon-estuary system, which drains a sugar cane monoculture-dominated hinterland and discharges into the Atlantic coastal ocean. The OM fluxes into the lagoon originate from baseflow, field runoff and sugar cane factory effluents. In the study, dissolved organic carbon (DOC) concentration, δ13C DOC and UV absorbance were analysed along a freshwater-seawater salinity gradient that encompasses river (DOC 9-11 mg l−1, δ13C −22.2‰ to −25.5‰); lagoon (4-11 mg l−1, −20.5‰ to −24.8‰); estuary (3-9 mg l−1, −22.6‰ to −25.3‰) and coastal waters (1.64 mg l−1, −21‰) with different intra-seasonal runoff conditions. We used the carbon isotope data to quantify the sugar cane derived DOC. Where river water meets brackish lagoon water, substantial loss of DOC occurs during rainy conditions, when suspended sediment from eroded fields in the river is very high. During dry weather, at much lower suspension levels, DOC increases, however, presumably from addition of photolysed resuspended sedimentary OM. In the estuary, mixing of DOC is strictly conservative. Ca. 1/3 of riverine DOM discharged into the lagoon has a sugar cane source. Within the lagoon on avg. 20% of the bulk DOM is comprised of sugar cane DOM, whereas during heavy rainfall the amount increases to 31%, due to intensified drainage flow and soil erosion. In the estuary, 14-26% is of sugar cane origin. The sugar cane-derived component follows the mixing patterns of bulk DOM.  相似文献   

16.
Due to the widespread contamination of groundwater resources with arsenic (As), controls on As mobility have to be identified. In this study we focused on the distribution of As in the dissolved, colloidal and particulate size fraction of experimental solutions rich in ferric iron, dissolved organic matter (DOM) and As(V). Size fractions between <5 kDa and >0.2 μm were separated by filtration and their elemental composition was analyzed. A steady-state particle size distribution with stable element concentration in the different size classes was attained within 24 h. The presence of DOM partly inhibited the formation of large Fe-(oxy)hydroxide aggregates, thus stabilized Fe in complexed and colloidal form, when initially adjusted molar Fe/C ratios in solution were <0.1. Dissolved As concentrations and the quantity of As bound to colloids (<0.2 μm) increased in the presence of DOM as well. At intermediate Fe/C ratios of 0.02-0.1, a strong correlation between As and Fe concentration occurred in all size fractions (R2 = 0.989). At Fe/C ratios <0.02, As was mainly present in the dissolved size fraction. These observations indicate that As mobility increased in the presence of DOM due to (I) competition between As and organic molecules for sorption sites on Fe particles; and (II) due to a higher amount of As bound to more abundant Fe colloids or complexes <0.2 μm in size. The amount of As contained in the colloidal size fractions also depended strongly on the initial size of the humic substance, which was larger for purified humic acids than for natural river or soil porewater samples. Arsenic in the particle size fraction >0.2 μm additionally decreased in the order of pH 4 ? 6 > 8. The presence of DOM likely increases the mobility of As in iron rich waters undergoing oxidation, a finding that has to be considered in the investigation of organic-rich terrestrial and aquatic environments.  相似文献   

17.
In a comprehensive study, we compared depositional conditions, organic matter (OM) composition, and organic carbon turnover in sediments from two different depositional systems along the Chilean continental margin: at ∼23° S off Antofagasta and at ∼36° S off Concepción. Both sites lie within the Chilean coastal upwelling system and have an extended oxygen minimum zone in the water column. However, the northern site (23° S) borders the Atacama Desert, while the southern site (36° S) has a humid hinterland. Eight surface sediment cores (up to 30 cm long) from water depths of 126-1350 m were investigated for excess 210Pb (210Pbxs) activity, total organic and total inorganic carbon concentrations (TOC and TIC, respectively), C/N-ratios, organic carbon isotopic compositions (δ13C), chlorin concentrations, Chlorin Indices (CI), and sulfate reduction rates (SRR). Sediment accumulation rates obtained from 210Pb-analysis were similar in both regions (0.04-0.15 cm yr−1 at 23° S, 0.10-0.19 cm yr−1 at 36° S), although total 210Pbxs fluxes indicated that the vertical particle flux was higher at 36° S than at 23° S. We propose that sediment focusing in isolated deposition centers led to high sediment accumulation rates at 23° S. Furthermore, there were no indications for sediment mixing at 23° S, while bioturbation was intense at 36° S. δ13C-values (−24.5‰ to −20.1‰ vs. VPDB) and C/N-ratios (molar, 8.6-12.8) were characteristic of a predominantly marine origin of the sedimentary OM in both investigated areas. The extent of OM alteration in the water column was partly reflected in the surface sediments as chlorin concentrations decreased and C/N-ratios and CI increased with increasing water depth of the sampling site. SRR were lower at 23° S (areal SRR 0.12-0.60 mmol m−2 d−1) than at 36° S (areal SRR 0.82-1.18 mmol m−2 d−1), which was partly due to the greater water depth of most of the sediments investigated in the northern region and consistent with a lower quality of the sedimentary OM at 23° S. Reaction rate constants for TOC degradation that were obtained from measured SRR (kSRR; 0.0004-0.0022 yr−1) showed a good correspondence to kTOC that were derived from the depth profiles of TOC (0.0003-0.0014 yr−1). Both, kSRR and kTOC, reflect differences in OM composition. At 36° S they were related to the degradation state of bulk OM (represented by C/N-ratios), whereas near 23° S they were related to the freshness of a small fraction of labile OM (represented by CI). Our study shows that although rates of organic carbon accumulation were similar in both investigated sites, the extent and kinetics of organic carbon degradation were closely linked to differing depositional conditions.  相似文献   

18.
Activity concentrations of the naturally occurring, short-lived and highly particle-reactive radionuclide tracer 234Th in the dissolved and particulate phase were determined at 7 shallow-water stations (maximum depths: 30 (S.1 and S.2), 65 (S.3), 97 (S.5), 105 (S.6) and 220 m (S.4 and S.7) in Saronikos Gulf and Elefsis Bay (central Aegean Sea, Greece) during 3 seasonal cruises (summer 2008, autumn 2008 and winter 2009) to assess the time scales of the dynamics and the depositional fate of particulate matter (POC, particulate 234Th). For that reason, in situ filtrating systems were deployed in several depths of the water column consisting of GF/A disc prefilters to scavenge particulate fraction of 234Th and organic carbon and impregnated cartridges to adsorb dissolved 234Th.The obtained data showed average particulate 234Th activity concentrations of 3.7 ± 0.4 Bq m−3 in summer, 2.1 ± 0.2 Bq m−3 in autumn and 2.4 ± 0.2 Bq m−3 in winter. The respective average dissolved 234Th activity concentrations were 30.1 ± 2.8 Bq m−3 in summer, 30.2 ± 2.9 Bq m−3 in autumn and 27.4 ± 3.0 Bq m−3 in winter. The activity ratios of total 234Th and its long-lived conservative parent 238U were below unity in most of the stations indicating radioactive disequilibrium throughout the water column, thus very dynamic trace-metal scavenging and particle export from the water column. These profiles (234Th and 238U) were used to estimate the export fluxes and scavenging rates of 234Th, as well as their residence times in the water column. The average cumulative export fluxes of particulate 234Th were estimated to be 33 ± 4 Bq m−2 d−1 in summer, 35 ± 5 Bq m−2 d−1 in autumn and 45 ± 6 Bq m−2 d−1 in winter, whereas the respective average cumulative scavenging rates of dissolved 234Th were 39 ± 5, 33 ± 5 and 50 ± 7 Bq m−2 d−1. Moreover, the cumulative average residence times of 234Th were 25 ± 4 d in summer, 45 ± 6 d in autumn and 64 ± 7 d in winter 2009 for the dissolved fraction and 4 ± 1, 3 ± 1 and 4 ± 1 d for the particulate one, respectively.POC/ ratio profiles decreased versus depth showing a variety of marine processes, such as loss of POC due to dissolution after biological activity, impact of minerals in particle sinking and microbial remineralization. Average cumulative export fluxes of POC were 162 ± 18 mmol m−2 d−1 in summer, 107 ± 19 mmol m−2 d−1 in autumn and 157 ± 25 mmol m−2 d−1 in winter 2009. The seasonal data of POC fluxes certified the existence of phytoplankton bloom in winter for Saronikos Gulf. In addition, after evaluating the maxima of POC fluxes in Elefsis Bay (a small embayment in northern Saronikos Gulf) during summer, potential bloom of phytoplankton also concluded; this approach is in agreement with previous data of the same area. Finally, the elevated POC concentrations and fluxes in the region certify that the Gulf is still one of the most organic polluted in the Mediterranean Sea.  相似文献   

19.
Wetland soils from a Mediterranean semiarid wetland (Las Tablas de Daimiel, Central Spain) were studied to characterize the organic matter (OM) and determine its origin and transformation. Cross polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy and mathematical molecular mixing allowed analysis of the organic fraction in terms of six generic components (carbohydrate, protein, lignin, lipid, char and “carbonyl”). Las Tablas is an active carbon sink, with total organic carbon (TOC) content independent of soil OM quality; the TOC content of the upper sediment is 10.0 ± 7.8%. The inorganic carbon content is also high (5.4 ± 3.3%) and is associated mainly with OM of aliphatic character. The OM composition is variable; samples predominantly aliphatic (carbohydrate, lipid and protein) are characteristic of the northern sector, whereas predominantly aromatic samples are typical of the southern Tablas. A strong negative relationship between protein content and lignin content was found, interpreted as a consequence of different proportions of vascular vs. non-vascular (mostly charophyte) litter input. The effect of perturbation is apparent in the extended presence of char, particularly abundant in fire-prone areas. OM quantity and quality do not seem to depend on hydrology (although seasonal flooding is associated with lower TOC wetland soils) or soil characteristics. Dominant vegetation and fire are the main drivers of OM content and composition. Structural carbohydrate, protein and lipid (>60% of total organic fraction) dominate. Widespread anaerobic conditions and the recent character of the sediments could explain the preservation of different fractions of the original detritus composition (due to different vegetation and presence of microbes).  相似文献   

20.
Water concentrates from Turia river (1.5 mg L−1 total organic C) obtained by nanofiltration (membrane mass cut-off 90 Da) were fractioned by non-ionic Amberlite resins (DAX8 and XAD4) to afford three samples termed as hydrophobic acid (50%), transphilic acid (24%) and hydrophobic neutral (12%). If a nanofiltration membrane 270 Da mass cut-off is used then about 50% of dissolved organic matter is not retained. These three fractions were characterized by analytical and spectroscopic techniques (1H NMR, MALDI–TOF-MS, ESI–API-MS, ESI–MS/MS). Overall, these data are compatible with the presence of oligosaccharides, oligopeptides and fatty acids as the main components of dissolved organic matter. Particularly revealing was the information from MALDI–TOF-MS and ESI–MS/MS where series of compounds differing in the number of hexose units were identified. The three fractions have many spectroscopic similarities and, particularly the hydrophobic and transphilic ones, are really almost identical. This similarity in the fraction composition shows that the conventional fractionation procedure is inefficient as a standard general method for separation of different compound types. The composition of dissolved organic matter was confirmed, and some individual organic compounds identified, by GC–MS analysis of the silylated derivatives obtained by reacting the fractions with a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide with trimethylchlorosilane (10%). Thus, rather surprisingly, the dissolved organic matter of this natural raw water is predominantly composed of a relatively simple mixture of a few types of compounds with molecular weights well below 1100 Da (about six hexose units). These results, particularly the absence of detectable amounts of high molecular weight humic acids and low molecular weight phenolic compounds indicates that trihalomethanes formed in the water disinfection process by Cl2 really derive from oligosaccharides and oligopeptides. Also, the data suggests alternative strategies to effect a more efficient fractionation of the dissolved organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号