首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abundances of the highly siderophile elements (HSE) Ru, Pd, Re, Os, Ir, and Pt were determined by isotope dilution mass spectrometry for 22 ureilite bulk rock samples, including monomict, augite-bearing, and polymict lithologies. This report adds significantly to the quantity of available Pt and Pd abundances in ureilites, as these elements were rarely determined in previous neutron activation studies. The CI-normalized HSE abundance patterns of all ureilites analyzed here except ALHA 81101 show marked depletions in the more volatile Pd, with CI chondrite-normalized Pd/Os ratios (excluding ALHA 81101) averaging 0.19 ± 0.23 (2σ). This value is too low to be directly derived from any known chondrite group. Instead, the HSE bulk rock abundances and HSE interelement ratios in ureilites can be understood as physical mixtures of two end member compositions. One component, best represented by sample ALHA 78019, is characterized by superchondritic abundances of refractory HSE (RHSE—Ru, Re, Os, Ir, and Pt), but subchondritic Pd/RHSE, and is consistent with residual metal after extraction of a S-bearing metallic partial melt from carbonaceous chondrite-like precursor materials. The other component, best represented by sample ALHA 81101, is RHSE-poor and has HSE abundances in chondritic proportions. The genesis of the second component is unclear. It could represent regions within the ureilite parent body (UPB), in which metallic phases were completely molten and partially drained, or it might represent chondritic contamination that was added during disruption and brecciation of the UPB. Removal of carbon-rich melts does not seem to play an important role in ureilite petrogenesis. Removal of such melts would quickly deplete the ureilite precursors in Re/Os and As/Au, which is inconsistent with measured osmium isotope abundances, and also with literature As/Au data for the ureilites. Removal of 26Al during silicate melting may have acted as a switch that turned off further metal extraction from ureilite source regions.  相似文献   

2.
Element partitioning in metal-light element systems is important to our understanding of planetary differentiation processes. In this study, solid-metal/liquid-sulfide, liquid-metal/liquid-sulfide and solid-metal/troilite partition coefficients (D) were determined for 18 elements (Ag, As, Au, Co, Cr, Cu, Ge, Ir, Ni, Os, Pd, Pt, Mo, Mn, Re, Ru, Se and W) in the graphite-saturated Fe-S-C system at 1 atm. Compared at the same liquid S concentration, the solid/liquid partition coefficients are similar to those in the Fe-S system, but there are systematic differences that appear to be related to interactions with carbon dissolved in the solid metal. Elements previously shown to be “anthracophile” generally have larger solid/liquid partition coefficients in the Fe-S-C system, whereas those that are not have similar or smaller partition coefficients in the Fe-S-C system. The partitioning of trace elements between C-rich and S-rich liquids is, in most cases, broadly similar to the partitioning between solid metal and S-rich liquid. The highly siderophile elements Os, Re, Ir and W are partitioned strongly into the C-rich liquid, with D ? 100. The partition coefficients for Pt, Ge and W decrease significantly at the transition to liquid immiscibility, while the partition coefficient for Mo increases sharply. The bulk siderophile element patterns of ureilite meteorities appear to be better explained by separation of S-rich liquid from residual C-rich metallic liquid at temperatures above the silicate solidus, rather than by separation of S-rich liquid from residual solid metal at lower temperatures.  相似文献   

3.
The 187Os/188Os for 22 ureilite whole rock samples, including monomict, augite-bearing, and polymict lithologies, were examined in order to constrain the provenance and subsequent magmatic processing of the ureilite parent body (or bodies). The Re/Os ratios of most ureilites show evidence for a recent disturbance, probably related to Re mobility during weathering, and no meaningful chronological information can be extracted from the present data set. The ureilite 187Os/188Os ratios span a range from 0.11739 to 0.13018, with an average of 0.1258 ± 0.0023 (1σ), similar to typical carbonaceous chondrites, and distinct from ordinary or enstatite chondrites. The similar mean of 187Os/188Os measured for the ureilites and carbonaceous chondrites suggests that the ureilite parent body probably formed within the same region of the solar nebula as carbonaceous chondrites. From the narrow range of the 187Os/188Os distribution in ureilite meteorites it is further concluded that Re was not significantly fractionated from Os during planetary differentiation and was not lost along with the missing ureilitic melt component. The lack of large Re/Os fractionations requires that Re/Os partitioning was controlled by a metal phase, and thus metal had to be stable throughout the interval of magmatic processing on the ureilite parent body.  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(13-14):2105-2122
We present new bulk compositional data for 6 martian meteorites, including highly siderophile elements Ni, Re, Os, Ir and Au. These and literature data are utilized for comparison versus the siderophile systematics of igneous rocks from Earth, the Moon, and the HED asteroid. The siderophile composition of ALH84001 is clearly anomalous. Whether this reflects a more reducing environment on primordial Mars when this ancient rock first crystallized, or secondary alteration, is unclear. QUE94201 shows remarkable similarity with EET79001-B for siderophile as well as lithophile elements; both are extraordinarily depleted in the “noblest” siderophiles (Os and Ir), to roughly 0.00001 × CI chondrites. As in terrestrial igneous rocks, among martian rocks Ni, Os and Ir show strong correlations vs. MgO. In the case of MgO vs. Ni, the martian trend is displaced toward lower Ni by a large factor (5), but the Os and Ir trends are not significantly displaced from their terrestrial counterparts. For Mars, Re shows a rough correlation with MgO, indicating compatible behavior, in contrast to its mildly incompatible behavior on Earth. Among martian MgO-rich rocks, Au shows a weak anticorrelation vs. MgO, resembling the terrestrial distribution except for a displacement toward 2–3 times lower Au. The same elements (Ni, Re, Os, Ir and Au) show similar correlations with Cr substituted for MgO. Data for lunar and HED rocks generally show less clear-cut trends (relatively few MgO-rich samples are available). These trends are exploited to infer the compositions of the primitive Earth, Mars, Moon and HED mantles, by assuming that the trend intercepts the bulk MgO or Cr content of the primitive mantle at the approximate primitive mantle concentration of the siderophile element. Results for Earth show good agreement with earlier estimates. For Mars, the implied primitive mantle composition is remarkably similar to the Earth’s, except for 5 times lower Ni. The best constrained of the extremely siderophile elements, Os and Ir, are present in the martian mantle at 0.005 times CI, in comparison to 0.007 times CI in Earth’s mantle. This similarity constitutes a key constraint on the style of core-mantle differentiation in both Mars and Earth. Successful models should predict similarly high concentrations of noble siderophile elements in both the martian and terrestrial mantles (“high” compared to the lunar and HED mantles, and to models of simple partitioning at typical low-pressure magmatic temperatures), but only predict high Ni for the Earth’s mantle. Models that engender the noble siderophile excess in Earth’s mantle through a uniquely terrestrial process, such as a Moon-forming giant impact, have difficulty explaining the similarity of outcome (except for Ni) on Mars. The high Ni content of the terrestrial mantle is probably an effect traceable to Earth’s size. For the more highly siderophile elements like Os and Ir, the simplest model consistent with available constraints is the veneer hypothesis. Core-mantle differentiation was notably inefficient on the largest terrestrial planets, because during the final ∼ 1% of accretion these bodies acquired sufficient H2O to oxidize most of the later-accreting Fe-metal, thus eliminating the carrier phase for segregation of siderophile elements into the core.  相似文献   

5.
Laser ablation inductively coupled plasma mass spectrometry was used to measure abundances of P, Cr, Fe, Co, Ni, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt, and Au in metal grains in the Bencubbin-like chondrites Bencubbin, Weatherford, and Gujba to determine the origin of large metal aggregates in bencubbinites. A strong volatility-controlled signature is observed among the metal grains. The refractory siderophiles Ru, Rh, Re, Os, Ir, and Pt are unfractionated from one another, and are present in approximately chondritic relative abundances. The less refractory elements Fe, Co, Ni, Pd, and Au are fractionated from the refractory siderophiles, with a chondritic Ni/Co ratio and a higher than chondritic Pd/Fe ratio. The moderately volatile siderophile elements Ga, Ge, As, Sn, and Sb are depleted in the metal, relative to chondritic abundances, by up to 3 orders of magnitude. The trace siderophile element data are inconsistent with the following proposed origins of Bencubbin-Weatherford-Gujba metal: (1) condensation from the canonical solar nebula, (2) oxidation of an initially chondritic metal composition, and (3) equilibration with a S-rich partial melt. A condensation model for metal-enriched (×107 CI) gas is developed. Formation by condensation or evaporation in such a high-density, metal-enriched gas is consistent with the trace element measurements. The proposed model for generating such a gas is protoplanetary impact involving a metal-rich body.  相似文献   

6.
Carbonaceous vein separates from Kenna and Haverö, as well as bulk Kenna, were analyzed by RNAA for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Pd, Os, Rb, Re, Sb, Se, Te, Tl. U, and Zn. The data are reviewed together with four earlier Chicago analyses of bulk ureilites. Linear regressions confirm the presence of two metal components, with the following Cl-normalized ratios: Ir/Ni = 14.6, ≤ 1; Ge/Ni = 5.4, 2.4; Au/Ni = 2.3, 0.9. The high-Ir component is enriched in vein separates and hence belongs to veins; the lowIr component belongs to the ultramafic rock. Vein material is enriched in all elements analyzed by us except Zn, and accounts for most of the C, noble gases, and presumably siderophiles in the meteorite. Most of the properties of ureilites apparently can be explained by the cumulate model of Berkley et al. (1980), with certain modifications. Comparison of ureilites with three other ultramafic rocks from different planets (Earth's mantle, lunar dunite, and Chassigny) suggests that the ureilite parent body had a primitive chondritic composition, similar to C3V chondrites but richer in metal and carbon. It melted, causing depletion of incompatibles to a mean abundance of ~0.02 × Cl and incomplete segregation of metal, FeS, and C. Fractional crystallization or melting of metal in the presence of S and C apparently can explain the fractionations of Ir, Re, Ni, Au, and perhaps Ge, obviating the need for extraneous sources of vein metal or unusual parent-body compositions. Noble gases from the parent material may have been retrapped in carbon during magmatism, provided the system was closed.  相似文献   

7.
The mineral phases including olivine, orthopyroxene, clinopyroxene, troilite, nickel-iron, plagioclase, chromite and the phosphates were separated from several meteorites. These were a hypersthene chondrite (Modoc), a bronzite chondrite (Guareña), an enstatite chondrite (Khairpur), and two eucrites (Haraiya and Moore County); diopside was separated from the Nakhla achondrite. The purified minerals were analyzed for trace and minor elements by spark source mass spectrometry and instrumental neutron activation analysis. On the meteorites examined our results show that Co, Ni, Cu, Ge, As, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt and Au are entirely or almost entirely siderophile; Na, Rb, Sr, Y, Ba and the rare earth elements lithophile; Se chalcophile. The transition elements So, Ti, V, Cr and Mn are lithophile in most stony meteorites, but show chalcophile affinities in the enstatite chondrites (and enstatite achondrites), as do Zn, Zr and Nb. In the ordinary chondrites Ga shows both lithophile and siderophile affinities, but becomes entirely siderophile in the enstatite chondrites. Molybdenum and tellurium show strong siderophile and weaker chalcophile affinity. The lithophile elements are distributed among the minerals according to the crystallochemical factors, the most effective controlling factor being ionic size.  相似文献   

8.
We investigate petrologic and physical aspects of melt extraction on the parent asteroid of the ureilite meteorites (UPB). We first develop a petrologic model for simultaneous melting and smelting (reduction of FeO by C) at various depths. For a model starting composition, determined from petrologic constraints to have been CV-like except for elevated Ca/Al (2.5 × CI), we determine (1) degree of melting, (2) the evolution of mg, (3) production of CO + CO2 gas and (4) the evolution of mineralogy in the residue as a function of temperature and pressure. We then use these relationships to examine implications of fractional vs. batch melt extraction.In the shallowest source regions (∼30 bars), melting and smelting begin simultaneously at ∼1050 °C, so that mg and the abundance of low-Ca pyroxene (initially pigeonite, ultimately pigeonite + orthopyroxene) begin to increase immediately. However, in the deepest source regions (∼100 bars), smelting does not begin until ∼1200 °C, so that mg begins to increase and low-Ca pyroxene (pigeonite) appears only after ∼21% melting. The final residues in these two cases, obtained just after the demise of augite, match the end-members of the ureilite mg range (∼94-76) in pyroxene abundance and type. In all source regions, production of CO + CO2 by smelting varies over the course of melting. The onset of smelting results in a burst of gas production and very high incremental gas/melt ratios (up to ∼2.5 by mass); after a few % (s)melting, however, these values drastically decline (to <0.05 in the final increments).Physical modelling based on these relationships indicates that melts would begin to migrate upwards after only ∼1-2% melting, and thereafter would migrate continuously (fractionally) and rapidly (reaching the surface in < a year) in a network of veins/dikes. All melts produced during the smelting stage in each source region have gas contents sufficient to cause them to erupt explosively and be lost. However, since in all but the shallowest source regions part of the melting sequence occurs without smelting, fractional melting implies that a significant fraction of UPB melts may have erupted more placidly to form a thin crust (∼3.3 km thick for a 100 km radius body).Our calculations suggest that melt extraction was so rapid that equilibrium trace element partitioning may not have been attained. We present a model for disequilibrium fractional melting (in which REE partitioning is limited by diffusion) on the UPB, and demonstrate that it produces a good match to the ureilite data. The disequilibrium model may also apply to trace siderophile elements, and might help explain the “overabundance” of these elements in ureilites relative to predictions from the smelting model.Our results suggest that melt extraction on the UPB was a rapid, fractional process, which can explain the preservation of a primitive oxygen isotopic signature on the UPB.  相似文献   

9.
The abundances of the highly siderophile elements (HSE) Re, Os, Ir, Ru, Pt, Rh, Pd and Au, and 187Os/188Os isotope ratios have been determined for a set of carbonaceous, ordinary, enstatite and Rumuruti chondrites, using an analytical technique that permits the precise and accurate measurement of all HSE from the same digestion aliquot. Concentrations of Re, Os, Ir, Ru, Pt and Pd were determined by isotope dilution ICP-MS and N-TIMS analysis. The monoisotopic elements Rh and Au were quantified relative to the abundance of Ir.Differences in HSE abundances and ratios such as Re/Os, 187Os/188Os, Pd/Ir and Au/Ir between different chondrite classes are further substantiated with new data, and additional Rh and Au data, including new data for CI chondrites. Systematically different relative abundances of Rh between different chondrite classes are reminiscent of the behaviour of Re. Carbonaceous chondrites are characterized by low average Rh/Ir of 0.27 ± 0.03 (1s) which is about 20% lower than the ratio for ordinary (0.34 ± 0.02) and enstatite chondrites (EH: 0.33 ± 0.01; EL: 0.32 ± 0.01). R chondrites show higher and somewhat variable Rh/Ir of 0.37 ± 0.07.Well-defined linear correlations of HSE, in particular for bulk samples of ordinary and EL chondrites, are explained by binary mixing and/or dilution by silicates. The HSE carriers responsible for these correlations have a uniform chemical composition, indicating efficient homogenization of local nebular heterogeneities during or prior to the formation of the host minerals in chondrite components. Excepting Rumuruti chondrites and Au in carbonaceous chondrites, these correlations also suggest that metamorphism, alteration and igneous processes had negligible influence on the HSE distribution on the bulk sample scale.Depletion patterns for Rh, Pd and Au in carbonaceous chondrites other than CI are smoothly related to condensation temperatures and therefore consistent with the general depletion of moderately volatile elements in carbonaceous chondrites. Fractionated HSE abundance patterns of ordinary, enstatite and Rumuruti chondrites, however, are more difficult to explain. Fractional condensation combined with the removal of metal phases at various times, and later mixing of early and late formed metal phases may provide a viable explanation. Planetary fractionation processes that may have affected precursor material of chondrite components cannot explain the HSE abundance patterns of chondrite groups. HSE abundances of some, but not all Rumuruti chondrites may be consistent with solid sulphide-liquid sulphide fractionation processes during impact induced melting.  相似文献   

10.
Abstract The abundances of nearly 40 elements, Ir included, have been measured using radio-chemical and instrumental neutron activation analysis (RNAA and INAA) across a Devonian / Carboniferous (D / C) boundary section at Huangmao, Guangxi, China. The Ir anomaly has been found in the D / C boundary bed. Its peak value is 156 ppt, richer by a factor of 12 than that in the underlying strata. Besides, as with Ir, other siderophile and chalcophile elements such as Au, Ni, Co, As and Sb are also enriched. The cause for the abundance anomalies of Ir and other elemets is discussed. Neither volcanic eruption nor extraterrestrial impact can explain it satisfactorily. The real mechanism for the anomalies awaits further study.  相似文献   

11.
We have investigated the partitioning of Ir. Ge, Ga, W, Cr, Au, P, and Ni between solid metal and metallic liquid as a function of temperature and S-concentration of the metallic liquid. Partition coefficients for siderophile elements such as Ir, W, Ga and Ge increase by factors of 10–100 as the Sconcentration of the metallic liquid increases from 0–30 wt%. Partition coefficients for other siderophile elements such as Ni, Au and P increase by only factors of 2–3. In contrast, partition coefficients for the more chalcophile element Cr decrease. These experimentally-determined partition coefficients have been used in conjunction with a fractional crystallization model to reproduce the geochemical behavior of Ni, P, Au and Ir during the magmatic evolution of groups IIAB, IIIAB, IVA and IVB iron meteorites. The mean S-concentration for each group increases in the order IVB, IVA, IIIAB, IIAB, in accord with cosmochemical prediction. However, we are unable to reproduce the geochemical behavior of Ge, Ga, W and Cr in an internally consistent way. We conclude that the magmatic histories of these iron meteorite groups are more complex than has been generally assumed.  相似文献   

12.
Seven well-documented and fresh glassy selvages from ocean floor basalt pillows were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Te, Tl, U and Zn. The samples came from active spreading centers in the Indian and Atlantic Ocean. Glasses from DSDP Leg 24, site 238 (Indian Ocean) have a somewhat peculiar trace element pattern, but this is thought to reflect secondary processes operating at shallow depth, not an anomalous source region in the mantle. Our data rather indicate that heterogeneities in the mantle are confined to the highly incompatible lithophile elements.Chemical fractionations during petrogenesis of tholeiitic basalts are discussed in the light of literature data for primitive peridotitic upper mantle nodules. (Ir, Os), Au, Pd, Ni and Re are strongly fractionated from each other in igneous processes; the unfractionated chondritic mantle pattern thus imposes firm constraints on mantle evolution models. The potentially chalcophile elements Ag, Cd, In and Zn do not behave differently from lithophile elements of the same valency and comparable ionic radius. Residual sulfides are not abundant enough to efficiently control the partitioning of these elements during basalt petrogenesis. However, the poor coherence of Tl to Rb and U in ocean floor basalts could point to retention of Tl by residual sulfides during depletion of the MORB source regions. Sb is strongly depleted in the source regions of ocean ridge basalts; most likely, it was present as a highly incompatible Sb5+ cation. The limited Rb/Cs fractionation in oceanic tholeiites, as opposed to continental tholeiites and acidic rocks, appears to reflect the low abundance of volatile constituents and hydrous silicates in normal ocean ridge basalts.  相似文献   

13.
The Tagish Lake meteorite is a primitive C2 chondrite that has undergone aqueous alteration shortly after formation of its parent body. Previous work indicates that if this type of material was part of a late veneer during terrestrial planetary accretion, it could provide a link between atmophile elements such as H, C, N and noble gases, and highly siderophile element replenishment in the bulk silicate portions of terrestrial planets following core formation. The systematic Re-Os isotope and highly siderophile element measurements performed here on five separate fractions indicate that while Tagish Lake has amongst the highest Ru/Ir (1.63 ± 0.08), Pd/Ir (1.19 ± 0.06) and 187Os/188Os (0.12564-0.12802) of all carbonaceous chondrites, these characteristics still fall short of those necessary to explain the observed siderophile element systematics of the primitive upper mantles of Earth and Mars. Hence, a direct link between atmophile and highly siderophile elements remains elusive, and other sources for replenishment are required, unless an as yet poorly constrained process fractionated Re/Os, Ru/Ir, and Pd/Ir following late accretion on both the Earth and Mars mantles.The unique elevated Ru/Ir combined with elevated 187Os/188Os of Tagish Lake may be attributed to Ru and Re mobility during aqueous alteration very early in its parent body history. The Os, Ir, Pt, and Pd abundances of Tagish Lake are similar to CI chondrites. The elevated Ru/Ir and the higher Re/Os and consequent 187Os/188Os in Tagish Lake, are balanced by a lower Ru/Ir and lower Re/Os and 187Os/188Os in CM-chondrites, relative to CI chondrites. A model that links Tagish Lake with CI and CM chondrites in the same parent body may explain the observed systematics. In this scenario, CM chondrite material comprises the exterior, grading downward to Tagish Lake material, which grades to CI material in the interior of the parent body. Aqueous alteration intensifies towards the interior with increasing temperature. Ruthenium and Re are mobilized from the CM layer into the Tagish Lake layer. This model may thus provide a potential direct parent body relationship between three separate groups of carbonaceous chondrites.  相似文献   

14.
Sulfur is a potential light element in the liquid outer core of the Earth. Its presence in segregating metal may have had an influence in distribution of metal-loving (siderophile) elements during early accretion and core formation events in the Earth. The observed “excess” abundance of siderophile elements in the terrestrial mantle, relative to an abundance expected from simple core-mantle equilibrium at low temperature and pressure, may indicate a reduction in the iron-loving tendency of siderophile elements in the presence of sulfur in the metallic phase. The present experimental partitioning study between iron-carbon-sulfur-siderophile element bearing liquid metal and liquid silicate shows that for some siderophile elements this sulfur effect may be significant enough to even change their character to lithophile. Large and intricate variations in metal-silicate partition coefficients (Dmet/sil) have been observed for many elements, e.g., Ni, Co, Ge, W, P, Au, and Re as a function of sulfur content. Moderately siderophile elements Ge, P, and W show the most significant response (sulfur-avoidance) by an enhanced segregation into the associated sulfur-deficient phases. Highly siderophile elements Ir, Pt, and Re show a different style of sulfur-avoidance (alloy-preference) by segregating as sulfur-poor, siderophile element-rich alloys. Both groups are chalcophobic. Dmet/sil for Ni, Co, and Au moderately decreases with increasing sulfur-content in the liquid metal. Dmet/sil for chalcophile element, Cr, in contrast, increases with sulfur. Irrespective of the sulfur-content, in the presence of a carbon-saturated liquid metal, P is always lithophile. The general nonmetal-avoidance tendency of siderophile elements (and acceptance of chalcophile elements) in the liquid metal, postulated by Jones and Malvin (1990) in the FeNiS(sulfur)M (siderophile) system is found to be present in the metal-silicate system as well. A sulfur-bearning liquid metal segregation can potentially reduce the metal-loving nature of many elements to explain the excess paradox. Sulfur-bearing core segregation, however, might require an efficient draining of exsolved immiscible sulfide liquids from the molten silicate, or an increasing siderophility of sulfur at high pressure to reduce the mantle sulfur content to the observed (<300 ppm) value. Moreover, the chondritic relative abundance pattern of many moderately or highly siderophile elements in the upper mantle is not explained by the presence of sulfur in the segregating metals. Core formation is more complex and intricate than equilibrium segregation.  相似文献   

15.
A characteristic feature of ureilite meteorites is reduction of FeO. But the reduction is usually confined to the rims of olivine. In the LAR 04315, LAP 03587 and Almahata Sitta ureilites, pyroxene was extensively reduced by impact smelting. In LAR 04315, the impact caused nearly all of the original pigeonite to melt or otherwise become sufficiently structurally compromised to allow smelting, and yet a minor proportion of the pyroxene escaped smelting and survived with its original composition (En74.1Wo10.2). Olivine mosaicism confirms that LAR 04315 experienced a major shock event. The smelted pyroxenes also show a distinctive patchiness in their interference colors (although each grain’s basic optical continuity, often including twinning, is still discernible). They also have reduced compositions, are ubiquitously porous (∼15%), and contain sprinklings of Fe-metal and felsic glass. For the most part the olivine underwent only very slight reduction. Much of the (small) pyroxene component of LAP 03587 shows the same oddly porous texture. LAR 04315 also contains large traces of silica and felsic glass (with a typical composition of, in wt%, 61 SiO2, 23 Al2O3, 11 CaO, 3.7 Na2O) glass; these two phases together form selvages that line the walls of many of the largest voids in the rock. Silica is a by-product of pyroxene smelting. The felsic glass probably derives largely from interstitial basaltic melt that predated the impact. However, the comparatively stiff surrounding/included silica may have promoted unusually high melt retention within LAR 04315 through the smelting episode (one aspect of which was a major stream-out, through the same large voids, of COx gas). The impact-smelted pyroxene of LAP 03587 is enigmatic because this ureilite also features little-shocked euhedral graphite laths and no olivine mosaicism. The fine-grained ureilitic component of Almahata Sitta appears to have likewise formed by impact smelting, but with more extensive melting of pyroxene (especially a Ca-rich pyroxene component), more pulverization and melting of olivine, and more displacement of both. However, in places the original coarse-equant ureilite texture is still discernible in relict form. Ordinarily, an impact shock melts olivine before, or at least no later than, pyroxene. But in the case of LAR 04315 and LAP 03587, the great shock event evidently occurred when the material was already anatectic or very nearly so; and thus the difference in melting temperature between pyroxene and olivine, ∼300 degrees lower for pyroxene, was decisive. If literature inferences of extremely fast cooling rates, implying shallow burial depths, are accurate, the proportion of COx gas generated by ureilite smelting exceeded by a very large factor (of order 103 but possibly much greater) the volume represented as porosity in the final ureilites. The outflow of so much gas may have, by near-surface explosive expansion and jetting, enhanced the thoroughness of the impact-triggered catastrophic impact disruption of the parent asteroid.  相似文献   

16.
The concentrations of Rh, Au and other highly siderophile elements (HSE: Re, Os, Ir, Ru, Pt, Rh, Pd and Au), and 187Os/188Os isotope ratios have been determined for samples from peridotite massifs and xenoliths in order to further constrain HSE abundances in the Earth's mantle and to place constraints on the distributions processes accounting for observed HSE variations between fertile and depleted mantle lithologies. Concentrations of Re, Os, Ir, Ru, Pt and Pd were determined by isotope dilution ICP-MS and N-TIMS. The monoisotopic elements Rh and Au were quantified by standardization relative to the concentrations of Ru and Ir, respectively, and were determined from the same digestion aliquot as other HSE. The measurement precision of the concentration data under intermediate precision conditions, as inferred from repeated analyses of 2 g test portions of powdered samples, is estimated to be better than 10% for Rh and better than 15% for Au (1 s).Fertile lherzolites display non-systematic variation of Rh concentrations and constant Rh/Ir of 0.34 ± 0.03 (1 s, n = 57), indicating a Rh abundance for the primitive mantle of 1.2 ± 0.2 ng/g. The data also suggest that Rh behaves as a compatible element during low to moderate degrees of partial melting in the mantle or melt–mantle interaction, but may be depleted at higher degrees of melting. In contrast, Au concentrations and Au/Ir correlate with peridotite fertility, indicating incompatible behaviour of Au during magmatic processes in the mantle. Fertile lherzolites display Au/Ir ranging from 0.20 to 0.65, whereas residual harzburgites have Au/Ir < 0.20. Concentrations of Au and Re are correlated with each other and suggest similar compatibility of both elements. The primitive mantle abundance of Au calculated from correlations displayed by Au/Ir with Al2O3 and Au with Re is 1.7 ± 0.5 ng/g (1 s).The depletion of Pt, Pd, Re and Au relative to Os, Ir, Ru and Rh displayed by residual harzburgites, suggests HSE fractionation during partial melting. However, the HSE abundance variations of fertile and depleted peridotites cannot be explained by a simple fractionation process. Correlations displayed by Pd/Ir, Re/Ir and Au/Ir with Al2O3 may reflect refertilization of previously melt depleted mantle rocks due to reactive infiltration of silicate melts.Relative concentrations of Rh and Au inferred for the primitive mantle model composition are similar to values of ordinary and enstatite chondrites, but distinct from carbonaceous chondrites. The HSE pattern of the primitive mantle is inconsistent with compositions of known chondrite groups. The primitive mantle composition may be explained by late accretion of a mixture of chondritic with slightly suprachondritic materials, or alternatively, by meteoritic materials mixed into mantle with a HSE signature inherited from core formation.  相似文献   

17.
Fourteen siderophile and other non-lithophile elements determined in 31 Semarkona (LL3.0) chondrules by neutron activation analysis are severely fractionated relative to lithophile elements. Their chondrule/whole-rock abundance ratios vary by factors of up to 1000; the mean ratio is ~0.2. Non-refractory siderophile abundance patterns in Ni-rich chondrules are smooth functions of volatility and in Ni-poor chondrules patterns are more irregular. Refractory siderophile elements are often fractionated from Ni; they covary, confirming the presence of a refractory metal component. The chalcophile element Se correlates with Br and siderophile elements. Zinc is uniformly low and uncorrelated with other elements.Most metal and sulfide in chondrules was probably present in the solar nebula before chondrule formation; most siderophile and chalcophile elements were in these materials. Some Fe was also in silicates, as were minor amounts of Ni, Co, Au, Ge and possibly Se. The amount of metal formed by reduction during chondrule melting was minor. The common metal component in chondrules is similar to, and may be the same as the common component involved in the metal/silicate fractionation of the ordinary chondrite groups.Chondrules are depleted in metal chiefly because they sampled metal-poor precursor assemblages. Metal segregation during the molten period and subsequent loss was a minor process that may be responsible for most surface craters on chondrules.  相似文献   

18.
Classification of and elemental fractionation among ureilites   总被引:2,自引:0,他引:2  
Concentrations of Ni, Zn, Ga, Ge, Cd, In, Ir and Au in five ureilites can be combined with petrographie evidence to yield a well-defined suite extending from Goalpara (heavily shocked, low Ir concentration, low Ir/Ni ratio) through Haverö, Dyalpur, Novo-Urei to Kenna (moderately shocked, high Ir concentration, high Ir/Ni ratio). Arguments are presented indicating that this suite represents the sampling of a vertical section within the ureilitic parent body. The large range in Ir/Ni and Ir/Au ratios indicates greater efficiency of extraction of primitive, refractory metal in the Goalpara region than in the Kenna region, and implies that higher maximum temperatures prevailed in the former during the production of ureilitic ultramafic silicates by a partial melting process.

A major impact event injected a deposit of C-rich material into the ultramafic silicates. This C-rich material had a moderately high content of metal; there is no direct evidence that it contained volatiles other than the rare gases. High Ca contents of the ferromagnesian minerals indicate that the ultramafics were hot at the time the injection occurred; the zoning of these mineral grains also indicates high temperatures (ca. 1400 K) and low pressures (S 10atm) such that reaction between C and Fe2SiO4 could occur, but that cooling occurred too quickly to allow complete equilibration. The ureilitic C-rich material appears to represent an important type of primitive material.

Two siderophile-rich components are necessary to explain the relative siderophile trends in ureilites. We interpret the high-Ir component to be a refractory nebular condensate or residue that was retained during the partial melting event. The low-Ir component, which roughly resembles E4 chondrite siderophiles, is attributed to metal injected together with the vein material.  相似文献   


19.
We report analyses of 14 group IVA iron meteorites, and the ungrouped but possibly related, Elephant Moraine (EET) 83230, for siderophile elements by laser ablation ICP-MS and isotope dilution. EET was also analyzed for oxygen isotopic composition and metallographic structure, and Fuzzy Creek, currently the IVA with the highest Ni concentration, was analyzed for metallographic structure. Highly siderophile elements (HSE) Re, Os and Ir concentrations vary by nearly three orders of magnitude over the entire range of IVA irons, while Ru, Pt and Pd vary by less than factors of five. Chondrite normalized abundances of HSE form nested patterns consistent with progressive crystal-liquid fractionation. Attempts to collectively model the HSE abundances resulting from fractional crystallization achieved best results for 3 wt.% S, compared to 0.5 or 9 wt.% S. Consistent with prior studies, concentrations of HSE and other refractory siderophile elements estimated for the bulk IVA core and its parent body are in generally chondritic proportions. Projected abundances of Pd and Au, relative to more refractory HSE, are slightly elevated and modestly differ from L/LL chondrites, which some have linked with group IVA, based on oxygen isotope similarities.Abundance trends for the moderately volatile and siderophile element Ga cannot be adequately modeled for any S concentration, the cause of which remains enigmatic. Further, concentrations of some moderately volatile and siderophile elements indicate marked, progressive depletions in the IVA system. However, if the IVA core began crystallization with ∼3 wt.% S, depletions of more volatile elements cannot be explained as a result of prior volatilization/condensation processes. The initial IVA core had an approximately chondritic Ni/Co ratio, but a fractionated Fe/Ni ratio of ∼10, indicates an Fe-depleted core. This composition is most easily accounted for by assuming that the surrounding silicate shell was enriched in iron, consistent with an oxidized parent body. The depletions in Ga may reflect decreased siderophilic behavior in a relatively oxidized body, and more favorable partitioning into the silicate portion of the parent body.Phosphate inclusions in EET show Δ17O values within the range measured for silicates in IVA iron meteorites. EET has a typical ataxitic microstructure with precipitates of kamacite within a matrix of plessite. Chemical and isotopic evidence for a genetic relation between EET and group IVA is strong, but the high Ni content and the newly determined, rapid cooling rate of this meteorite show that it should continue to be classified as ungrouped. Previously reported metallographic cooling rates for IVA iron meteorites have been interpreted to indicate an inwardly crystallizing, ∼150 km radius metallic body with little or no silicate mantle. Hence, the IVA group was likely formed as a mass of molten metal separated from a much larger parent body that was broken apart by a large impact. Given the apparent genetic relation with IVA, EET was most likely generated via crystal-liquid fractionation in another, smaller body spawned from the same initial liquid during the impact event that generated the IVA body.  相似文献   

20.
Major element and REE, Cr, Sc, V, Ni, Co, Ir, Au, Sr, Ba abundances were determined in three ureilites and the unique achondrite, Chassigny. Chondritic-normalized REE abundance patterns for the ureilites are v-shaped, similar to pallasites, indicating a possible deep-seated origin. The lithophile trace element abundances and v-shaped REE patterns of the ureilites are consistent with a two-stage formation process, the first of which is an extensive partial melting of chondrite-like matter to yield ureilite precursors in the residual solid, which is enriched in Lu relative to La. The second step consists of an admixture of small and variable amounts of material enriched in the light REE. Such contaminating material may be magmas derived from the first formed melt of partial melting of chondrite-like matter.

In contrast to the ureilites, Chassigny has a chondritic-normalized REE pattern which decreases smoothly from La(1.8 × ) to Lu(0.4 × ) and is parallel to and ˜0.25 × the REE pattern in the nakhlitic achondrites. The composition of the magma from which Chassigny crystallized was highly enriched in the light REE; e.g. chondritic normalized La/Lu ˜ 7. The similarity in the fractionated REE patterns (no Eu anomalies) for the olivine-pyroxene Chassigny and for the nakhlites suggests a genetic relationship.

Siderophile trace element relationships in ureilites can be interpreted by three components: (1) ultramafic silicates enriched in Co relative to Ni, (2) an indigenous metal phase remaining after the partial melting event, and (3) a component of the carbon-rich vein material added after the partial melting.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号